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Medial PFC AMPA receptor and BDNF signaling are
required for the rapid and sustained antidepressant-like
effects of 5-HT1A receptor stimulation
Kenichi Fukumoto1,2, Manoela V. Fogaça1, Rong-Jian Liu1, Catharine H. Duman1, Xiao-Yuan Li1, Shigeyuki Chaki2 and
Ronald S. Duman 1

We previously reported that the serotonergic system is important for the antidepressant-like effects of ketamine, a non-competitive
N-methyl-D-aspartate receptor antagonist, which produces rapid and long-lasting antidepressant effects in patients with major
depressive disorder (MDD). In particular, selective stimulation of the 5-HT1A receptor in the medial prefrontal cortex (mPFC), as
opposed to the somatic 5-HT1A autoreceptor, has been shown to play a critical role in the antidepressant-like actions of ketamine.
However, the detailed mechanisms underlying mPFC 5-HT1A receptor-mediated antidepressant-like effects are not fully understood.
Here we examined the involvement of the glutamate AMPA receptor and brain-derived neurotrophic factor (BDNF) in the
antidepressant-like effects of 5-HT1A receptor activation in the mPFC. The results show that intra-mPFC infusion of the 5-HT1A
receptor agonist 8-OH-DPAT induces rapid and long-lasting antidepressant-like effects in the forced swim, novelty-suppressed
feeding, female urine sniffing, and chronic unpredictable stress tests. In addition, the results demonstrate that the antidepressant-
like effects of intra-mPFC infusion of 8-OH-DPAT are blocked by co-infusion of an AMPA receptor antagonist or an anti-BDNF
neutralizing antibody. In addition, mPFC infusion of 8-OH-DPAT increased the phosphorylation of signaling proteins downstream of
BDNF, including mTOR, ERK, 4EBP1, and p70S6K. Finally, selective stimulation of the 5-HT1A receptor increased levels of synaptic
proteins and synaptic function in the mPFC. Collectively, these results indicate that selective stimulation of 5-HT1A receptor in the
mPFC exerts rapid and sustained antidepressant-like effects via activation of AMPA receptor/BDNF/mTOR signaling in mice, which
subsequently increase synaptic function in the mPFC, and provide evidence for the 5-HT1A receptor as a target for the treatment
of MDD.

Neuropsychopharmacology (2020) 45:1725–1734; https://doi.org/10.1038/s41386-020-0705-0

INTRODUCTION
Major depressive disorder (MDD) is a global health problem
associated with a significant social and economic burden, with an
estimated lifetime prevalence in the USA of ~17% [1, 2]. Although
the majority of individuals with depression (about 65%) exhibit
some improvement with currently available antidepressant
medications, it can take weeks to months for a therapeutic
response, and more than 30% of patients remain resistant to these
agents [3]. These findings highlight the need for development of
new antidepressants with faster onset of action and greater
efficacy.
The glutamatergic system has gathered great attention as an

attractive target for the development of novel antidepressants.
The most notable example is ketamine, a non-competitive N-
methyl-D-aspartate (NMDA) receptor antagonist, that has been
reported to exert rapid and long-lasting antidepressant as well as
anti-suicidal effects in patients with MDD, including those
considered to have treatment-resistant depression (TRD) [4–8].
However, ketamine produces undesirable side effects, notably
psychotomimetic and dissociative symptoms and has abuse
potential [9]. Therefore, novel antidepressants with ketamine-like

rapid and efficacious actions, but without the side effects, are a
major focus of current drug development.
Previous studies have demonstrated that the antidepressant-

like effects of ketamine required α-amino-3-hydroxy-5-methyl-4-
isoxazole propionate (AMPA) receptor and activity-dependent
release of brain-derived neurotrophic factor (BDNF), followed by
activation of the mechanistic target of rapamycin complex-1
(mTORC1) signaling in the medial prefrontal cortex (mPFC)
[10–13]. In addition to these mechanisms, recent studies
demonstrate that the serotonergic system plays a critical role in
the antidepressant-like effects of ketamine. Ketamine increases
extracellular serotonin (5-HT) levels in the mPFC, and this increase
is mediated by AMPA receptor activation [14, 15]. Moreover, the
antidepressant-like actions of ketamine are blocked by pretreat-
ment with a 5-HT-depleting agent [16–19], and by intra-mPFC
infusion of a 5-HT1A receptor antagonist, WAY100635 [17, 20].
These findings indicate that the postsynaptic 5-HT1A receptor in
the mPFC, which is activated by AMPA receptor-dependent 5-HT
release, is involved in the antidepressant-like effects of ketamine.
We have also demonstrated that intra-mPFC infusion but not

