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Downregulation of parvalbumin expression in the prefrontal
cortex during adolescence causes enduring prefrontal
disinhibition in adulthood
Adriana Caballero 1, Eden Flores-Barrera1, Daniel R. Thomases1 and Kuei Y. Tseng1

The expression of the calcium binding protein parvalbumin (PV) has been observed in several cortical regions during development
in a temporal pattern consistent with increased afferent-dependent activity. In the prefrontal cortex (PFC), PV expression appears
last and continues to substantially increase throughout adolescence, yet the significance of this increase remains unclear. Because
of the expression of PV in fast-spiking GABAergic interneurons, we hypothesized that PV upregulation during adolescence is
necessary to sustain the increase in GABAergic activity observed in the PFC during this period. To test this hypothesis, we utilized an
RNAi strategy to directly downregulate PV levels in the PFC during adolescence and examined its impact on prefrontal GABAergic
function, plasticity, and associated behaviors during adulthood. The data indicate that a mere 25% reduction of adult PV levels in
the PFC was sufficient to reduce local GABAergic transmission onto pyramidal neurons, disrupt prefrontal excitatory–inhibitory
balance, and alter processing of afferent information from the ventral hippocampus. Accordingly, these animals displayed an
impairment in the level of extinction learning of a trace fear conditioning response, a behavioral paradigm that requires intact PFC-
ventral hippocampus connectivity. These results indicate the PV upregulation observed in the PFC during adolescence is necessary
for refinement of prefrontal GABAergic function, the absence of which results in immature afferent processing and a hypofunctional
state. Importantly, these results suggest there is a critical window of plasticity during which PV upregulation supports the
acquisition of mature GABAergic phenotype necessary to sustain adult PFC functions.
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INTRODUCTION
The elucidation of mechanisms mediating the transition from
childhood to adulthood has received increasing attention under
the premise that understanding cortical developmental trajec-
tories will shed light onto disturbances leading to the onset of
psychiatric disorders later in life [1]. As the cradle of cognitive
functions, the prefrontal cortex (PFC) is one of the cortical regions
whose development extends into adolescence [2, 3], a period
during which neurotransmitter systems in the PFC undergo
intense reconfiguration (reviewed in [4]). The PFC’s involvement
in developmental psychiatric disorders with cognition and affect
dysregulation [5, 6] suggests its protracted maturation also
extends its window of susceptibility until young adulthood.
Nonetheless, the mechanisms conferring PFC vulnerability during
adolescence remain largely undefined.
Parvalbumin (PV) is a member of the EF-hand family of

calcium binding proteins with broad expression in the brain and
muscle [7, 8]. Long considered a “slow calcium buffer”, the
presence of PV grants the cells the ability to regulate the decay
phase of the calcium transient [9–11], especially upon high-
frequency stimulation [12]. In general, PV levels are strongly
regulated throughout development [13–21], with mRNA and
protein expression displaying an exquisite activity-dependence
in both neural and nonneural tissue [22–26]. In the cortex, PV
has been typically considered a marker for a subset of local

GABAergic interneurons which provide strong feedforward
inhibition to pyramidal neurons [27]. In this role, PV-positive
interneurons are considered major regulators of the
excitatory–inhibitory balance in cortical circuits [28] and
ultimately contribute to the organization and synchronization
of afferent input [29]. Of relevance, the appearance of PV has
been highly correlated with increased afferent drive into sensory
cortices [23–25, 30–32]. Similarly, an increase of excitatory
synaptic activity onto PV-positive interneurons occurs in parallel
with a marked upregulation of PV protein expression in the PFC
during adolescence [33].
The full picture of PV function in the nervous system is only

beginning to be understood. The available data indicate that PV
contributes to neurotransmitter release, broadly through regula-
tion of calcium dynamics at the presynaptic site [11]. If true, the
degree of PV expression could have a significant impact in all
processes ascribed to PV-positive interneurons. This becomes
especially important in the context of psychiatric disorders,
particularly in schizophrenia where a reduction in PV expression
has been found (see [34]). Of note, one report shows an
approximate 20% reduction in PV mRNA expression without a
loss in the number of PV-positive interneurons in the PFC of
patients with schizophrenia [35]. Collectively, these results suggest
that there is a threshold level of PV expression required to sustain
adult PV-interneuron function below which deficits in cortical
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processing may occur. Here, we directly tested the hypothesis that
peri-adolescent upregulation of PV in the PFC is necessary to
sustain local inhibitory transmission and support normal prefrontal
functions in adults.

