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Accelerated brain aging predicts impulsivity and symptom
severity in depression
Katharine Dunlop 1,2, Lindsay W. Victoria1,3, Jonathan Downar 4,5, Faith M. Gunning 1,3 and Conor Liston1,2

Multiple structural and functional neuroimaging measures vary over the course of the lifespan and can be used to predict
chronological age. Accelerated brain aging, as quantified by deviations in the MRI-based predicted age with respect to
chronological age, is associated with risk for neurodegenerative conditions, bipolar disorder, and mortality. Whether age-related
changes in resting-state functional connectivity are accelerated in major depressive disorder (MDD) is unknown, and, if so, it is
unclear if these changes contribute to specific cognitive weaknesses that often occur in MDD. Here, we delineated age-related
functional connectivity changes in a large sample of normal control subjects and tested whether brain aging is accelerated in MDD.
Furthermore, we tested whether accelerated brain aging predicts individual differences in cognitive function. We trained a support
vector regression model predicting age using resting-state functional connectivity in 710 healthy adults aged 18–89. We applied
this model trained on normal aging subjects to a sample of actively depressed MDD participants (n= 109). The difference between
predicted brain age and chronological age was 2.11 years greater (p= 0.015) in MDD patients compared to control participants. An
older MDD brain age was significantly associated with increased impulsivity and, in males, increased depressive severity.
Unexpectedly, accelerated brain aging was also associated with increased placebo response in a sham-controlled trial of high-
frequency repetitive transcranial magnetic stimulation targeting the dorsomedial prefrontal cortex. Our results indicate that MDD is
associated with accelerated brain aging, and that accelerated aging is selectively associated with greater impulsivity and depression
severity.
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INTRODUCTION
Normal aging is associated with declines in specific cognitive
domains. For example, executive function, memory, and proces-
sing speed decline with age, whereas verbal skills, semantic
knowledge, affective function, perceptual priming, and implicit
learning remain relatively intact [1, 2]. Poor executive function may
contribute to other age-related cognitive weaknesses, including
reductions in memory performance, and visuospatial skill [3]. These
age-related declines in executive function are associated with
poorer quality of life [4] and an increased risk of psychiatric
disorders, including in major depressive disorder (MDD [5]).
Numerous magnetic resonance imaging (MRI) studies have

sought to identify functional connectivity correlates of normal
brain aging and age-related executive function decline. These
functional MRI (fMRI) studies of normal aging have consistently
reported lower within-network resting-state functional connectiv-
ity (rsFC) in older age within executive/attentional control, default
mode (DMN), and sensorimotor networks [6–8]—some of which
are correlated with declines in executive function [9]. Additionally,
impulsivity in healthy older adults arises from altered representa-
tions of future rewards in the prefrontal cortex [10], and deficient
sensitivity to immediate rewards in the dorsal striatum [11].
However, few studies have identified predictors of increased risk
for accelerated brain aging [12].

MDD may increase the risk for accelerated aging. Age-sensitive
aspects of executive function, including cognitive flexibility, and
attentional and motor impulsivity, are reduced in MDD [13, 14], and
late-life MDD is associated with aberrant rsFC and deficits in
executive function [15, 16]. Among cognitive symptoms, impulsivity
may be particularly relevant to MDD outcomes. Greater impulsivity
is positively correlated with depressive severity [17]. Impulsivity has
shown to mediate the relationship between hopelessness and
suicidality in young adult and late-life MDD [18, 19], and may
contribute to the observation that aging-related executive function
decline is a predictor of suicidal ideation in older adults [20].
Consequently, characterizing abnormalities of functional brain
aging in MDD may provide a more complete understanding of
the interplay of age-related declines in impulsivity and depressive
symptomatology.
MDD is also associated with accelerated cellular and molecular

aging [21, 22], and a recent structural MRI study reported
accelerated age-related cortical thinning in depression [23].
Although multiple high-impact studies have characterized functional
network alterations in late-life depression [15, 24], relatively few
have examined connectivity changes across the lifespan. Thus, there
is limited evidence that speaks directly to the question of whether or
not age-related connectivity changes are accelerated in depression
and, if so, how they relate to deficits in executive function and mood
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—a potentially critical question for understanding the biological
basis of heterogeneity in depression across the lifespan.
Neuroimaging data are characterized by high interindividual