systemic administration of 8-OH-DPAT, a 5-HT1A receptor agonist
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with 60-fold selectivity for the 5-HT1A receptor over other 5-HT
receptor subtypes, and even greater selectivity relative to other
classes of monoamine receptors [21], induces rapid and sustained
antidepressant-like effects, lasting up to 24 h after administration
[20]. Combined with evidence that WAY100635 blocks the effects
of ketamine, the results indicate that selective of 5-HT1A receptor
stimulation in the mPFC contributes to the antidepressant-like
effects of ketamine [20]. Furthermore, we previously demon-
strated that phosphoinositide-3 kinase (PI3K)/Akt and
mTORC1 signaling mediate the antidepressant-like effects of 5-
HT1A receptor stimulation, providing evidence for a role of
synaptic plasticity [11, 20, 22]. Therefore, selective 5-HT1A receptor
stimulation in the mPFC, as opposed to the somatic 5-HT1A
autoreceptor, may be a potential target for developing novel,
rapid-acting ketamine-like antidepressants. This is also consistent
with reports that biased agonists with greater affinity for cortical
5-HT1A heteroreceptor produce antidepressant-like actions
[23, 24]. However, the detailed antidepressant-like actions and
underlying mechanisms of postsynaptic 5-HT1A receptor stimula-
tion in the mPFC remain to be fully investigated.
In the current study we first examine the antidepressant-like

profile of infusing a 5-HT1A receptor agonist into the mPFC in
several behavioral tests. This includes a chronic unpredictable
stress (CUS) model, which provides a rigorous test of the rapid and
sustained antidepressant-like actions of 5-HT1A receptor stimula-
tion. In addition, we examine the role of AMPA receptor/BDNF/
mTORC1 signaling and synaptic function, which are critical for the
actions of ketamine [10–13] in the antidepressant-like actions of
mPFC 5-HT1A receptor stimulation.

MATERIALS AND METHODS
Animals and drug administration
Ten- to thirteen-week-old male C57BL/6J mice (Jackson Labora-
tories) were used. Animals were housed and maintained in
standard conditions with a 12-h light/dark cycle and ad libitum
food and water unless otherwise noted. (±)8-hydroxy-2-(di-n-
propylamino)tetralin (8-OH-DPAT; Abcam, Cambridge, MA, USA)
was dissolved in saline and administered subcutaneously (s.c.) for
systemic administration. Animal use and procedures were in
accordance with the National Institutes of Health guidelines and
approved by the Yale University Animal Care and Use Committees.

Surgical and infusion procedures
Bilateral 26-gauge guide cannulae (Plastics One) were implanted
with the cannulae tips 0.3 mm above the infusion sites in the
mPFC (anteroposterior, 1.8 mm from bregma; lateral, ±0.4 mm;
ventral, −2.5 mm) as previously described [25]. Mice were
bilaterally infused with the following agents depending on the
experiment: 8-OH-DPAT (1 and 3 nmol/side), NBQX (0.03 nmol/
side; Tocris Bioscience, Minneapolis, MN, USA), saline (vehicle for
8-OH-DPAT and NBQX), a function-blocking anti-BDNF neutralizing
antibody (nAB) (0.2 μg/side, EMD Millipore, Billerica, MA, USA) or
sheep IgG (vehicle for function-blocking anti-BDNF nAB) for 2 min
at a rate of 0.1 μL/min (total volume is 0.2 μL). The dose and timing
of each compound administration are based on previous reports
[18, 20, 25].

Behavior studies
The forced swimming test (FST), locomotor activity test (LMA),
novelty-suppressed feeding test (NSFT), and female urine sniffing
test (FUST) were carried out as previously described [25]. For naive
mice, we used FUST to detect rewarding activity, and we
demonstrated that ketamine exerted the antidepressant-like effect
in this test [25]. In FST, each animal was placed in the swim
cylinders for a 10 min period and videotaped. Data were analyzed
by scoring the immobility time by an experimenter blinded to the
treatment groups. In LMA, each animal was placed individually in

clean cages for 30min, during which time the number of beam
breaks was measured using the Med-PC software (Med Associates,
St Albans, VT). In NSFT, animals were food-deprived overnight and
placed in an open field with a small amount of food in the center.
The latency to feed was measured with a cut-off time of 15 min in
a blind manner. Then, the amount of food consumption in home
cages for 10 min was measured to verify motivation to feed. In
FUST, each animal was exposed to a cotton-tipped applicator
infused with water or fresh urine from females of the same strain
for 5 min and the time spent sniffing the cotton-tipped applicator
was measured by a blinded experimenter. Prior studies have
reported that the estrous cycle has no effect on the preference of
males for female odors [26]. Time spent biting the cotton-tip was
excluded from the recording time. For FST, NSFT, and FUST, the
experimenter was blinded to the treatments.

