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Toward dynamic phenotypes and the scalable measurement
of human behavior
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Precision psychiatry demands the rapid, efficient, and temporally dense collection of large scale and multi-omic data across diverse
samples, for better diagnosis and treatment of dynamic clinical phenomena. To achieve this, we need approaches for measuring
behavior that are readily scalable, both across participants and over time. Efforts to quantify behavior at scale are impeded by the
fact that our methods for measuring human behavior are typically developed and validated for single time-point assessment, in
highly controlled settings, and with relatively homogeneous samples. As a result, when taken to scale, these measures often suffer
from poor reliability, generalizability, and participant engagement. In this review, we attempt to bridge the gap between gold
standard behavioral measurements in the lab or clinic and the large-scale, high frequency assessments needed for precision
psychiatry. To do this, we introduce and integrate two frameworks for the translation and validation of behavioral measurements.
First, borrowing principles from computer science, we lay out an approach for iterative task development that can optimize
behavioral measures based on psychometric, accessibility, and engagement criteria. Second, we advocate for a participatory
research framework (e.g., citizen science) that can accelerate task development as well as make large-scale behavioral research
more equitable and feasible. Finally, we suggest opportunities enabled by scalable behavioral research to move beyond single
time-point assessment and toward dynamic models of behavior that more closely match clinical phenomena.
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INTRODUCTION
In the era of computational and precision psychiatry, we have two
fundamental goals: (1) first, to robustly characterize mechanisms
of human behavior and brain function as they relate to human
health and disease, and (2) to apply our understanding of
mechanisms to individual-level prediction and individualized
treatments [1]. Yet, as in any field of science that seeks to make
both population and individual-level inferences, there is a tension
between measuring a phenomenon comprehensively and pre-
cisely to characterize mechanisms and measuring that phenom-
enon across many individuals for generalizability and ultimately
prediction. Indeed, the methods of behavioral science range
from the comprehensive characterization of individual patients
(e.g., the bilateral medial temporal lobectomy patient, H.M.) to
the development of generalizable genetic prediction models
of psychiatric disease based on coarse diagnostic classification
(e.g., genome-wide association studies) [2]. Yet, a science of
precision psychiatry will require both rich individual-level char-
acterization and population-level scale (see Fig. 1).
The challenges of precision psychiatry will require a radical

rethinking of the way we approach behavioral research, to enable
the sort of data collection needed to build models for individual-
level inferences. Not only must we address existing issues of
power and generalizability that have been major barriers to our
science [3–7], but also move toward a scale that is beyond the
resources of most individual laboratories.

We use the term scalable behavioral research to refer to the
application of both traditional and novel tools for measuring and
quantifying behavior (e.g., surveys, sensors, cognitive assess-
ments) at the scale necessary for population-based research, large
cohort-based longitudinal studies, and high-frequency measure-
ment designs. This includes a dramatic increase in the size and
diversity of our samples, as well as the ability to characterize
dynamic changes in behavior and cognition, over time.
This review focuses on challenges and a potential framework for

translating methods from experimental science toward the
measurement of mechanisms for cognition and behavior at scale.
We outline some of the main challenges to implementing our
current measures of mechanisms, adapted from experimental
science, in large diverse samples. Finally, we suggest ways of
reconceptualizing the development of measurement tools and the
role of the participant, toward achieving a generalizable science of
behavior that is rigorous, inclusive, and representative.

CHALLENGES TO SCALE
There are both financial and logistical challenges to a robust
precision psychiatry, even when we constrain the problem to
measurements of behavior. Below, we outline three major
human, technical, and psychometric barriers to scale across the
behavioral sciences. Our goal with this review is to suggest
bottlenecks within behavioral research which, if addressed, would
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provide a substantial leap forward in our ability to develop a
precision psychiatry.