variability in age-related changes [25]. This age-related variability
correlates with disease risk, such as the progression of cognitive
decline in Alzheimer’s disease [26], and some studies suggest that
“brain age” may be a stronger risk predictor than chronological
age [9, 27–31]. This hypothesis has motivated increased interest in
predicting “brain age” based on neuroimaging variables and
investigating whether deviations between brain age and chron-
ological age—known as the brain-predicted age difference (brain-
PAD)—are clinically relevant. To date, most brain-PAD studies
have predicted age using structural MRI measures, including gray/
white matter volume and cortical thickness. An older brain-PAD
predicts who is more likely to progress from mild cognitive
impairment to Alzheimer’s Disease [32] and is associated with
increased mortality in healthy older adults [33]. Only two studies
used rsFC to predict age, and both focused on healthy human
subjects [34, 35]. One reported an association between brain-PAD
and cognitive function in adults: brain-PADs were older in
individuals with objective cognitive impairment [35]. Some
[36, 37], but not all [38] brain-PAD studies using structural
neuroimaging reported significantly older brain-PAD in MDD. It is
unknown whether age-related changes in functional network
organization are altered in depression.
Molecular markers of aging have been consistently associated

with pharmacotherapy nonresponse [39–42]. Whether these age-
related rsFC markers also predict poorer response to antidepressant
treatments such as repetitive transcranial magnetic stimulation
(rTMS) [43] has not been determined. Older chronological age was
modestly correlated with rTMS nonresponse in early rTMS trials [44–
48], though a recent trial using higher stimulation intensities
reported that older age was associated with better response [49].
Interindividual differences in both neurophysiologic and antidepres-
sant response to rTMS may be driven by age-related changes in
rsFC. Understanding the relationship between brain aging in MDD
and rTMS response may be particularly valuable as it could facilitate
tailoring rTMS stimulation parameters for MDD patients.
Here, we set out to investigate whether age-related rsFC

changes are accelerated in depression and to evaluate how they
influence cognition, mood, and rTMS response. First, to identify
patterns of brain aging based on rsFC, we trained a support vector
regression model to predict chronological age using rsFC in
healthy human subjects. We hypothesized that the accuracy of
this model for predicting age in healthy controls would be
significantly better than chance. Our second aim was to test for
evidence of accelerated brain aging in depression by evaluating
the accuracy of the age-prediction model in an independent
sample of MDD individuals. We hypothesized that the brain-PAD
would be significantly higher in MDD patients than in healthy
controls. Our final aim was to test whether accelerated brain aging
in MDD is associated with (1) deficits in executive function, as
measured by the severity of impulsivity in the MDD group and, (2)
rTMS treatment response. We hypothesized that the brain-PAD in
depressed patients would correlate with greater impulsivity,
indicating greater deficits in executive function. Given previous
work demonstrating the relationship between cellular aging and
antidepressant nonresponse, we also hypothesized that acceler-
ated brain aging (brain-PAD) would be a negative predictor of
treatment response to active rTMS targeting the dorsomedial
prefrontal cortex (DMPFC), but not to placebo, in a previously
published three-arm placebo-controlled clinical trial [50].

MATERIALS AND METHODS
Subjects
We used three neuroimaging datasets from two scanners. The first
dataset came from the open-access Enhanced Nathan Kline

Institute Rockland County Sample [51]. Participants between 18
and 85 years old were selected for preprocessing from Releases
1–8 of the Cross-Sectional Lifespan Connectomics Study. The
second dataset included healthy older adults who were also
scanned at the Nathan Kline Institute, and recruited at the Weill
Cornell Medicine Institute of Geriatric Psychiatry via community
advertisements for non-psychiatric comparison subjects (Clinical-
Trials.gov: NCT01728194). The final dataset included actively
depressed subjects and HCs, originally recruited as part of a
randomized controlled trial of rTMS targeting the DMPFC ([50]
ClinicalTrials.gov:NCT02702154). MDD participants were referred
to the MRI-Guided rTMS Clinic at Toronto Western Hospital and HC
were recruited from the community. MDD participants were
randomized to receive one of two active treatments (1 Hz DMPFC-
rTMS or 20 Hz DMPFC-rTMS) or placebo rTMS, twice-daily, for three
weeks. In total, the three studies yielded data from 848 subjects
between 18 and 89 years old (736 HC and 112 MDD; Table 1 and
Fig. S2). For additional details on inclusion and exclusion criteria,
comorbidities, and medication status, see the Supplementary
Methods and Results. All participants provided written informed
consent, and studies were approved by their respective Research
Ethics Board or Institutional Review Board.

rsfMRI data acquisition and preprocessing
Scans from 710/736 (96.47%) HC and 109/116 (93.97%) MDD
participants were deemed usable by criteria defined a priori,
including framewise displacement (FD), and whole-brain temporal
signal-to-noise (tSNR) (Supplementary Results, Table S1 and
Fig. S3). Participants’ FD was also used in all post hoc analyses
to ensure that there was no association between imaging quality
and predicted age associations by diagnosis or with clinical scales.
We controlled for scanner-related differences in rsFC measures
using ComBat Harmonization [52, 53], but to avoid biasing our
held-out test sample, these controls were implemented iteratively
within the model training loop and are described in the “Model
training” subsection. For additional details on neuroimaging
acquisition parameters and preprocessing procedures, see the
Supplementary Methods.