MATERIALS AND METHODS
All experimental procedures were conducted according to the
Guide for the Care and Use of Laboratory Animals, and approved
by the UIC Animal Care Committee. Male Sprague Dawley rats
(Envigo, IN) were group-housed (3 rats/cage), maintained at a
constant temperature (21–23 °C), humidity, and light–dark cycle,
and allowed to acclimate to the facility for at least 1 week before
survival surgeries. Food and water were available ad libitum. See
Supplemental Information for detailed methods.

Delivery of shRNA into the PFC
Commercially available rat PV- and scrambled-shRNA vectors
(HuSH, Origene, Rockville, MD) were propagated using High Purity
Plasmid Midiprep columns (Origene, Rockville, MD), and resus-
pended in DNAse, RNAse- free water (Sigma, St. Louis, MO). On the
day of the surgery, plasmids were complexed with In Vivo Jet-PEI
(Polyplus, France) and injected bilaterally into the prelimbic area
(0.6 µL/side) for cohorts of rats subjected to electrophysiological
and behavioral studies.

Assessment of PV downregulation
A separate cohort of rats injected unilaterally with shRNA at
P34–38 were perfused after P65 with cold saline followed by 4%
PFA in 0.1M PB. Brains were post-fixed for 24 h and kept in 30%
sucrose/PB. At least six coronal sections (50 µm) anterior and six
posterior to the injection site were utilized for PV immunohis-
tochemistry as described before [33]. Images were acquired with a
Nikon Eclipse Ni-E microscope (Nikon Instruments Inc., Melville,
NY) using a 10× objective and analyzed using Image J.

In vivo recordings of local field potential (LFP) in the PFC
Changes in the pattern of LFP at 10, 20, and 40 Hz were
determined as previously described [36, 37]. In another cohort
of animals, a third bipolar concentric electrode was placed in the
basolateral amygdala (BLA) to determine the effect of high-
frequency stimulation (HFS)-induced facilitation of LFP in the PFC.
After a period of stable baseline recording, a protocol of HFS
consisting of four trains of 50 pulses/each at 100 Hz was delivered
into the BLA as previously described [38]. Changes in the slope of
the evoked LFP were measured after HFS. At minute 45, a second
set of HFS was delivered into the ventral hippocampus and
changes in amygdalar-evoked LFP were recorded for an additional
45min. Each data point was computed by averaging the slope
value of eight evoked LFPs from a 2min window.

Ex vivo recordings of inhibitory synaptic currents in the PFC
All procedures were conducted as previously described [39, 40].
For each neuron, the mean inhibitory postsynaptic currents (IPSC)
frequency was compared. In another set of neurons, locally-
evoked IPSC was elicited by a teflon-coated bipolar electrode
placed ~200 μm from the cell body along the apical dendrite.
The stimulation intensity was titrated to elicit a monosynaptic
IPSC response with a failure rate of ~50% using a paired-pulse
protocol to reveal changes in the probability of neurotransmitter
release.

Concurrent recordings of excitatory and inhibitory synaptic
currents in the PFC
All recordings were conducted using an aCSF free of glutamate
and GABA blockers, and a low-chloride-based internal solution to
enable concurrent acquisition of excitatory and inhibitory synaptic
currents at a single-cell level as previously described [40].

Ex vivo recordings of fast-spiking interneurons in the PFC
All recordings were obtained from layer V using a potassium-
based internal solution, and changes spontaneous excitatory
postsynaptic current events were compared as previously
described [33]. Only cells that remained stable for at least 20
min after obtaining the whole-cell configuration were included.