Chronic unpredictable stress
CUS was performed as previously described [27]. Mice were
exposed to random intermittent stressors over 14 days, 2 times
per day, including cage rotation, isolation, static white noise, food
or water deprivation, light on overnight, light off during the day,
rat odor, stroboscope overnight, crowding, wet bedding, no
bedding, forced swimming, restraint and tilted cage. To measure
anhedonia induced by CUS, a sucrose consumption test (SCT) was
performed. Briefly, animals were habituated for 24 h to 1%
sucrose; following a 12-h deprivation period, amount of sucrose
consumed was determined for 1 h.

Western blot
The phosphorylation level of ERK, 4EBP1, mTOR, and p70S6K, and
expression of postsynaptic proteins were determined by western
blot using crude synaptoneurosomes of mouse mPFC as
previously reported [11, 25, 28]. Total levels of the respective
protein or GAPDH (Cell Signaling #5174, 1:1000) were used for
loading control. Immunoreactivity was normalized to vehicle-
treated control group values for each protein.

Electrophysiology
Brain slices were prepared as previously described [25, 29].
Pyramidal neurons in layer V of coronal slices of the mPFC
(400 μm) were visualized by videomicroscopy and whole-cell
recordings were performed with an Axoclamp-2B amplifier (Axon
Instruments). Neurobiotin (0.3%) was added to the pipette
solution to mark cells for later imaging. Postsynaptic currents
were studied in the continuous single-electrode voltage-clamp
mode (3000 Hz low-pass filter) clamped at −65mV to remove
IPSCs from EPSCs. After completion of recording, slices were
transferred to 4% paraformaldehyde (0.1 M phosphate buffer) and
stored overnight at 4 °C. Slices were then processed with
streptavidin conjugated to Alexa 594 (1:1000) for visualization of
labeled cells.

Spine analysis
Neurobiotin-filled mPFC layer V neurons were imaged and spine
density was determined as previously described [25, 29]. Images
were collected on an Olympus confocal laser scanning microscope
(FV3000) equipped with a ×60, 1.42 NA objective at a zoom of 4.65×
(XY pixel dimensions 0.095 μm× 0.095 μm). Dendrites were sampled
within the apical dendritic tuft at sites distal, midway and proximal
to distal bifurcation (sampled 60, 90, and 130 μm from the midline,
respectively), and values for spine density were expressed per um
dendritic length (average dendritic segment, 40–50 μm). Mean
spine density for each sampling location as well as overall mean
spine density were calculated for each labeled cell. Computerized
analysis of z-stack images was performed in deconvolved confocal
image stacks (AutoquantX Version 3.0.1, Media Cybernetics,
Bethesda, MD) and spines were and quantified by an experimenter
blinded to treatment, using NeuronStudio software [30].
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Statistics
The results were expressed as the mean ± standard error of mean
(S.E.M.). Statistical significance was determined by a one-way
analysis of variance (ANOVA) or a two-way ANOVA, followed by
the Tukey’s, Dunnett’s or Fisher’s least significant difference (LSD)
multiple comparison test for comparing the treated group with
the control group and multi-group comparisons as indicated
in the figure legends. Statistical differences between any
two groups were determined using the Student’s t-test or
Kolmogorov–Smirnov two-sample test; P < 0.05 was used as the
statistically significant cutoff as indicated in the figure legends.

RESULTS
Infusion of 8-OH-DPAT into the mPFC produces rapid and
sustained antidepressant-like effects
Previous studies demonstrate that infusion of 8-OH-DPAT into the
mPFC exerts antidepressant-like effects which last for 24 h in
the FST using naive mice [20]. In this study, we further clarified the
characteristics of the sustained antidepressant-like effects by
mPFC infusion of 8-OH-DPAT using different types of behavioral
tests, including FUST (a measure of reward-seeking behavior) and
NSFT (a measure of innate anxiety in a novel area) in addition to
the FST (a measure of behavioral despair). The cannula location in
mPFC, cannula placements for each animal and the experimental
time line are shown in Fig. 1a–c, although we did not confirm how
far the agent spread. Microinjection of 8-OH-DPAT (1 and 3 nmol/
side) into the mPFC significantly reduced immobility time in the
FST and increased the time sniffing female urine 1 day after
dosing in the 1stFUST (Fig. 1d: F(2,16)= 12.65, p < 0.001; 1E:
F(2,18)= 6.036, p < 0.01). There was a trend for increased time
sniffing female urine 2 days after dosing in the 2ndFUST
(Figure S1C: F(2,18)= 2.854, p= 0.0844). Microinjection of 8-OH-
DPAT (3 nmol/side) into the mPFC also significantly reduced
latency to feed 3 days after dosing in the NSFT (Fig. 1f: F(2,18)=
4.398, p < 0.05). Microinjection of 8-OH-DPAT (1 or 3 nmol/side)
into the mPFC had no effect on locomotor activity, time sniffing
water, or home cage feeding (Figures S1A: F(2,18)= 0.7059, p=
0.5068; S1B: F(2,18) = 0.2822, p= 0.7574; S1D: F(2,18)= 1.342, p=
0.2864; S1E: F(2,18)= 0.5217, p= 0.6022). 8-OH–DPAT (3 nmol/
side) also had no effect on the locomotor during the early time
bins (0–15min) of the test (Vehicle: 2649.3 ± 319.7; 8-OH-DPAT
(3 nmol/side): 2212.5 ± 82.1 (mean ± SEM), n= 6, 8, Student’s
t-test: p > 0.05).
To more rigorously test if microinjection of 8-OH-DPAT into the