Participant engagement
Lack of participant engagement is one of the most significant
barriers to feasibility for large scale behavioral research studies.
Humans research participants have resource and time limitations
—they are focused on myriad concerns related to family, work,
and personal needs that prevent widespread engagement in
research studies [8–12]. Moreover, the attention of humans is
limited. Attention is captured by information that is compelling
and/or goal-related, and fatigued by information that is not [13].
Yet despite these known barriers (and most researchers being
human persons themselves), we tend to design our studies
primarily to meet the needs of researchers and their science. The
formidable issue of participant engagement has been well-
described when it comes to use of digital health apps [14, 15]
as well as the limitation sections of many research studies.
Anticipated burden reduces enrollment and enthusiasm for
participating in research [8, 16, 17], whereas actual and perceived
burden increases attrition [18, 19], reduces data quality [20], and is
among the largest cost drivers for longitudinal research [21, 22].
Moreover, because burden is not evenly distributed across the
population or over time [8, 17], differential recruitment and
attrition by sociodemographic, diagnostic, or contextual factors
threatens generalizability [8, 18, 19, 23]. Participants from already
disadvantaged populations (for whom research is already
potentially a prohibitive burden) and in poorer health are least
likely to enroll and most likely to attrite from research studies
[8–12, 19, 23, 24], making addressing participant burden a major
concern for any population-level behavioral science. All else being
equal, where participant burden goes up, feasibility and afford-
ability of research goes down. To build a scalable science,
attention needs to be paid to the goals and needs of participants
themselves. As both the source of our science and the “end user”
of our discoveries, participants matter and as a field we need to
build their needs into research study design [8–10, 18, 19].

Accessibility: humans and devices
The feasibility of large-scale studies critically depends not only on
whether participants are willing to engage in research, but also
whether they are able to engage. Accessibility is therefore another

important consideration for scalable assessment. We use the term
accessibility to refer to both an individual’s ability to access a
measurement tool—which might be impeded by physical,
logistical, linguistic, or health-related barriers—as well as how
easy it is for an individual to interact with that tool [17, 25, 26].
Measurement tools are often developed with a particular

participant group or scientific question in mind. When those
instruments are later adapted for large-scale studies, beyond their
original purpose, accessibility tends to be considered on an ad hoc
basis—e.g., in a study of aging, for example, one should ensure
that fonts are large enough to be readable by older adults [27].
However, if a measurement tool is to be used at scale, across large
and diverse populations, then that tool must be as universally
accessible as possible [28, 29]. That means considering accessi-
bility for individuals who vary in sociodemographic factors, health
status, age, education, and motivation.
What factors contribute to accessibility? Is it possible to take a

“design for all” approach [30]? In addition to accommodations for
individuals with different sensory or motor capabilities, differences
in language or language fluency, and variations in technical skills
or experience, a truly accessible tool will adhere to universal
design principles that have been well articulated in the literature
on human factors and user interface design [30–33]. These are
principles developed to improve the operability, understandabil-
ity, and perceivability of a tool across individuals [29] and
emphasize clarity, simplicity, and consistency [28, 29, 34, 35].
When a research tool fails along these dimensions, it imposes a
barrier not just for populations with specific sensory or motor
impairments, but people with general cognitive difficulties [28],
including individuals with mental disorders [29]. As with the case
of participant engagement, considerations of accessibility limit
how well we can reach participants with diverse needs and
experiences. Moreover, the same principles that make a particular
instrument more accessible will also tend to make it more
engaging [36], more trustworthy [37], and improve the quality of
data collected [38]. Accessibility of research tools is thus a critical
component of a generalizable behavioral science.

From mechanisms to individual differences
The third major barrier to a scalable behavioral science is the
measurement gap between basic and applied sciences [39].
In addition to issues of power and reproducibility discussed
earlier, behavioral science is currently in the midst of a crisis of
measurement that we have only begun to recognize and
understand [40–44]. This arises primarily out of the drive to take
measures that were developed in basic science laboratories and
apply them to the study of individual differences [45].
Many of the most robust experimental measures of human