Trace fear conditioning and extinction
We adapted a fear conditioning protocol modified from Zhang &
Rosenkranz [41]. The trace fear conditioning phase consisted of a
120 s habituation period followed by five pairings of a neutral tone
paired with a foot shock (0.4 mA) a delay of 20 s from the end of
the tone. Conditioning trials were presented using a pseudo-
random inter-trial interval of 240–280 s. After conditioning, rats
were returned to their home cage for 24 h. Extinction trials began
the next day in a visually and tactilely distinct chamber. Following
a 120 s habituation period, the conditioned tone (20 s) was
presented 14 times (60 s per trial) without foot shock to enable
extinction of the fear memory. The acquisition of fear extinction is
typically revealed by the level of conditioned freezing to the tone
that diminishes over repeated trials. An infrared camera con-
nected to the ANY-maze behavioral analysis software (Stoelting
Co., IL) was used to record and quantify the time spent freezing
per trial.

RESULTS
PV downregulation diminishes GABAergic transmission
Unlike previous genetic models where PV is completely ablated in
the brain [42], we sought to retain peri-adolescent levels of the
protein to assess whether the upregulation of PV occurring in the
PFC during adolescence was necessary for normal adult functions.
In order to prevent the upregulation of PV expression observed in
adolescence, we injected an shRNA against PV into the medial PFC
during postnatal days (P) 34–38 (Fig. 1a). All analyses of PV
expression were compared with the scrambled (Scr)-shRNA
control at ~P65 (Fig. 1a). Using this approach, we were able to
achieve ~25% reduction in PV expression in the injected site
compared with the contralateral side, as measured by fluores-
cence immunohistochemistry (Fig. 1b). The effect was noticeable
in the neuropil, due to a reduction of PV-positive innervation, and
in individual cells (Fig. 1c). PV knock-down also changed the
appearance of “baskets”, the PV-positive structures circumscribing
the cell body of pyramidal neurons. While still present, these
profiles displayed a marked reduction in the intensity of
surrounding terminals exemplified by the heat plots (Fig. 1c).
Concomitant with the upregulation of PV expression observed

from juveniles to adults [33], there is an increase in GABAergic
transmission in the PFC as revealed by the number of
spontaneous inhibitory postsynaptic current (IPSC) onto layer V
pyramidal neurons [39]. Thus, we determined if the loss of PV
achieved with the shRNA strategy had an effect on GABAergic
transmission impinging upon pyramidal neurons. Whole-cell
patch-clamp recordings obtained from PFC brain slices revealed
that a reduction of PV expression below adult levels is sufficient to
decrease the frequency of IPSC onto layer V pyramidal neurons
(Fig. 1d) without altering the mean IPSC amplitude (Scr-shRNA:
15.9 ± 1.2 pA; PV-shRNA: 15.4 ± 0.8 pA). Moreover, the mean IPSC
frequency obtained in the adult PFC of PV-shRNA-treated rats
closely resembled that of peri-adolescent animals [39]. Data
obtained from locally-evoked IPSC using a protocol of paired-
pulse stimulation to elicit monosynaptic responses further
revealed a presynaptic mechanism of GABAergic disruption
(Fig. 1e). While pyramidal neurons recorded from Scr controls
exhibited a typical paired-pulse suppression (IPSC2/IPSC1 < 1.0), a
paired-pulse facilitation (IPSC2/IPSC1 > 1.0) emerged following PV
downregulation (Fig. 1e). This increase in IPSC paired-pulse ratio
indicates that the probability of GABA release is decreased.

Downregulation of parvalbumin expression in the prefrontal cortex during. . .
A Caballero et al.

1528

Neuropsychopharmacology (2020) 45:1527 – 1535



Altogether, these data indicate a presynaptic mechanism under-
lies the observed GABAergic deficit and demonstrate that the
developmental upregulation of PV during adolescence is neces-
sary to sustain normal levels of GABAergic transmission in the
adult PFC.