mPFC produces rapid antidepressant-like effects, we used a CUS
model, considered one of the more valid models of depression as
it provides a measure of anhedonia, a core symptom of
depression, measured by intake of a sweetened solution in the
SCT [31]. Moreover, it provides a test of rapid onset of action as
reversal of anhedonic behavior is only observed after chronic
(3 weeks) administration of a typical monoaminergic antidepres-
sant [32, 33]. CUS exposure induced depressive-like behavior in
FST, SCT, and NSFT (Fig. 1j: F(1,40)= 10.47, p < 0.01; 1 K: F(1,43)=
27.15, p < 0.001; 1 L: F(1,43)= 31.77, p < 0.001). A single injection
of 8-OH-DPAT (3 nmol/side, cannula placements shown in Fig. 1h)
into the mPFC significantly reduced immobility time in the FST
and latency to feed in the NSFT in both the control and CUS
groups (Fig. 1j: F(1,40)= 60.82, p < 0.001; 1 L: F(1,43)= 91.83, p <
0.001) at 1 and 3 days after injection, without affecting locomotor
activity or home cage feeding (Figures S1F: F(1,43)= 0.1076, p=
0.7445; S1H: F(1,43)= 0.7926, p= 0.3783). In the SCT, conducted
2 days after microinjection of 8-OH-DPAT into the mPFC, there was
a significant reversal of the effects of CUS on sucrose consump-
tion, but no effect in the control group (Fig. 1k: 8-OH-DPAT,
F(1,43)= 13.46, p < 0.001; CUS, F(1,43)= 27.15, p < 0.001; interac-
tion, F(1,43)= 14.05, p < 0.001); there were no significant effects
on total water consumption in any of the groups (Figure S1G:

F(1,43) < 0.001, p= 0.9832). Although there is a possibility that
single housing has the effect on the behaviors, single housing did
not affect the effects of 8-OH-DPAT.

Antidepressant-like effects of mPFC 8-OH-DPAT require AMPA
receptor activation and BDNF
AMPA receptor activation is required for the antidepressant-like
effects of ketamine as well as other rapid-acting agents
[11, 22, 34, 35], and here the requirement for AMPA receptors in
the actions of 8-OH-DPAT were tested by pretreatment with
NBQX, an AMPA receptor antagonist. The results demonstrate that
the antidepressant-like effects of intra-mPFC injection of 8-OH-
DPAT (3 nmol/side, cannula placements shown in Fig. 2b) in the
FST and NSFT were completely blocked by microinjection of NBQX
(0.03 nmol/side) into the mPFC (Fig. 2d: 8-OH-DPAT, F(1,28)=
4.422, p < 0.05; NBQX, F(1,28)= 6.593, p < 0.05; interaction, F(1,28)
= 4.61 p < 0.05; 2 F: 8-OH-DPAT, F(1,28)= 11.86, p < 0.01; NBQX,
F(1,28)= 2.78, p= 0.1066; interaction, F(1,28)= 10.4, p < 0.01). 8-
OH-DPAT and NBQX did not affect locomotor activity or food
consumption (Fig. 2e: F(1,28) = 0.02119, p= 0.8853; NBQX,
F(1,28)= 0.05995, p= 0.8084; S2A: 8-OH-DPAT, F(1,28)= 0.05983,
p= 0.8085; NBQX, F(1,28)= 0.05983, p= 0.8085), and NBQX alone
did not affect immobility time or latency to feed (Fig. 2d, f).
Previous studies also demonstrate that several different types of