cognition are poor and unreliable measures of individual
differences [41]. Take, for example, the well-known and well-
characterized Stroop interference effect, whereby participants are
slower to name the color of word when the word text and color
are incongruent (e.g., the word blue written in red) than when
they are congruent (e.g., the word blue written in blue). Although
a robust and replicable effect, brief measures of Stroop
interference often have poor reliability [41]. Reliability, in the
psychometric sense we use here, refers to the consistency of
results from a particular measure. An entirely unreliable or
inconsistent measure will produce different results each time,
whereas a perfectly reliable measure will produce the same result
every time. Reliability can be further divided into test–retest
reliability vs. internal reliability. Test–retest reliability refers to the
consistency of a measure over longer time periods (beyond a
single measurement or test session) whereas internal reliability
refers to the consistency of a measure over the time period that
measure is delivered or administered. While a measure may have
poor test–retest reliability and still be valid (e.g., if the underlying
process or behavior being measured is unstable), measures with
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Fig. 1 The need for scale in behavioral research. Studies that
achieve scale tend to do so by either measuring some characteristic
across many participants, but coarsely (e.g., genome-wide associa-
tion studies), or through comprehensive measurement of a limited
number of participants (e.g., case studies of rare neurological
phenomena, such as bilateral medial temporal lobectomy patient H.
M.). Both types of scale are needed for precision psychiatry.
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poor internal reliability are either measuring distinct constructs
across test items or, in some cases, not measuring anything at all.
Reliability, in some form, is a prerequisite for validity. Returning to
our Stroop example: it is not sufficient to confirm that participants
have slower response times for incongruent than congruent trials.
Rather, the magnitude of an individual’s response time slowing
on incongruent trials should be consistent within a test session
or between test sessions if a particular measure of Stroop
interference is to be considered reliable.
A growing literature in affective, social, and cognitive sciences

have identified foundational reliability issues with some of the
most widely used and richly characterized measures [40–48]. At
best, unreliable measurement reduces power and reproducibility
of research studies. At worst, unreliable measurement means that
ostensible variations in behavior may reflect random variations
between people or over time, and are fundamentally uninterpre-
table [49].
Why does the translation gap for behavioral measurement

exist? Part of the problem is that many areas of behavioral science
do not have a tradition of reporting reliability statistics [43]. There
is, however, a more fundamental issue that is related to the types
of variance that are the focus of the basic sciences, including
neuroscience and experimental psychology [45].
When we seek to characterize variations in mechanisms

across individuals, we draw from a rich and diverse basic science
literature whose goal is to characterize those mechanisms. The
Stroop interference effect, for example, has helped us under-
stand processes related to automaticity, selective attention, and
response inhibition. In translational and clinical science, we want
to be able to take mechanisms—such as response inhibition—
and look at how variations in those mechanisms might
contribute to differences in disease risk and selection of
appropriate treatments [1]. Yet, measurement approaches that
are the most sensitive to differences between conditions often
have the least variability between persons. The Stroop effect is
so well-characterized in experimental psychology precisely
because nearly all individuals show the expected pattern of
response times to incongruent vs. congruent trials. Rather than
being sensitive to individual differences, the optimal scenario
for experimental validation is if a mechanism (or its measure-
ment) is as invariant as possible across individuals [45]. However,
as sensitivity to between-person individual differences is a
prerequisite for understanding how variations in mechanisms
contribute to human disease, the assumption of reliable
between-person variability must be tested [41, 43].
In summary, to understand variations in mechanisms, we need

to take the challenge of translation of measurement tools from
basic science far more seriously. Such considerations are a
foundational part of a scalable behavioral science, and should
be central to our study design, interpretation of results, and
overall scientific priorities.

FRAMEWORKS FOR SCALING BEHAVIORAL MEASUREMENT
The limitations articulated above are daunting and, when
considered together, paint a negative picture of the feasibility of
a broadly scalable behavioral science to drive progress in
psychiatry. Yet, we note that these challenges are not restricted
to large-scale behavioral research, but exist, in some form, across
human individual differences and clinical research. The drive
toward larger-scale studies, diagnostics, and interventions acts as
a lens—magnifying and bringing into focus the many barriers and
limitations that already existed within the silos of our laboratories,
institutions, or subfields. The goal in addressing these issues is to
build better models of human behavior and disease, advance the
progress of science, and ultimately develop better treatments.
In this section, we provide two approaches to behavioral

research we believe will help address the barriers described in the

previous section. These are approaches used by the authors in
their own work, but are not the only potential solutions. Rather,
our goal is to spark a conversation about ways that we might
reconceptualize the research process and research laboratory in
behavioral science, to make scalable research more feasible.