PV downregulation disrupts the excitatory–inhibitory balance in
the PFC
The negative impact of PV downregulation on GABAergic
transmission is likely to alter the balance of excitatory–inhibitory
(E–I) activity in the PFC only if local glutamatergic transmission
remains unaltered. To test this hypothesis, we conducted whole-
cell patch-clamp recordings from layer V pyramidal neurons using
a protocol that enables the acquisition of GABAergic and
glutamatergic synaptic activity within a single cell (Fig. 2a; [40]).
The results showed both Scr- and PV-shRNA-treated PFC display
nearly identical levels of postsynaptic current events recorded at
−60mV (PSC−60 mV; Fig. 2b), indicating PV-shRNA treatment does
not affect the activity of glutamatergic synapses. In contrast, PV
downregulation selectively diminished the GABAergic component
of synaptic activity, as revealed by a marked reduction in PSC+15 mV

frequency (Fig. 2b). Consequently, a higher E/I ratio emerged in the
PFC of PV-shRNA-treated animals (Fig. 2c). Notably, such a deficit
was already detectable by P45, a time when adult levels of
GABAergic activity are already attained (Fig. 2b). Further analyses

revealed the increase in E/I ratio is correlated with the frequency of
IPSC (Fig. 2d), indicating that the E–I imbalance induced results
from a preferential disruption of PFC GABAergic transmission.
Collectively, these results demonstrate that a modest down-
regulation of PV expression can impact the E/I ratio of PFC output
neurons, which in turn could have a detrimental effect in signal
processing and integration.

PV downregulation prevents the normal facilitation of
glutamatergic transmission onto FSI
The E–I imbalance observed in the PFC following adolescent PV
downregulation could arise from a developmental deficit in the
recruitment of fast-spiking interneurons (FSI) by excitatory inputs
during adolescence [33]. To test this hypothesis, we conducted
electrophysiological recordings to determine whether the char-
acteristic facilitation of glutamatergic transmission onto FSI
observed during adolescence [33] is disrupted following PV
downregulation. FSI were identified by a non-adapting firing
response to somatic depolarization and a prominent after-
hyperpolarization potential as previously described [33]. Relative
to Scr-shRNA controls, FSI recorded from the PV-shRNA-treated
group showed a lower frequency of excitatory postsynaptic
currents (EPSC) (Fig. 2f–h) without any detectable changes in
the mean EPSC amplitude (Scr-shRNA: 15.8 ± 1.2 pA; PV-shRNA:
15.4 ± 0.8 pA). Such a deficit in EPSC transmission was detectable
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Fig. 1 PV downregulation modifies baskets and reduces GABAergic transmission in the PFC. a Diagram of experimental design for
quantification of PV downregulation after unilateral, intra-PFC delivery of scrambled (Scr; n= 5) or PV shRNA (n= 7) during postnatal days (P)
34–38. Anti-PV staining was performed when rats reached ~P65 in 50 µm-thick sections 300 µm anterior and posterior to the injection site.
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in the neuropil and deep layer “baskets” (scale bar: 100 µm). Magnified insets (C1–C4) showing the degree of PV downregulation in deep layer
baskets. Right panels: intensity heat plots of individually magnified baskets. d Bar-graph summarizing the effect of PV shRNA treatment on
spontaneous inhibitory postsynaptic current (IPSC) recorded in the PFC at P65–85. Whole-cell patch-clamp recordings from layer V pyramidal
neurons revealed a marked reduction of IPSC frequency (events/min) in the PV shRNA group (12 cells, 6 rats) compared with Scr controls
(11 cells, 6 rats; ***p < 0.0001, unpaired t-test). Inset are examples traces of spontaneous IPSC recorded from layer V pyramidal neurons
illustrating the effect of PV shRNA in the PFC (calibration: 15pA, 1s). e Summary of the data obtained from layer V pyramidal neurons using a
paired-pulse protocol of minimal stimulation at 50ms interval. Note that the intensity of stimulation was titrated to elicit monosynaptic IPSC
responses at ~50% failure rate in both groups to enable the detection of any changes in the probability of GABA release. While pyramidal
neurons recorded from Scr controls (10 cells, 5 rats) exhibited IPSC2/IPSC1 ratios <1.0, all neurons recorded from the PV-shRNA group (13 cells,
7 rats) showed IPSC2/IPSC1 ratios >1.0 (***p < 0.001 vs. Scr shRNA, unpaired t-test), indicating that the probability of GABA release is decreased
following PV downregulation.
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by P45 (Fig. 2g, h), a time when adult levels of glutamatergic
activity onto FSI are already attained [33]. Notably, the level of
EPSC frequency observed following adolescent PV downregula-
tion resembles that of naïve juvenile animals [33]. Of note, PV
downregulation did not alter the excitability of FSI (resting
membrane potential, mV: 65.6 ± 0.7 vs. 66.7 ± 1.0; input resistance,
mOhm: 323.9 ± 26.2 vs. 323.2 ± 25.5; after-hyperpolarization, mV:
19.9 ± 1.2 vs. 19.7 ± 1.5; Scr-shRNA vs. PV-shRNA, respectively).
Together, these results indicate that adult levels of PV expression
are necessary for sustaining normal levels excitatory transmission
onto FSI.