rapid-acting antidepressant, including ketamine, (2R, 6R)-hydro-
xynorketamine, and scopolamine require BDNF signaling to exert
fast antidepressant-like actions [10, 12, 25, 36–39]. Here the role of
BDNF in the actions of 8-OH-DPAT were tested by infusion of an
anti-BDNF nAB into the mPFC. The antidepressant-like effects of
intra-mPFC infusion of 8-OH-DPAT (3 nmol/side, cannula place-
ments shown in Fig. 3b) in the FST and NSFT were completely
blocked by microinjection of an anti-BDNF nAB (0.2 μg/side) into
the mPFC (Fig. 3d: 8-OH-DPAT, F(1,28)= 10.81, p < 0.01; BDNF nAB,
F(1,28)= 14.52, p < 0.001; interaction, F(1,28)= 13.5, p < 0.01 3F: 8-
OH-DPAT, F(1,28)= 8.207, p < 0.01; BDNF nAB, F(1,28)= 4.692, p <
0.05; interaction, F(1,28)= 18.72, p < 0.001). Infusions of 8-OH-
DPAT or anti-BDNF nAB did not affect locomotor activity or home
cage feeding (Fig. 3e: 8-OH-DPAT, F(1,28)= 0.8039, p= 0.3776;
BDNF nAB, F(1,28)= 0.01146, p= 0.9155; S2B: 8-OH-DPAT, F(1,28)
= 0.01382, p= 0.9072; NBQX, F(1,28)= 0.3209, p= 0.5756), and
anti-BDNF nAB alone did not affect immobility time or latency to
feed (Fig. 3d, f).

8-OH-DPAT infusion activates ERK and mTORC1 signaling in the
mPFC
There are several downstream signaling pathways that are
activated by BDNF, including ERK and mTORC1 that are involved
in activity-dependent synaptic plasticity [9, 11, 13, 22, 28]. Here we
examined the effects of microinjection of 8-OH-DPAT (3 nmol/
side) into the mPFC on levels of phosphorylated ERK and mTOR, as
well as 4EBP1 and p70S6 kinase, which are downstream of
mTORC1 signaling. The mPFC was dissected 30min after
microinjection of 8-OH-DPAT into the mPFC (Fig. 4a) and
phosphoprotein levels were determined by western blot. Micro-
injection of 8-OH-DPAT into the mPFC significantly increased
levels of phospho-ERK, phospho-mTOR, phospho‑p70S6K, and
phospho-4EBP1 in synaptoneurosomes of mPFC (Fig. 4b: p < 0.05).

8-OH-DPAT infusion increases synaptic protein levels and synaptic
function in the mPFC
Rapid-acting antidepressants are also reported to rapidly increase
synaptic protein levels and synaptic function in the mPFC, in part
via stimulation of BDNF-mTORC1 signaling [11, 25, 29, 33, 35, 40].
Layer V in the mPFC has been reported to play a key role in the
antidepressant effects of ketamine [11]. Moreover, brain imaging
and postmortem studies implicate the mPFC in both the
pathophysiology and treatment of depression [11, 41–43]. Here,
we examined the influence of 8-OH-DPAT on levels of synaptic
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Fig. 1 Infusion of 8-OH-DPAT into the mPFC produces antidepressant-like actions in both unstressed and CUS exposed mice. a–f Mice
were cannulated and after recovery received bilateral infusions of vehicle or 8-OH-DPAT (1, 3 nmol/side), or g–l were exposed to CUS, and then
received infusions of 8-OH-DPAT followed by behavioral testing. a–c Location of cannula placement in the mPFC, cannula placements for each
animal and experimental time line. d Behavioral testing was conducted 24 h after infusions in the FST (d) and 2 days later in the LMA
(Figure S1A). e, f Mice received a second bilateral infusion of 8-OH-DPAT (1, 3 nmol/side) into the mPFC and 24 h later were tested in
the 1stFUST (e), 2 days later in the 2ndFUST (Figure S1C), and 3 days later in the NSFT (f). Bars represent mean ± SEM ((d): n= 4–8, (e): n= 7,
(f): n= 7). ***P < 0.001, **P < 0.01, *P < 0.05 compared with vehicle group, Dunnett’s multiple comparison test, following significant results of
one-way ANOVA. g–i Location of cannula placement in the mPFC, cannula placements for each animal and experimental time line. Cannulated
mice were exposed to CUS for 14 days, and then received bilateral infusions of vehicle or 8-OH-DPAT (1, 3 nmol/side) 24 h after the last stress
exposure. j–l Behavioral testing was conducted in the FST (j) and LMA (Figure S1F) 24 h after 8-OH-DPAT infusions, 2 days later in the SCT (k),
and 3 days later in the NSFT (l). Bars represent mean ± SEM ((j): n= 8–13, (k): n= 8–14, (l): n= 8–14). ***P < 0.001, **P < 0.01 compared with
vehicle-treated CON group, ###P < 0.001 compared with vehicle-treated CUS group, Tukey’s multiple comparison test, following significant
results of two-way ANOVA [(j–l); (j): interaction, F(1,40)= 2.569, p= 0.1168; (l): interaction, F(1,43)= 4.172, p < 0.05]. Vehicle= saline, DPAT=
8-OH-DPAT, CON= control, CUS= chronic unpredictable stress.
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proteins as well as synaptic function in mPFC layer V. Microinjec-
tion of 8-OH-DPAT (3 nmol/side) into the mPFC significantly
increased levels of the synaptic proteins synapsin 1 and PSD95,
but not GluR1 in mPFC, measured 24 h after dosing (Fig. 4c: p <
0.05; S3B). In contrast, systemic administration of 8-OH-DPAT
(3 mg/kg, s.c.) had no effect on the synaptic protein levels in the
mPFC (Fig. 4d, e).
The ability of 8-OH-DPAT to activate BDNF/mTORC1 signaling