Clinical assessments
At baseline, MDD participants completed the 17-item Hamilton
Depression Rating Scale (HDRS [54]), and the Barratt Impulsiveness
Scale-11 (BIS-11 [55]). The BIS-11 is a 30-item self-reported
questionnaire assessing attentional, motor, and non-planning
impulsivity. Percent HDRS improvement from baseline to 1-month
post-treatment was also collected.

Table 1. Gender (A) and Age (B) for all subjects.

(A)

NKI TWH WCM MDD

Male 200 43 27 39

Female 373 54 39 72

Total 573 97 66 112

(B)

Site N Mean SD Min.

NKI 573 47.62 18.94 18

TWH 97 36.94 14.67 18

WCM 66 72.42 6.19 60

MDD 112 38.88 11.76 18

Total 848 49.45 19.42 18

Min minimum, MDD major depressive disorder, NKI Nathan Kline Institute,
TWH Toronto Western Hospital, SD standard deviation, WCM Weill Cornell
Medicine.
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Model training
All models were implemented using LIBSVM V3.23 [56] in Matlab
V2019a (The MathWorks, Inc., Natick, Massachusetts, USA), using
an ε-support vector regression with a radial basis function. To
establish model performance and optimize three parameters
(number of rsFC features, cost, and gamma parameters), 1000
iterations of the following were performed. First, whole-brain
correlation matrices representing 33,411 rsFC features (using
regions of interest visualized in Fig. S1) were partitioned into
training (90%) and test sets (10%). Next, we conducted parametric
ComBat Harmonization [52, 53] on the training set, with age as a
covariate, to account for scanning acquisition differences. The
resultant parametric adjustments derived from the training set
were applied to the test set to account for scanner differences.
Next, we ranked rsFC features that were significantly and stably

correlated with age. To generate these rankings, we performed
bootstrapping with replacement (5000 iterations) on the training
set, parametrically correlating age with all 33,411 rsFC features.
Features were considered stable if they were correlated with age at
a threshold of p < 0.0001 across >80% of the bootstrapping
iterations. Stable features were ranked by the mean p value for
their correlation with age across the 5000 bootstrapping iterations.
We then performed a support vector regression with a grid

search to optimize the number of features (50–600 features), the
cost parameter (10e−5 to 10e5), and gamma parameter (10e−5 to
10e−2). This resulted in 528 models per iteration; each model was
applied to the held-out test set and the squared correlation
coefficient was extracted for each combination of model
parameters. The mean squared correlation coefficient across all
iterations was used to determine the optimal model parameters.
In order to test whether the optimal combination of model

parameters produced a significantly predictive model, we then
repeated the aforementioned 1000 training and testing iterations,
shuffling the ages of individuals at each iteration. If there were
fewer than 600 stably predictive rsFC features during feature
selection, rsFC features were ranked on the mean p values
generated using all 5000 bootstraps irrespective of subsample
stability. The null distribution generated by this analysis was used
to evaluate the statistical significance of our model’s performance.

Performance in MDD
Once the optimal hyperparameters were identified, feature z-
normalization, feature selection, and modeling were repeated
using leave-one-out cross-validation to generate HC brain-PAD
scores to compare against MDD brain-PAD. Brain-PAD was
calculated as the predicted age minus chronological age. A final
model was generated using the complete HC set; this model was
applied to the MDD dataset, and we calculated the squared
correlation coefficient and brain-PAD. To describe the relationship
between age and rsFC features by diagnosis, we also repeated
bootstrapping with replacement with the MDD group. Differences
in rsFC-age relationships between MDD and controls were
assessed by correlating brain-age associations by ROI between
the MDD and controls; significantly negative correlations indicate
a difference in the whole-brain rsFC-age associations for a given
ROI between the MDD and HC groups. To test whether predicted
brain age in MDD patients was larger than in HC, we used a
univariate generalized linear model (GLM) with age, gender, and
diagnosis as main effects to compare MDD brain-PAD against the
brain-PAD from HC from the same site and scanner. We also tested
whether brain-PAD of both HC and MDD differed by gender or
correlated with neuroimaging quality measures (FD and whole-
brain signal-to-noise).
Finally, we tested whether MDD brain-PAD was associated with