Iterative task development
Our current approach to the development of research methods
and studies is approximately linear. Once a basic mechanism has
been identified, research measurement tools (or tasks) initially
developed to characterize that mechanism are adapted for an
applied or clinical context. These tasks may then be piloted to
assess feasibility and basic aspects of validity in a small sample
drawn from a target patient population or among healthy
controls. In this initial piloting phase, perhaps it is discovered
that a particular task or condition produces “better” data than
another (based on a diverse and heterogeneous set of criteria).
This then informs selection of tasks and measures for a larger
study. As noted above, the reporting of reliability metrics at this
stage is inconsistent and, in some subfields, regularly omitted. If
all goes well, a larger study is eventually conducted, leading to a
mixture of negative and positive results that then enter
the research literature and contribute to progress (or not) in a
particular subfield.
We would argue that this process often goes awry at the earliest

stage of task development—the translation of tasks from basic
science to clinical research (or the study of individual differences).
In addition to unknown reliability, many tasks are never evaluated
for their participant burden characteristics or accessibility across
populations, devices, and contexts. Usually it is only after the task
has been used in a large study or several studies that it is
recognized that the task falls short along one of these dimensions.
A reasonable approach for addressing participant engagement,
accessibility, and psychometric generalizability is necessary for
macroscale behavioral research.
We look to computer science (a field of engineering) for

potential solutions. Consumer-oriented software development, in
particular, has evolved best practices for the development of
applications geared toward addressing many of the same human
and logistical barriers articulated above for measurement tools.
Such software applications will fail if they are not useable,
engaging, accessible, and scalable. Importantly, and like in the
case of our research tools, it is often not clear what precise
parameters or characteristics will lead to maximum useability,
engagement, accessibility, and scalability.
The model used throughout software development—and in

other areas of engineering and design—relies on iterative
refinement and randomization (also known as A/B testing)
[50–52]. That is, it is not enough to build an application and
assume (based on first principles) that it will work as intended.
Rather, a part of the application development process is the
successive validation and refinement of the application along
multiple simultaneous criteria. And, as in behavioral science,
randomization of users to different test conditions (A/B testing)
permits the selection of parameters, features, and user interface
characteristics in a data-driven and unbiased manner [52]. Here,
we describe the application of such an iterative A/B testing
framework to the development of measurement tools focused
on cognition (see Fig. 2).
Iterative task development begins with the selection of

parameters for a particular task (overall task procedure, items,
length, instructions, formatting, etc). This defines an initial
prototype for further development. The prototype is based on a
best guess of what has worked previously, either based on
existing research in similar populations or based on measures for
which there is a strong foundation of experimental science with
well-characterized mechanisms. Next, additional parameters are
selected that might be expected to change behavior: for instance,
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differences in instructions, methods of delivery (auditory vs.
visual), methods of eliciting response (e.g., likert vs. T/F for
questionnaires), and incentives for participation (e.g., return of
research results, payment schedules or triggers, lottery). Criteria
should be set in advance for determining whether a task meets
some minimally acceptable standard of reliability, sensitivity,
validity, generalizability, accessibility, and engagement across
participants. Participants are then randomized to different
versions of the task. The impacts of different task parameters
are then evaluated and decisions are made about which
parameters led to improvements and which did not. At that
point, these parameters can be refined for subsequent rounds of
A/B testing and task development. Notably, in this model, some
measures would never exit the development stage as no
combination of parameters tested yield versions of the test that
meet criteria for minimum acceptability. Based on a priori criteria,
these tests would not be considered appropriate for wide scale
deployment in research studies designed to produce general-
izable knowledge. Task development is complete when no further
improvements are identified.
Approaches that rely on randomization to different items or

parameters for task development and validation are not novel.
Similar general models are used in the development of measures
that rely on item banks—a large number of potential test or
survey items are generated and then tested (using random
assignment) to estimate psychometric characteristics of each item,
allowing items with better psychometric characteristics to be
identified and used in the development of custom applications
(e.g., the SAPA Project) [53, 54]. The metastudy approach [55]
similarly relies on randomization of participants to many possible
variations of a task or experiment. The purpose of the metastudy,
however, is to determine whether a particular effect or outcome is
robust to variability across a range of nuisance parameters [55],
rather than task development. Our iterative task development
framework extends the logic of these item and parameter
randomization approaches to include multiple successive (itera-
tive) phases of task optimization and metrics that capture human
factors such as accessibility and engagment.
When moving beyond psychometric criteria for task develop-