and to increase synaptic protein levels suggests that microinjec-
tion of 8-OH-DPAT into the mPFC could also increase synaptic
function. We have previously demonstrated that ketamine and
other rapid and long-lasting antidepressant agents increase
synaptic function in layer V pyramidal neurons in the mPFC
[11, 25, 29, 33, 35]. In the present study, we found that
microinjection of 8-OH-DPAT (3 nmol/side) into the mPFC
significantly increased the frequency of hypocretin-induced EPSCs
in layer V pyramidal neurons in the mPFC 24 h after infusion,
which may be involved in the antidepressant effects of ketamine
[11], and produced a trend for increased basal and 5-HT-induced
EPSC frequency (Fig. 5a, b: hypocretin, p < 0.05; 5-HT, p < 0.1).
Infusion of 8-OH-DPAT into the mPFC also significantly increased
the amplitude of 5-HT-induced EPSCs (Fig. 5c: 5-HT, p < 0.05). We
also examined 5-HT-induced outward currents in layer V
pyramidal neurons and found a significant reduction in response
to 8-OH-DPAT mPFC infusion (Figures S4B, C: p < 0.01).
The influence of 8-OH-DPAT infusion on spine density and

morphology in the mPFC was also examined. Layer V pyramidal
neurons were filled with neurobiotin during patch clamp
recording so that dendrites and spines can be visualized by
confocal microscopy for analysis of changes in spine density and
morphology (Fig. 5d). The results demonstrate that microinjection
of 8-OH-DPAT into the mPFC significantly increased spine head
diameter, a measure of mature spines (Fig. 5e: p < 0.0001) but had

no effect on spine density or on different spine subtypes,
including stubby, thin, or mushroom spines (Figure S5).

DISCUSSION
The results of the present study demonstrate that infusion of 8-
OH-DPAT, a selective 5-HT1A receptor agonist, into the mPFC
exerts rapid and long-lasting antidepressant-like effects in multi-
ple behavioral tests, including those after CUS exposure. In
addition, the results show that the antidepressant-like actions of
mPFC-infused 8-OH-DPAT are blocked by preinfusion of an AMPA
receptor antagonist or an anti-BDNF nAb into the mPFC. The
results also show that 8-OH-DPAT infusions increase levels of
synaptic proteins as well as synaptic function in the mPFC.
Together, these findings demonstrate that selective stimulation of
the 5-HT1A receptor in the mPFC is an effective approach to
produce ketamine-like rapid synaptic and antidepressant-like
behavioral responses.
Studies of 5-HT1A receptors have utilized 8-OH-DPAT, which has

60-fold selectivity for the 5-HT1A receptor over other 5-HT receptor
subtypes, and even greater selectivity relative to other classes of
monoamine receptors [21]. The results demonstrate that 8-OH-
DPAT infusions into the mPFC of non-stressed mice resulted in
long-lasting antidepressant-like effects in the FST similar to
ketamine, consistent with our previous report [20]. These findings
were extended to examination of other behaviors in naive mice,
demonstrating that mPFC 8-OH-DPAT infusions produce
antidepressant-like actions in the FUST, a measure of motivation
and reward, and the NSFT, a measure of anxiety that is responsive
to chronic but not acute administration of a typical monoaminer-
gic antidepressant-like. The results also show that 8-OH-DPAT
produces antidepressant-like actions in a CUS model, considered
one of the more valid models of depression as CUS exposure
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results in anhedonia, a core symptom of depression that is
reversed by antidepressant-like treatments [31, 33]. Because
anhedonia is reversed by chronic (3 weeks), but not acute
administration of a typical monoaminergic antidepressant, the
CUS model provides a rigorous test for putative rapid-acting
agents [44]. A single mPFC infusion of 8-OH-DPAT resulted in
significant antidepressant-like effects within 1 day and up to
3 days in the FST, SCT, and NSFT. Although stress induced by FST
may affect later other behavioral tests, the antidepressant-like
effects of 8-OH-DPAT are replicated, suggesting that the stress
induced by FST did not affect the effects of 8-OH-DPAT. These
findings indicate that selective stimulation of 5-HT1A receptors in
the mPFC improves behavioral despair, as well as anhedonia,
motivation, reward, and anxiety more rapidly than conventional
antidepressants. These results, together with our previous report
that the sustained antidepressant-like effects of ketamine are
attenuated by blockade of the mPFC 5-HT1A receptor, indicate that
selective stimulation of 5-HT1A receptors in the mPFC plays a key
role in mediating rapid, as well as long-lasting antidepressant
effects, although studies of additional areas, including the
hippocampus and amygdala are needed to further characterize
the regional effects of 8-OH-DPAT.
The importance of the postsynaptic 5-HT1A receptor is