baseline HDRS severity, executive function, and symptom
improvement. Due to recent debate on the factor structure of
the BIS-11 [57], we first performed an exploratory factor analysis
on the BIS-11 items, using maximum likelihood extraction with a

varimax rotation. Eigenvalues generated from a parallel analysis
was used to identify the optimal number of factors. Next, we
performed a GLM predicting brain-PAD, with gender as a factor,
and age, BIS-11 factors, and HDRS baseline score as covariates.
Main effects for all variables and two-way interactions only for age,
gender, and HDRS score were included in the GLM. Second, to test
whether brain-PAD was associated with individual differences in
rTMS response, we conducted a GLM with percent HDRS
improvement as the dependent variable and assessed whether
there was a main effect of brain-PAD, age, gender, or treatment
arm on percent HDRS improvement. We also modeled brain-
PAD*Group (1 Hz versus 20 Hz; active versus placebo), Age* brain-
PAD*Group and Gender* brain-PAD*Group interactions to
determine whether there were any interactions between brain-
PAD and antidepressant response by treatment arm. We
accounted for multiple comparisons across the three GLMs using
a Bonferroni correction.

RESULTS
Shared age-related rsFC changes in HC and MDD
In order to characterize age-related rsFC changes and test whether
similar changes occur in HC and MDD, we constructed whole-brain
correlation matrices depicting the association between age and
rsFC and identified both shared and divergent patterns of rsFC in
the two samples. In HC, 962 out of 33,411 rsFC features were
deemed stably predictive with age. rsFC decreased with chron-
ological age in 954 of these rsFC features (mean correlation=
−0.22 ± 0.04, range=−0.48 to −0.18), especially those involving
within-network connectivity in sensorimotor, auditory, and
cingulo-opercular task control networks and within a limbic
network, which included the bilateral hippocampi, amygdalae,
and subgenual cingulate (Fig. 1A). rsFC increased with chronolo-
gical age in just 8 of 962 rsFC features (mean correlation= 0.20 ±
0.02, range= 0.18–0.22) involving connectivity predominately
between just two networks: posterior DMN nodes and
dorsal anterior cingulate node of the salience network (Figs. 1B
and S4). MDD participants had similar trend of decreased age-
related network associations in rsFC (Fig. 1C, D). However, 13 of 259
ROIs exhibited age-related rsFC changes that significantly differed
between HC and MDD. These ROIs were predominantly within the
DMN and limbic networks, and included the bilateral subgenual
cingulate, and left hippocampus, lateral orbitofrontal, and dorso-
lateral prefrontal cortex (Fig. 1E, Supplementary Results).

Robust rsFC-based prediction of chronological age in HC
Having identified correlations between rsFC and chronological age
in healthy controls, we trained a support vector regression model
to predict chronological age based on the most stable age-
predictive rsFC features. To identify the optimal hyperparameters,
we implemented a grid search to tune the number of rsFC
features, and the cost and gamma parameters, optimizing for the
explained variance between the predicted and chronological age
in a held-out HC sample. The best performing parameters were
600 rsFC inputs, a cost parameter of 0.1, and a gamma parameter
of 0.0001 (Fig. 2A). Performance of the model trained on the real
data was superior to that of models trained on shuffled data
(Fig. 2B; p < 0.001). The mean R2 for the same parameters in the
shuffled data was 0.014 ± 0.019. Across all training iterations, 948
± 62 rsFC features were stably correlated with chronological age
(Fig. 2C). In contrast, there were 29 ± 24 stable features over all
iterations using shuffled data.
In preparation for comparing the brain-PAD of HC and MDD

subjects, we performed two analyses to estimate brain-PAD
(prediction error) in HC in held-out data using either leave-one-out
cross-validation or ten-fold cross-validation. In leave-one-out
cross-validation, the mean brain-PAD was 0.03 ± standard devia-
tion 12.90 years (absolute brain-PAD= 10.50 ± 7.48 years; Fig. S5),
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and the correlation coefficient between the predicted and
chronological age was 0.75 (Fig. 2D). A single ten-fold cross-
validation using the entire sample or only the Rockland sample
alone yielded similar results. For the entire dataset, the mean
brain-PAD was 0.02 ± 13.25 years (absolute brain-PAD= 10.80 ±
7.66 years), and the correlation coefficient between the predicted
and chronological age was 0.73. For the SVR using only the
Rockland dataset, the brain-PAD was −0.15 ± 12.92 years (abso-
lute brain-PAD= 10.58 ± 7.41, correlation coefficient= 0.73).