ment, it is expected that better optimization along one dimension
can lead to poorer optimization along another dimension. For
example, one way to limit variability in scores due to non-human
sources (e.g., for a measure of simple reaction time) is to limit the
types of devices and contexts where a measure can be completed.
iOS devices, for example, tend to have shorter response time
latencies than Android devices (due to the latter’s variation in
hardware) making them better suited as a class for measuring
response times. At the same time, however, the lower cost of

many Android smartphones means that the average education
and socioeconomic status of iOS years tends to be higher than
Android users [56]—factors that have robust and replicable
associations with cognition and mental health. Thus, limiting a
study to iOS devices will improve precision of measurement (and
reduce the influence of a potential confound), but also exclude
the majority of smartphone users [56].
Another example is the tension between task length and task

reliability. The most robust and generalizable method for
increasing the reliability of a measure is to increase its length.
Unfortunately, increased test length or administration time
contributes to participant burden—which reduces enrollment,
increases attrition, and can threaten generalizability [16, 21]. While
this concern is potentially less applicable for passive data
collection (e.g., gps, actigraphy, or other sensor based modalities),
more dense or frequent measurement can interfere with device
processing speed or battery life, which can interfere with the
participant’s use of a device and increase burden [57]. Across
modalities, more precise or more comprehensive measurement is
usually more burdensome.
One way to address the trade-off between psychometric and

useability considerations is to create joint optimization metrics.
For instance, one can use a metric that captures both task
reliability and participant burden by looking at the minimum
duration of a task needed for acceptable reliability across tasks or
versions of a task (or minDAR) [44]. Based on an analysis of 25
cognitive tests, Passell et al. [44] reported dramatic variation in the
task duration needed to produce acceptably reliable scores
(defined as an internal reliability of at least r= 0.7). Some tasks
had minDARs of only 30 s. For other tasks, the minDAR exceeded
10min [44]. One might posit similar such joint optimization
metrics for looking at the minimum duration for acceptable
validity (based on associations with some predefined criterion)
that allows comparison across task parameters.
There are two potential critiques of the iterative task develop-

ment approach described here. First, optimization of certain
parameters might threaten the validity and generalizability of the
original task. That is, there is a risk that the more a task is modified,
the less likely it is that the existing literature and validation for that
task (including literature on basic mechanisms) can be applied.
This is a valid concern, and appropriate checks should be included
in the task development process to track validity. One might
evaluate, for example, whether modifications that improve
accessibility and reduce burden reduce the magnitude of
important between condition effects. A brief and reliable measure
of Stroop interference (if one exists [41]) should still have longer
reaction times for incongruent trials than congruent trials.
Otherwise, it is not a measure of Stroop interference. As limitations
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Fig. 2 Iterative task development. Shown is a schematic of a basic iterative task development procedure. The inset graph shows an example
visualization of reliability for an accuracy-based cognitive task. Measurement reliability is an often-neglected characteristic of assessments
adapted from experimental/basic science.
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related to participant engagement, accessibility, and measure-
ment already pose a threat to validity and generalizability, we
believe that systematic efforts to address these barriers will tend
to improve capacity for scalable assessment that advances
behavioral science.
The second critique is that the sample sizes needed for an

iterative task development approach are prohibitive for most
studies. This is also a valid concern. We focus in this manuscript
specifically on the contexts where applications of behavioral or
cognitive measures at macroscale are both desirable and
potentially achievable. In these cases, the investment in a robust
iterative task development phase for translating such measures
toward scalable contexts can save both human and financial
resources in the long run. We also note that there are now many
low cost and high throughput methods for large sample
participant recruitment that do not require the same level of
resource as a large traditional research study. If it is not possible to
iteratively develop a measurement meant for schizophrenia
research using a large sample of schizophrenia patients, a
reasonably good first approximation of task psychometrics,
accessibility, and burden can be made using large, diverse
samples of mostly healthy participants. There are now numerous
platforms for recruiting large numbers of participants to complete
research assessments, including Amazon’s Mechanical Turk [58],
Prolific [59], and Crowdflower [60]. These platforms can be a rapid
and inexpensive source of participants, but researchers should be
aware of their challenges and limitations [58].
Yet another approach for engaging participants is a citizen

science model of recruitment, which treats the participant as a
partner in the scientific discovery process. This approach is
described in the next section.