supported by previous studies demonstrating that systemic
administration of F15599, a selective or biased postsynaptic 5-
HT1A receptor agonist, induces more potent and sustained
antidepressant-like effects than systemic administration of 5-
HT1A receptor agonists acting on both pre- and postsynaptic sites
[23, 45, 46]. The results are also consistent with a previous report
demonstrating that overexpression of postsynaptic 5-HT1A recep-
tors in corticolimbic areas produces antidepressant-like effects
and are associated with the antidepressant-like response to SSRI

administration [47]. There are also several lines of evidence
indicating an important role for mPFC 5-HT1A receptors in the
pathophysiology of depression. Decreased levels of 5-HT1A
receptor protein [48] and receptor ligand binding levels [49, 50]
have been reported in the PFC of postmortem MDD subjects;
decreased 5-HT1A receptor protein and binding are also reported
in depressed cynomolgus monkeys and rodent models [51–53]. In
addition, depletion of 5-HT1A heteroreceptors in the mPFC of
adolescence rodents induces a depression-like behavioral pheno-
type [54]. Collectively, these findings indicate that reduced levels
of 5-HT1A receptors in the mPFC contribute to the pathophysiol-
ogy of depression and that agonists that are selective for the
postsynaptic 5-HT1A receptor produce rapid-acting antidepres-
sant-like actions.
Previous studies have demonstrated that the rapid

antidepressant-like actions of ketamine and other fast acting
agents require AMPA receptor stimulation and BDNF signaling
[12, 20, 29, 36–39]. AMPA receptor activation in response to
ketamine is thought to be mediated by blockade of NMDA
receptors on GABA interneurons and disinhibition of glutamate
signaling [40, 55, 56]. This leads to activity-dependent release of
BDNF and stimulation of downstream pathways, including ERK, as
well as mTORC1 signaling [40, 55–58]. Here we show that the
antidepressant-like actions of 8-OH-DPAT are also blocked by
mPFC infusion of an AMPA receptor antagonist or by infusion of
an anti-BDNF function-blocking antibody which attenuates the
BDNF downstream signaling [59], suggesting common convergent
signals for 8-OH-DPAT and ketamine. We have also reported that
AMPA receptor activation mediates ketamine-stimulated BDNF
release in primary cortical neurons [28]. Previous studies also
demonstrate a role of 5-HT1A receptors in the regulation of BDNF,
reporting that BDNF expression is decreased when 5-HT1A
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receptors are reduced in mouse ventral hippocampus [60], and
increased in response to 5-HT1A receptor stimulation in primary
cultured neurons [61], although we need to directly examine the
effect of 8-OH-DPAT on BDNF levels in the future study because
the direct effect of the anti-BDNF function-blocking antibody used
in this study on BDNF signaling has not been examined in the
previous study [59].
The results also demonstrate that infusion of 8-OH-DPAT

increases mTORC1 signaling in the mPFC. This includes increased
levels of the phosphorylated and activated form of ERK, an
upstream regulator of mTORC1, as well as increased levels of
phospho-4EBP1 and phospho-p70S6K, downstream mediators of
mTORC1 signaling. These findings are consistent with a previous
report demonstrating that the selective 5-HT1A heteroreceptor
agonist F15599 increases levels of phospho-ERK in cultured cells
and in rat PFC [24]. A link between AMPA receptors and
mTORC1 signaling is provided by evidence that pretreatment
with an AMPA receptor antagonist blocks ketamine stimulation of
ERK and mTORC1 signaling in rat PFC [11]. In addition, we have
reported that the rapid antidepressant-like actions of ketamine
and other fast acting agents require mTORC1 signaling
[11, 25, 29, 35]. Moreover, we have found that the
antidepressant-like actions of mPFC 8-OH-DPAT are blocked by
infusion of a selective mTORC1 inhibitor into the mPFC [20].
Together these findings suggest a functional link between the

antidepressant-like actions of postsynaptic 5-HT1A receptors and
stimulation AMPA receptors, BDNF release, and mTORC1 signaling.
It should be noted that the mechanisms were examined by using
only naive mice in the present study. Therefore, it is necessary to
examine the mechanisms of antidepressant-like effects of 8-OH-
DPAT in the pathological condition.
Previous studies report that rapid and long-lasting antidepres-