Brain-PAD was not associated with demographic or fMRI quality
control variables (Supplementary Results). To quantify the impact
of scanner and acquisition parameter heterogeneity on SVR
performance, we performed two supplemental analyses, training
our model on two sites and testing on the third, with and without
ComBat Harmonization for scanner-related differences. As
expected, SVR performance was lower in both models (r= 0.55
and r= 0.28, respectively) but remained significantly predictive (p
= 0.001–0.014) (Supplementary Results). The ten most predictive

Fig. 1 Chronological age is associated with decreased within-network rsFC and increased between-network rsFC between the SN and
DMN in both HC and MDD. The counts of positive (A) and negative (B) correlation coefficients that met stably predicted the relationship
between age and rsFC in HC (p < 0.0001, 80% of bootstrapping iterations, 5000 iterations). Each cell represents the number of within- or
between-network features that stably correlated with chronological age in HC. The counts of positive (C) and negative (D) correlation
coefficients that met stably predicted the relationship between age and rsFC in MDD. As a priori-defined stability criteria failed to yield any
rsFC features, we opted for a more liberal height and stability threshold for this sample (p < 0.0005, 66.7% of bootstrapping iterations, 5000
iterations). E Regions of interest where its whole-brain rsFC correlations with age significantly differed between HC and MDD (rho range=
−0.29 to −0.15, FDR-p < 0.04). Briefly, most of the differences between HC and MDD in rsFC correlations with age involved default mode
network and subgenual cingulate rsFC. For an additional description of these differences, see the Supplementary Results. AN: affective
network, COTC: cingulo-opercular task control network, DAN: dorsal attention network, DMN: default mode network, FPN: frontoparietal
network, SM: sensorimotor, SN: salience network, VAN: ventral attention network.
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rsFC features were identified using the top 10 weights in the
support vector regression model (Fig. 2E).

Functional brain aging is accelerated in MDD
In order to determine whether brain aging was accelerated in
MDD patients relative to HC, a final model was trained using the
entire HC dataset and optimal hyperparameters. The 600 rsFC
features used in this model (Fig. 3A–C) consisted predominantly of
decreased intra-network rsFC correlating with chronological age,
especially within the sensorimotor, visual, auditory, salience, and
cingulo-opercular task control networks.
This model was then applied to a separate set of rsFC data from

MDD patients, and we compared brain-PAD in the MDD sample
with the leave-one-out cross validated HC brain-PAD. To avoid
scanner-related confounds, we restricted this comparison to HC
subjects scanned on an identical pulse sequence on the same
scanner as our MDD sample. The MDD brain-PAD was 2.11 years
higher than that of HC collected from the same site and scanner
(HC= 3.38 ± 14.06 years; MDD= 5.49 ± 12.65 years). To compare
the predicted age difference in MDD subjects relative to HC, we
implemented a GLM testing for effects of diagnosis, age, and
gender (Table 2A; full model R2= 0.42). There were significant
main effects for age and diagnosis (such that brain-PAD was
significantly higher in MDD patients; Fig. 3D), but not for gender.
Together, these results indicate functional brain aging is
accelerated in depression compared to HCs, as indexed by
increased brain-PAD in the MDD sample.

Accelerated brain aging predicts financial impulsivity and
depression severity in men
Previous studies indicate that accelerated aging is associated with
increased clinical symptomatology and deficits in executive

function. To this end, we tested whether MDD brain-PAD was
associated with HDRS severity, and cognitive function as indexed
by the BIS-11. To reduce the dimensionality of the BIS-11 data [57],
we first performed an exploratory factor analysis on the BIS-11
items. The exploratory factor analysis revealed five BIS-11 factors
(Table S2). These five factors were: (1) low motor and non-planning
impulsivity, (2) high motor impulsivity, (3) attentional impulsivity
and restlessness, (4) deficits in problem solving and puzzles, and (5)
financial impulsivity. We found that brain-PAD was strongly
associated with individual differences in the financial impulsivity
factor, but not the other four factors (Fig. 3E and Table 2B, model
R2= 0.60). Higher financial impulsivity was associated with higher
brain-PAD; this factor was associated with the BIS-11 items related
to saving, spending, and having extraneous thoughts (Table S2).
There was also a significant interaction between gender and HDRS
score, such that depressed men with greater depression severity
had an increased brain-PAD (Fig. 3F).
Previous studies indicate biological markers of aging such as

telomere length are associated with pharmacotherapy nonre-
sponse [39–42] and chronological age is modestly correlated with
rTMS nonresponse [49, 58], leading us to hypothesize accelerated
brain aging as indexed by the brain-PAD would be associated with
rTMS nonresponse. Thus, we tested whether pretreatment brain-
PAD predicted improvements to active or placebo DMPFC-rTMS in
a recently published, sham-controlled trial (Table 2C; model R2=
0.20). Unexpectedly, we found brain-PAD significantly predicted
treatment response in the placebo group, but not in either active
rTMS arm (Fig. 3F). The two three-way interactions were not
significant, meaning neither residual age nor gender effects
influenced the relationship between treatment arm, brain-PAD,
and HDRS improvement. FD did not impact the results of any of
the three GLMs (Supplementary Results).