Citizen science: participant as collaborator
Patient-centered, participant-centered, and/or participatory
research frameworks have received a lot of attention over the
past decade, and with good reason: the integration of the patient
or participant perspective into research at all stages makes both
practical and ethical sense [61–63]. Such an approach can help
identify new opportunities [64] or fundamental design flaws [10]
early in the research process. It also makes the identification and
selection of incentives for participation both more comprehensive
and clear [9, 10, 18, 24, 65].
Here, we focus on a citizen science framework for participatory

research in behavioral science [65, 66]. In this framework,
participation in research is incentivized by the desire to
contribute to science, insight into the research question being
studied, as well as return of study data and individual research
results [65–68]. Participants use structured research tools to
answer their own research questions or contribute to an overall
research program by collecting their own data [69]. In behavioral
science, that data collection involves completing surveys,
behavioral measures, and cognitive tasks that provide
individual-level feedback about major outcome variables or
performance. The benefit of data collection using this model is
threefold. First, the incentives are aligned for participant and
researcher: they both want to understand the participant’s
capabilities [65]. Participants will tend to exert effort toward
better performance in a way that fits the assumptions of our
research studies and can produce higher quality data than
financial incentives [70]. Second, participants can recruit other
participants in a way that leads to large scale participation.
TestMyBrain.org, for example, receives about 500–1000 partici-
pants per day, of whom about 2/3 are new to research
participation [44, 65, 67]. Third, it invites and encourages
participants to provide feedback on research methods that can
help generate insights about potential technical problems, issues
with instructions, user interface improvements, or accessibility
barriers that would otherwise be difficult to identify.

Many of the major reservations that researchers have about this
approach to data collection are around the ethics of return of
research results—specifically, where each participant is provided
with their data or some individual-level metric derived from their
data. How will a participant interpret the data [71]? Will they know
what to do with it [72]? What if results cause distress or lead to
decisions about treatment-seeking or care that ultimately have a
negative impact [73]? One might flip this question, however, by
asking: who has the most fundamental right to a participant’s
data? If data are generated using the body and behavior of an
individual, should researchers have the right to limit that
individual’s access to that data? Rather than asking whether data
should be shared with the participant, we should perhaps be
asking how to best share data with participants [74, 75]. These are
important considerations that are currently being deeply con-
sidered elsewhere as part of national and international initiatives
[71–77], including the US Precision Medicine Initiative (All of Us
research program) [76].
In the case of low risk measures where nonclinical interpreta-

tions of scores can be made interesting and understandable, we
and others have found the return of research results to be a
positive incentive for community education [78], engagement in
research [65, 67], and developing relationships with participant
communities that enhance research and improve public under-
standing of science [64]. In addition to TestMyBrain.org [65],
initiatives that have had similar (or greater!) success at recruiting
citizen science participants for studies of human cognition and
behavior through return of research results include LabintheWild
[79], Games with Words [67], Project Implicit [80], My Social
Brain [81], and the SAPA Project [53]. While not suitable for all test
development modalities or applications, the combination of
crowdsourcing and/or citizen science approaches allow rapid
evaluation of task characteristics like participant burden, reliability,
and accessibility at relatively low cost. It remains to be seen
whether digital citizen approaches can address engagement
barriers in longitudinal research, where personal relationships
(e.g., with research personnel) can also serve as engagement
incentives. As with any method that relies on digital technology,
targeted outreach will also be needed to ensure participation
among communities with reduced access to smartphone tech-
nologies, including rural and underserved communities.

FUTURE RESEARCH DIRECTIONS
We have argued that, as we move toward precision psychiatry,
there is a pressing need for broadly scalable behavioral research
approaches—the development and validation of reliable, acces-
sible, engaging, and generalizable methods is the only way to
achieve a precision psychiatry that can precisely and dynamically
characterize the behavior of many individuals, over time (Fig. 1).
Below, we outline an emerging new field of behavioral science
that focuses on temporal dynamics of cognition and behavior,
enabled by new technologies and approaches to assessment,
that could transform psychiatry and our understanding of the
human mind.