Disruption of hippocampal-PFC transmission following PV
downregulation
To assess whether prefrontal processing of afferent signal is
disrupted by local downregulation of PV expression, we
conducted local field potential (LFP) recordings and examined
the pattern of PFC responses to ventral hippocampal train
stimulation at 10, 20, and 40 Hz. The ventral hippocampus is one

of the main regions projecting to the PFC and its activation can
reveal distinct developmental stages of prefrontal GABAergic
function in vivo [37, 39, 43]. Using this approach, we found the
normal pattern of LFP response at 10 Hz remained unaltered in
the PFC of PV-shRNA-treated rats (Fig. 3a, e, f). At 20 Hz, Scr-
shRNA animals showed the typical transient LFP suppression
observed in the PFC of normal adults [36, 37], whereas the PV-
shRNA-treated group displayed a pattern of LFP facilitation
(Fig. 3b, e, f). Similarly, the level of LFP suppression upon
hippocampal stimulation at 40 Hz was smaller in the PFC of PV-
shRNA-treated rats relative to Scr-shRNA controls (Fig. 3c, e, f).
Of note, the patterns of LFP facilitation (at 20 Hz) and attenuated
suppression (at 40 Hz) observed following PV downregulation
were indistinguishable from the responses obtained in juveniles
(Fig. 3e; see also [37]) and those recorded in adults following
PFC blockade of GABA-AR transmission [36, 37]. These results
indicate that an optimal level of PV expression is needed to
enable PFC GABAergic control of high-frequency afferent signal
from the ventral hippocampus. Thus, the ability of PV-positive
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interneurons to handle high-frequency afferent drive relies in
part on the expression of PV itself.

PV downregulation prevents the normal modulation of basolateral
amygdala inputs by the ventral hippocampus in the PFC
The enduring E–I imbalance resulting from PV downregulation in
the PFC could also disrupt the developmentally-regulated
modulation of basolateral amygdala (BLA) inputs by the ventral
hippocampus [38]. To test this hypothesis, we employed a
protocol of high-frequency stimulation (HFS; Fig. 4) to induce
potentiation of prefrontal LFP elicited from the BLA. Following
potentiation of the BLA-evoked response, a second set of HFS was
delivered into the ventral hippocampus to determine whether the
degree of prefrontal depotentiation is disrupted by the PV shRNA
treatment. We found the pattern of LFP potentiation resulting
from HFS of the BLA remained unaltered following PV down-
regulation in the PFC (Fig. 4a, b). This is consistent with previous
data showing that plasticity of the BLA-to-PFC pathway does not
rely on prefrontal GABAergic transmission [43]. However, the
characteristic depotentiation of BLA-evoked LFP upon sequential
HFS of the ventral hippocampus was only observed in the PFC of
Scr-shRNA controls (Fig. 4b). In PV-shRNA animals, hippocampal
HFS failed to disrupt the potentiated BLA-evoked LFP in the PFC
(Fig. 4b, c), a pattern of response identical to that observed in
naïve juveniles [38]. Together, these results support the premise
that an optimal level of PV expression in the PFC is needed to

enable the inhibitory control of BLA inputs by the ventral
hippocampus.