Fig. 2 Tuning and training a support vector regression model predicting brain age based on rsFC in HC. A Grid search for optimizing SVR
model parameters. Heatmaps of R2 representing the relationship between the chronological and predicted age in held-out data as a function
of gamma and cost parameters, and number of rsFC features. The best combination of parameters is enlarged and presented in the red box
(mean R2= 0.552 ± 0.071). B Histogram visualizing the R2 across all 1000 training iterations for the best combination of parameters in real (red)
and shuffled (gray) data. Real data R2 95% confidence interval [CI]: 0.403 0.682, range: 0.312–0.764; shuffled data R2 CI: 0.000–0.071, range:
1.129e− 9 to 0.136. C Histogram representing the number of rsFC features stably predictive of age across all 1000 training iterations. The
vertical red line indicates the mean. D Scatterplot representing the correlation between chronological and predicted age in HC. The red lines
indicate the regression line and the 95% confidence interval. E The top 10 most predictive rsFC features ranked by support vector regression
weights. These features consisted of rsFC between: dorsal anterior cingulate cortex/DMPFC and motor regions; bilateral dorsal and ventral
striatum; striatum and right inferior frontal gyrus; right IFG and orbitofrontal cortex; right parietal and visual regions; and between the bilateral
medial temporal gyrus. dACC: dorsal anterior cingulate cortex, DMPFC: dorsomedial prefrontal cortex, IFG: inferior frontal gyrus, IPL: inferior
parietal lobule, MTG: medial temporal gyrus, OFC: orbitofrontal cortex, TPJ: temporoparietal junction.
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DISCUSSION
The principal finding is that brain aging was accelerated in MDD
patients. We identify robust age-related correlations in specific
brain networks in a large-scale multisite sample. Of note, there is
considerable overlap between networks exhibiting age-related
changes and those that are altered in depression, indicating that
they could contribute significantly to heterogeneity in depression
pathophysiology across the lifespan. On average, brain-PAD was
modestly but significantly elevated in MDD patients compared to
HC. Interestingly, in depressed men but not in depressed women,
more severe depressive symptoms were associated with older
brain-PADs. Furthermore, brain-PAD was positively associated with
increased financial impulsivity. Unexpectedly, brain-PAD was not
associated with rTMS response but was positively correlated with
improvement in the placebo arm.
Brain-PAD was 2.11 years higher in MDD subjects compared to HC.

Some [36, 37], but not all [38] brain-PAD studies using structural
neuroimaging reported significantly older brain-PAD in MDD samples.
Consistent with our findings, a large, recent study focused on
structural measures [59] showed this effect is small, which might
explain this inconsistency in previous studies. It is also worth noting
that our model included rsFC from nodes commonly associated with
depression pathophysiology—including the subgenual cingulate,
hippocampus, insula, and amygdala [60]—and depression-related
abnormalities in rsFC in these regions may contribute to a significantly
older brain-PAD in MDD. Combining the two neuroimaging

modalities is a way to bolster prediction accuracy [35]. A multimodal
model is therefore a logical next step to gain a more comprehensive
understanding of brain aging in MDD.
We found impulsivity specifically in economic decision-making

and extraneous thoughts significantly correlated with brain-PAD
in the MDD sample. It should be noted that the specificity of this
finding was not predicted a priori, and our data do not rule out
associations with other aspects of impulsivity. Although normal
aging correlates with deficits in complex financial decision-
making, simple financial decision-making, such as paying bills,
remains intact [61]. Furthermore, other aspects of motor and non-
planning impulsivity, such as risk-taking and sensation-seeking,
are negatively correlated with age [62]. Previous studies have
shown that decision-making changes during aging are associated
with activity in the ventral striatum during monetary loss
anticipation [63] and altered PCC rsFC [64]. Interestingly,
impulsivity during economic decision-making is also associated
with rsFC within the frontoparietal and cingulo-opercular net-
works that were heavily represented in our model [65], and in
other RSFC models predicting interindividual differences in delay
discounting [66].
It is also worth noting that employment stability or socio-

economic status may moderate the relationship between
increased financial impulsivity and brain age in MDD. The MDD
group in this study were treatment-resistant; this population is
more likely to be unemployed and have a significantly lower