Behavior, over time
Cross-sectional psychiatric research often implicitly assumes that
variations in mechanisms that are associated with psychopathol-
ogy between persons can generalize to variations in symptoms or
psychopathology within a person over time. Yet, many psycho-
logical processes and mechanisms violate this ergodicity assump-
tion [82].
One of the most exciting innovations that is enabled by digital

technology and the shift toward larger-scale behavioral data
collection is the ability to measure and monitor change over time
in behavior and cognition. Typical approaches to measuring
change rely on longitudinal “single-shot” designs [83], in which
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single time-point assessments are repeated across widely spaced
intervals (e.g., annual assessments). The single-shot approach
assumes that differences in cognition and behavior are relatively
stable over brief time scales, and that meaningful change occurs
relatively slowly. Ecological momentary assessment and measure-
ment burst designs have revealed significant variability in
cognition and behavior over hours and days, however, where
distinct patterns of variability are associated with different
behaviors [84], psychiatric risk [85], and the effectiveness of
interventions [86]. Cognition, in particular, demonstrates signifi-
cant within-person variability that accounts for as much as
40–60% of the total variability in performance [87].
Reliance on single-shot assessments to measure what are likely

dynamic processes has two important consequences. First, it
introduces temporal sampling error—or differences in measure-
ment that reflect time-of-testing effects that can differ substan-
tially from a person’s average [83]. Second, single time-point
assessments assume that variability in performance is not mean-
ingful for characterizing phenotypes. This is a relatively unsup-
ported assumption, and one that is at odds with recent
conceptualizations of dynamic phenotypes, a term originally
coined to refer to time-dependent observable characteristics of
single cells [88]. Because human behavior and performance are
time-dependent, and display meaningful variability at a relatively
fast time-scale (e.g., moments, hours, days), precisely characteriz-
ing important phenotypes require tools that can capture behavior
as it unfolds in as near to real-time as possible [89].

Behavior, in context
Finally, new technologies for measuring physiology, mood, and
environmental variables can now provide richness and context for
more traditional behavioral assessments—fully removing the
laboratory from the confines of brick and mortar and into
people’s everyday environments. Digital sensors embedded in
everyday wearables and personal digital devices can measure
movement, sleep, vocal patterns, and even physiological signals
that are related to mood, arousal, and health [90–92]. While some
of the most innovative applications involve extracting signals from
dense multimodal datasets that combine sensors using machine
learning for prediction and diagnosis [92], there are also more
immediate applications that make traditional tools both more
powerful and more interpretable [93]. Processing of speech from
voice and text can be used to rapidly extract information from
sources that are otherwise hard to process [93, 94], as well as
provide indicators of emotion and psychological status [90, 95].
Sensors embedded in smartphones, together with active mea-
sures of behavior such as surveys or cognitive tests, can give
information about the context in which a behavior, experience, or
cognitive process occurs [96]. Computer vision algorithms can
take slices of data from human video and images to understand
things like emotional experiences, social behavior, and attention
[97, 98]. Actigraphy or sleep data can provide information about
circadian rhythms that might track fluctuations in behavior or
cognitive performance that provide meaningful signals related to
brain and cognitive health [99]. Such applications are being widely
tested by researchers in the field and time will tell which provide
the most promising signals related to human cognition and
behavior.
As human beings moving through the world, our behavior is

both dynamic and exquisitely responsive to social and environ-
mental contexts. Methods that allow us to access that dynamic
and context-rich view of human cognition and behavior will open
up new areas of investigation and potentially provide better mod-
els for understanding psychopathology. The coming years may
reveal new architectures of human cognition and behavior based
on temporal variation or state-related change, which can yield
insights into the pathophysiology of mental disorders that were
previously inaccessible due to methods limitations.

CONCLUSION
The scaling of methods for the assessment of health-related
characteristics is happening throughout science and medicine,
owing to the explosion of new technologies, new analytic
approaches, and the unprecedented connectedness of human
societies. We are now able to conduct research at a scale that was
previously unimaginable.
In this review, we have attempted to lay out our view of some of

the major considerations for scaling the science of behavior across
individuals and over time, as well as potential approaches that
emphasize iterative design of reliable, engaging, and accessible
measures, together with thoughtful integration of participants in
the research process. In no way, however, do we imply that the
solutions suggested are the only path forward. Indeed, one of the
most exciting things about the shift from individual investigators
to communities of scientists and participants working together on
ambitious projects is the potential to rethink our assumptions
about the research process, where it is centered, and how best to
drive scientific progress.
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