PV downregulation impairs the level of extinction of a trace-fear
memory
PFC processing of ventral hippocampal and BLA inputs is critical for
the expression of cognitive functions [44, 45] including the
acquisition and extinction of conditioned fear memories [46, 47].
In order to test whether PV downregulation in the PFC during
adolescence impacts behavioral outcomes in adulthood, we utilized
a trace-fear conditioning paradigm in which the cue (tone) and shock
are separated by a 20 s-delay. This delay engages the hippocampal-
PFC pathway and provides a behavioral readout of functional
connectivity between the PFC, ventral hippocampus, and BLA [46].
Compared with Scr controls, bilateral downregulation of PV in

the PFC does not disrupt the acquisition of cue-mediated fear
response tested in adulthood (Fig. 5a). In fact, the behavioral
response obtained from Scr- and PV-shRNA-treated groups were
indistinguishable from each other, achieving more than 80% of
freezing after 5 tone-shock presentations (Fig. 5a). Similarly, both
groups exhibited similar levels of baseline freezing during
habituation prior to extinction on day 2 (Scr-shRNA: 11.5 ± 1.8%
vs. PV-shRNA: 11.4 ± 1.4%). During testing for the extinction of the
fear memory, the Scr-shRNA group showed the typical gradual
reduction of the freezing response to the tone over repeated trials
(Fig. 5b). In contrast, the PV-shRNA group displayed increased
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freezing times relative to Scr controls, a difference which persisted
until the last trial of cue presentation (Fig. 5b). Post-hoc analyses
also revealed a difference in the level of freezing between the first
and last trials of extinction for both Scr- and PV-shRNA-treated rats
(Scr-shRNA: p < 0.00005, PV-shRNA: p < 0.01, Tukey post-hoc test).
Altogether, these results indicate that an optimal level of PV
expression in the PFC is critical for regulating the level of
extinction learning.

DISCUSSION
While genetic ablation of PV-positive interneuron activity has
provided proof of concept data on the importance of prefrontal
PV interneurons in cognitive functions [48–53], it has yet to
provide plausible biological mechanisms to explain the reduction

of PV-positive interneuron activity commonly described in
psychiatric disorders. Using an shRNA approach at the time PV
expression is about to rise, we were able to detect the functional
impact of PV-shRNA as early as 10 days post-delivery. The results
presented herein show that a mere downregulation of PV to
adolescent levels is sufficient to decrease GABAergic transmission
and disrupt the E–I balance in the PFC, ultimately reducing the
inhibitory control of afferent integration to levels indistinguishable
from those in juvenile animals. The defect in afferent information
processing is further manifested as an impairment in the level of
extinction learning. Altogether, these findings provide a novel,
biologically-relevant mechanism by which GABAergic transmission
in the PFC can be regulated during adolescent development.
The upregulation of PV in multiple brain regions at specific time

points [14, 17, 54, 55] is seemingly part of a developmental
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program triggered by increased synaptic activity from specific
inputs. Accordingly, PV expression in sensory cortices is drama-
tically reduced after blocking afferent drive [23–25, 30–32]. It
remains to be defined whether a single or concerted glutamater-
gic activity from PFC afferent structures (e.g., ventral hippocam-
pus, BLA, or mediodorsal thalamus) is responsible for eliciting the
genetic/epigenetic program that results in PV upregulation within
the developmental window studied here. Previous work in
organotypic cultures suggests such a program may be established
early on and may vary for each cortical layer [26, 56]. Interestingly,
genetic ablation of the global transcriptional activator PGC-1α
results in a striking loss of cortical PV among other proteins
specifically associated with GABAergic interneurons [57, 58].
Nonetheless, our study indicates that preventing the develop-
mental increase of PV alone is sufficient to halt the gain of
prefrontal GABAergic transmission attained during adolescence,
suggesting that even small changes in PV concentration in the
PFC can affect local inhibitory control and disrupt its optimal
computational capacity [59].
The continued increase in PV expression observed in the PFC