sants, including ketamine increase levels of synaptic proteins as
well as synaptic function in layer V pyramidal neurons in the mPFC
[11, 25, 62, 63]. The results of the current study demonstrate that
mPFC 8-OH-DPAT infusions increase levels of the synaptic proteins
PSD95 and synapsin 1, and also increase 5-HT- and hypocretin-
induced EPSCs mediated by apically targeted corticocortical and
thalamocortical inputs, respectively, onto mPFC layer V pyramidal
neuron dendrites. There was also an increase in spine head
diameter, a measure of mature spines, on layer V apical dendrites.
There were no effects on levels of the synaptic protein GluA1 or
spine density of layer V apical dendrites, which differs from the
effects of ketamine and scopolamine, which increase GluA1 and
spine density [11, 35], Notably, the putative rapid-acting
antidepressant (2R, 6R)-hydroxynorketamine, like 8-OH-DPAT,
increased synaptic function but not spine density of mPFC layer
V pyramidal neurons [25]. These findings provide another
convergent link for 5-HT1A heteroreceptor agonists and other
rapid-acting agents, albeit with some differences. It should also be
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mentioned that these molecular alterations are just correlates and
the causal role of these alterations in the antidepressant-like
effects of 8-OH-DPAT needs to be demonstrated.
The mechanisms underlying the antidepressant-like effects of 5-

HT1A receptor stimulation, and the requirement for AMPA and
BDNF signaling are unclear. The 5-HT1A receptor is known to play a
key inhibitory role in brain function due to its coupling with
inward rectifier K+ channels (outward current) [64]. A previous
study also showed that iontophoresis of 8-OH-DPAT produced a
current-dependent suppression of the basal firing rate of
spontaneously active mPFC cells [65]. We also found that 8-OH-
DPAT incubation produced a hyperpolarizing outward current in
layer V pyramidal neurons. Based on these direct actions, there are
several possible mechanisms by which 8-OH-DPAT infusion could
lead to enhanced synaptic function. One possibility is that 8-OH-
DPAT produces an indirect effect via inhibition of GABA
interneurons, similar to ketamine, leading to a burst of glutamate.
This is supported by a previous study demonstrating that systemic
administration of 8-OH-DPAT increases the activity of mPFC
pyramidal neurons while reducing the discharge rate of fast
spiking GABA interneurons [66]; moreover, the increase in
pyramidal neuron activity was blocked by local application of a
GABAA receptor antagonist [66]. These findings indicate that
systemic 8-OH-DPAT preferentially acts on 5-HT1A receptors on
GABAergic interneurons, resulting in disinhibition of pyramidal
neurons.
Another possibility is provided by evidence that prior infusion

of 8-OH-DPAT decreased the 5-HT-induced outward current
mediated by 5-HT1A receptors on pyramidal neurons, indicating
that the inhibitory action of 5-HT1A receptor stimulation is

downregulated. These findings raise the possibility that 8-OH-
DPAT infusion leads to enhanced pyramidal cell excitability by
desensitizing 5-HT1A receptors on these neurons. Previous studies
demonstrate that optogenetic stimulation of pyramidal neurons in
the mPFC produces rapid and sustained ketamine-like antide-
pressant effects and increases the number and function of spine
synapses of layer V pyramidal neurons [67]. In addition,
pharmacological or chemogenic silencing of mPFC neurons
completely blocks the synaptic and/or behavioral effects of
ketamine [67, 68]. Taken together, the results suggest that 8-OH-
DPAT infusion produces rapid and sustained antidepressant-like
effects by activating mPFC pyramidal neurons, although further
studies are needed to determine if this is mediated by an indirect
or direct mechanism.
The limitation of the current study is that we used only male

mice in this study, while recent study reported that ketamine had
different antidepressant-like effects between male and female
mice, raising the possibility that the antidepressant-like effect of 8-
OH-DPAT may differ between male and female mice. We need to
confirm the difference by using female mice in the further studies.
In conclusion, the present findings suggest that selective

activation of the 5-HT1A receptor in the mPFC exerts rapid and
long-lasting antidepressant-like effects via activation of AMPA
receptors and BDNF-mTORC1 signaling that enhances synaptic
function in the mPFC. These mechanisms are consistent with
the reported mechanisms underlying the antidepressant effects
of ketamine as well as other rapid-acting agents [10–13, 20, 25,
29, 35]. Moreover, the results are consistent with the hypothesis that
the mPFC 5-HT1A heteroreceptor is a potential target for the
development of rapid-acting antidepressant agents. Additional
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studies will be needed to further elucidate the initial cellular target
(i.e., GABA inhibitory neurons or glutamate excitatory neurons) in
the mPFC of selective 5-HT1A receptor agonists.
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