Fig. 3 Input rsFC features for the final support vector regression model and brain-PAD associations in MDD. A Top 40 regions of interest
predicting age, colored by brain network. The top ROIs were identified by ranking ROIs by the number of rsFC input features included in the
model. B The number of rsFC features included in the model by within- or between-network rsFC of the top 40 ROIs. C The mean rsFC
correlation with chronological age for within- and between-network rsFC of the top 40 ROIs. D Kernel density estimations of the brain-PAD in
the MDD and HC sample from the same site and scanner. Brain-PAD in MDD was significantly higher than that of HC from the same site and
scanner (Estimate=−3.66, SE= 1.49, p= 0.015, HC= 3.38 ± 14.06 years; MDD= 5.49 ± 12.65 years). E Greater financial impulsivity on the BIS-
11 factor was associated with an older brain-PAD (Estimate= 3.08, SE= 1.00, p= 0.003); factor scores are normalized and account for other
regressors included in the GLM. F Interaction of HDRS score and gender; males with high depressive symptomatology had older brain-PADs
(Estimate=−2.27, SE= 0.69, p= 0.002); HDRS scores are normalized and account for other regressors included in the GLM. G HDRS percent
improvement in the placebo-controlled TMS trial (PAD*Group (Placebo > Active) Estimate= 1.43, SE= 0.49, p= 0.004). Improvements only in
the placebo arm were significantly associated with brain-PAD (Placebo estimate= 0.91, SE= 0.35, p= 0.015; 20 Hz Estimate=−0.40, SE= 0.71,
p= 0.58; 1 Hz Estimate=−0.26, SE= 0.47, p= 0.59). Amyg: amygdala, AN: affective network, COTC: cingulo-opercular task control network,
dACC: dorsal anterior cingulate cortex, DAN: dorsal attention network, DMN: default mode network, FPN: frontoparietal network, HC: healthy
controls, HDRS: Hamilton Depression Rating Scale, Hipp hippocampus, IFG: inferior frontal gyrus, Ins insula, MDD: major depressive disorder,
OFC: orbitofrontal cortex, rACC: rostral anterior cingulate cortex, PAD: brain-predicted age difference, SM: sensorimotor network, sgACC:
subgenual anterior cingulate cortex, SMA supplementary motor area, SN: salience network, Thal thalamus, VAN: ventral attention network.
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socioeconomic status relative to nontreatment-resistant MDD or
healthy individuals [67]. Socioeconomic status is significantly
correlated with maladaptive economic decision-making [68] and
worsening brain aging markers like network modularity [69] and
hippocampal volume [70]. A logical next step would be to address
the independent contributions of such social inequities in the
complex interplay between the neurophysiological correlates of
aging and psychiatric disorders.
We also found that accelerated brain aging correlated with

more severe depressive symptoms in depressed men, but not in
depressed women. Previously published studies report larger
brain-PADs among nondepressed males [33] and robust sex
differences in molecular aging factors, including genomic stability
and epigenetic methylation [71], and rsFC [72]. However, gender
did not otherwise account for differences in brain-PAD in MDD or

HC in our analysis. Interestingly, this finding was not replicated in
a recent study investigating structural brain aging in MDD; there
was no association between brain age and clinical factors like
severity or age of onset [59]. While we did not formally collect age
of depression episode onset, future studies should aim to address
the interplay between clinical or demographic factors in MDD and
brain aging. Further studies will be needed to determine whether
there is a causative link between depression severity and brain
aging and whether these mechanisms are modulated by sex.
Contrary to our prediction, brain-PAD was not significantly

correlated with the antidepressant response to active DMPFC-
rTMS. rTMS was delivered at 120% of the resting motor threshold,
possibly minimizing the negative impact of any age-related
atrophy, increased scalp-to-cortex distance [73], or associated
disruptions in rsFC. Furthermore, previously reported studies
reported that cortico-striato-thalamocortical and frontolimbic
circuitry are implicated in DMPFC-rTMS response [74–76]. These
rsFC features were less predominant in our model predicting age,
possibly rendering it a poor predictor of active DMPFC-rTMS
response. Surprisingly, we found a strong positive correlation
between brain-PAD and placebo rTMS response. Previous studies
indicate either no correlation or a modest anticorrelation between
placebo responsivity and chronological age [77]. However,
increased RSFC between the DMN and SN has been observed as
a predictor of antidepressant placebo response [78]. Interestingly,
all positively correlated RSFC features with age involved the SN
and/or DMN, five of which were inter-network RSFC between
these two networks.
Several limitations should be noted. First, like several studies on