during adolescence serves an integral role in GABA neurotrans-
mission in adulthood possibly by allowing PV-positive interneur-
ons tighter temporal control over inputs and/or by conferring
increased calcium buffering capacity to sustain GABA release [11].
Irrespective of the synaptic mechanisms by which PV regulates
GABAergic transmission, loss of PV results in a net increase in the
E/I ratio, likely through the inability of GABAergic interneurons to
sustain a high firing rate during periods of high cognitive
demand. Such deficiencies would not be apparent until the
protracted consolidation of long and short-term inputs occurring
in the PFC during adolescence [36, 37, 59]. In support of this idea,
previous work has demonstrated that a complete absence of PV
preferentially alters synaptic activity of narrowly timed events
[42, 60, 61], indicating PV function only becomes manifest upon
certain type of inputs defined by their proximity and/or frequency.
Our results expand this concept to demonstrate that only mature
levels of cortical PV can exert proper inhibitory control of afferent
drive received at high frequencies (i.e., >20 Hz). It remains to be
understood why PV downregulation selectively affects PFC
integration of hippocampal inputs, despite the amygdala also
targets PV interneurons in the PFC [62, 63]. The input-specific
impact of PV downregulation suggests that there are concurrent,
perhaps conditional mechanisms in the PFC and hippocampus
that are required for normal development and function of both
structures. Supporting this idea, the ventral hippocampus also
undergoes a protracted maturation in its PFC-projection domain
during adolescence [64, 65]. Thus, the amount of PV within an
interneuron needs to match the strength of input-specific
glutamatergic transmission in order to enable an optimal synaptic
response with sufficient temporal control of afferent drive.
Not surprisingly, the results presented herein diverge from the

ones obtained in full PV knock-out mice [60, 61, 66]. Complete
absence of PV has been reported to enhance the excitability of FSI
[66] and facilitate GABAergic transmission as revealed by an
increased in paired-pulse ratio [60]. Of note, these studies did not
employ protocols of minimal stimulation to reveal presynaptic
changes in transmitter release [67], leaving open the possibility
that the increased paired-pulse ratio observed in full PV knock-out
mice could arise from compensatory processes from the absence
of PV since embryonic stages, thus rendering FSI hyperexcitable
[66]. In contrast, partial PV downregulation during adolescence in
the PFC did not change FSI excitability, but it markedly reduced
the frequency of IPSC in conjunction with an increased paired-
pulse ratio of evoked IPSC at minimal stimulation, all indicative of
a presynaptic deficit in GABA release onto pyramidal neurons.
We propose the full range of PV function is the sum of a

concentration and time-dependent increase of PV at different
cellular compartments: 1) in dendrites where PV-positive

interneurons receive most of their synaptic inputs, and 2) in
synaptic terminals, where PV is positioned to regulate neuro-
transmitter release. The observation that the increase in PV occurs
primarily at terminals at critical developmental points (documen-
ted as a prevalence of “basket” structures [18, 33]), suggests that
the role of PV in regulating GABA release becomes pronounced
only after PV concentration reaches a “critical mass” during
development.
Although the retrieval of extinction memory was not tested

here, our data indicate that small changes in PV expression in the
PFC are sufficient to cause an impairment in the level of extinction
learning. Similar alterations in neural circuits regulating extinction
behavior have been documented in schizophrenia [68], and
recapitulated in animal models of the disease [69]. Interestingly, a
small but consistent reduction in prefrontal PV expression (~20%)
has been observed in schizophrenia [35, 70], suggesting that
reduced PV levels may explain some, but certainly not all the
pathophysiology of the disease in which more than one brain
structure is compromised. Whether the reduction in PV observed
in schizophrenia is the result of increased oxidative stress [71, 72],
a lack of developmental upregulation [1], or a combination of
both, a mismatch between prefrontal PV expression and afferent
drive is enough to render the PFC hypofunctional. Future studies
are warranted to determine the extent of behavioral changes
resulting from such a discrete disruption of PV expression in the
PFC during adolescence.

CONCLUSIONS
The experimental observations presented above together with the
computational model proposed by Eggermann and Jonas [73],
indicate that the ultimate role of PV can only be examined and
understood under a developmental “lens” as its function is highly
dependent on the absolute amount present at any given
developmental window, which itself is a function of afferent
activity. In light of the results presented here, a re-evaluation of
the role of PV based on the developmental status of each region
studied is warranted. Our results provide unequivocal demonstra-
tion that the protracted expression of PV in the PFC during
adolescence is a biologically relevant process that must take place
to attain mature levels of inhibitory transmission and support
adult PFC-dependent behaviors.
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