this topic [36–38, 59], we tested for evidence of accelerated brain
aging in MDD by training a model to predict healthy aging and
applying it to MDD patients. This approach is advantageous
because it provides a means of identifying rsFC patterns that are
characteristic of healthy aging and then testing whether they are
altered in MDD. As in prior studies [36–38, 59], we interpret this
finding of increased brain-PAD in MDD as evidence of accelerated
or potentially pathological brain aging, but other factors may also
contribute to an increased prediction error in MDD. For example,
to the extent that age-related changes in rsFC in HC are largely
non-overlapping with age-related changes occurring in MDD
subjects, this could also contribute to an increased prediction
error. Arguing against this interpretation, the data in Fig. 1 indicate
that age-related rsFC changes are similar in both HC and MDD
subjects. It is also noteworthy that the absolute brain-PAD in HC
was slightly higher than in previously reported studies predicting
age using structural MRI [36, 59, 79–83]. This study was also not
sufficiently powered to train separately for males and females;
brain-PAD may differ between males and females in separately
trained models [33]. However, there were no main effects of
gender on brain-PAD, and gender was accounted for in each GLM.
There were also significant site differences, both in terms of
subjects’ age and rsFC quality. Ideally, all subjects should be
acquired with the same scanner parameters at the same site to
minimize fMRI-related confounds. To account for this potential
issue, we corrected for site differences in the training and test sets
of every model. Additionally, brain-PAD was not associated with
rsFC data quality in either HC or MDD. We also compared brain-
PAD in MDD and HC participants with neuroimaging data
acquired from the same scanner to mitigate any effects related
to age, inclusion criteria, scanner acquisition parameters, or data
quality differences across scanners. Lastly, it is unclear whether
increased brain-PAD is driving increased impulsivity and depres-
sive symptom severity or vice versa. Further studies will be needed
to elucidate the uni- and bi-directional relationships between age
and behavior.
In conclusion, this study predicted brain age in HC and MDD

patients using rsFC. Functional brain aging was accelerated in
MDD patients compared to HC, and accelerated brain aging in

Table 2. Parameter estimates for all main effects and significant
interactions.

Estimate SE 95% confidence
interval

z p

Lower Upper

(A)

Gender −0.74 1.49 0.03 8.85 −0.50 0.619

Diagnosis −3.66 1.49 0.001 0.48 −2.45 0.015

Age −0.66 0.06 0.46 0.58 −11.42 <0.001

(B)

Age −0.58 0.10 −0.78 −0.37 −5.51 <0.001

Motor/non-
planning
impulsivity

0.74 0.99 −1.21 2.68 0.74 0.461

Motor impulsivity −0.70 1.02 −2.70 1.30 −0.69 0.496

Attentional
impulsivity

1.75 1.11 −0.44 3.93 1.57 0.122

Deficits in problem
solving

−0.21 1.03 −2.23 1.80 −0.21 0.835

Financial
impulsivity

3.08 1.00 1.11 5.05 3.07 0.003

HDRS 0.79 0.33 0.14 1.43 2.39 0.019

Gender −3.72 2.21 −8.04 0.60 −1.69 0.096

HDRS
score*Gender

−2.27 0.69 −3.62 −0.92 −3.29 0.002

(C)

Gender 9.39 5.96 −2.29 21.06 1.58 0.119

Age 0.36 0.30 −0.24 0.95 1.17 0.244

PAD 0.11 0.28 −0.44 0.66 0.40 0.693

Group (1 Hz > 20
Hz)

0.08 7.75 −15.11 15.27 0.01 0.992

Group (Placebo >
Active)

1.20 6.64 −11.81 14.22 0.18 0.857

PAD*Group (1 Hz
>20 Hz)

−0.13 0.56 −1.23 0.98 −0.22 0.824

PAD*Group
(Placebo > Active)

1.43 0.49 0.48 2.39 2.94 0.004

(A) GLM assessing brain-PAD in MDD and HC. (B) GLM assessing
pretreatment clinical measures (BIS-11 factors and HDRS) and brain-PAD
in the MDD group. (C) GLM assessing the relationship between brain-PAD
and TMS response. Bold and underlined uncorrected p values are
significant after multiple comparisons correction. All parameter estimates
are summarized in Supplementary Table S3.
HDRS Hamilton Rating Scale for Depression, PAD brain-predicted age
difference score.
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MDD was associated with increased impulsivity. The study
provides evidence for the notion that MDD is associated with
accelerated brain aging, and that accelerated aging is associated
with worsened impulsivity and depression severity. Establishing
these biologically based relationships will be critical to more
comprehensively understand the etiology and heterogeneity of
MDD, with the hopes of identifying novel treatments to address
the significant personal and economic burden of this disorder.
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