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Serotonin differentially modulates the temporal dynamics of
the limbic response to facial emotions in male adults with and
without autism spectrum disorder (ASD): a randomised
placebo-controlled single-dose crossover trial
Nichol M. L. Wong1,2,3, James L. Findon1,2,4, Robert H. Wichers 1,2,5, Vincent Giampietro 6, Vladimira Stoencheva1,5,
Clodagh M. Murphy 1,5, Sarah Blainey1,5, Christine Ecker7, Declan G. Murphy 1,2,3,8, Grainne M. McAlonan1,2,3,5,8 and Eileen Daly1,2

Emotion processing—including signals from facial expressions—is often altered in individuals with autism spectrum disorder (ASD).
The biological basis of this is poorly understood but may include neurochemically mediated differences in the responsivity of key
‘limbic’ regions (including amygdala, ventromedial prefrontal cortex (vmPFC) and nucleus accumbens (NAc)). Emerging evidence
also suggests that ASD may be a disorder of brain temporal dynamics. Moreover, serotonin (5-HT) has been shown to be a key
regulator of both facial-emotion processing and brain dynamics, and 5-HT abnormalities have been consistently implicated in ASD.
To date, however, no one has examined how 5-HT influences the dynamics of facial-emotion processing in ASD. Therefore, we
compared the influence of 5-HT on the responsivity of brain dynamics during facial-emotion processing in individuals with and
without ASD. Participants completed a facial-emotion processing fMRI task at least 8 days apart using a randomised double-blind
crossover design. At each visit they received either a single 20-mg oral dose of the selective serotonin reuptake inhibitor (SSRI)
citalopram or placebo. We found that citalopram (which increases levels of 5-HT) caused sustained activation in key limbic regions
during processing of negative facial emotions in adults with ASD—but not in neurotypical adults. The neurotypical adults’ limbic
response reverted more rapidly to baseline following a 5-HT-challenge. Our results suggest that serotonergic homoeostatic control
of the temporal dynamics in limbic regions is altered in adults with ASD, and provide a fresh perspective on the biology of ASD.

Neuropsychopharmacology (2020) 45:2248–2256; https://doi.org/10.1038/s41386-020-0693-0

INTRODUCTION
Autism spectrum disorder (ASD) is a neurodevelopmental disorder
with a worldwide prevalence rate of ~1% [1]. It is characterised by
restricted and repetitive patterns of behaviour, impaired social
interaction and communication, and atypical sensitivity to sensory
stimuli [2]. Specifically, the impairment in social interaction is
thought to be at least partly underpinned by altered processing of
facial emotions [3].
Key components of the limbic system implicated in human

social behaviour and emotion processing include the amygdala,
the nucleus accumbens (NAc), and the ventromedial prefrontal
cortex (vmPFC) [4]. For instance, in the neurotypical population,
the amygdala has been robustly implicated in the processing of
facial emotions and is closely linked to processing of fear, anger
[5] and other emotional perceptions [6, 7] experienced explicitly or
passively [8]. In contrast, the NAc—through its dense

interconnections with amygdala [9]—facilitates motor behaviours
driven by emotionally salient stimuli [10]. Furthermore, there is
consensus that vmPFC connections to the amygdala and NAc
have a regulatory role in emotion and social cognition [11].
Alterations in the function of these major limbic regions have
been reported in ASD, however, findings have been inconsistent.
For example, prior studies have described hypo- and hyper-
activity (or even no change in activation) during facial-emotion
processing within amygdala [12–18], striatum [13, 15] and vmPFC
[14, 19]. Some of the inconsistency in findings is likely to be
caused by differences between the experimental methods used
and the sample characteristics (e.g., age).
In addition, however, previous work has mostly examined group

differences in average brain activation across a fixed time period
—and this may not optimally capture brain activity. The brain is in
constant flux [20, 21] and so it may be better to capture
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fluctuations in brain activity over time. This may be especially
important here as there is emerging evidence that the temporal
dynamics of brain activity are different in ASD. For instance, during
resting-state fMRI, overly ‘stable’ brain dynamics have been
reported in individuals with ASD as compared with neurotypical
individuals [22]. Therefore, the analysis of average activations
across the entire time period of the fMRI contrast of interest may
mask crucial group differences in temporal dynamics. Support for
this hypothesis comes from preliminary studies of amygdala
‘habituation’ during fMRI tasks (defined as the progressive
decrease in response to repeatedly presented stimuli). Habituation
of amygdala activation in response to facial emotions has been
reported to be altered in ASD [23] relative to neurotypical controls
[24] during both explicit [25] and implicit [26, 27] fMRI paradigms.
Yet, the biological basis of the habituation phenomenon in ASD is
still largely unknown.
The regulation of brain temporal dynamics including habitua-

tion is likely to involve co-ordinated action of multiple neuro-
signalling systems [28, 29]. Among these, the serotonin (5-HT)
system is likely to be especially important. For instance, infusion of
psilocybin, which has potent psycho-active effects at the 5-HT2A
receptor, has been reported to impact on frontoparietal network
dynamics in neurotypical individuals [30]. Stimulation of 5-HT2A
receptors could increase the excitability of the pyramidal neurons
where the receptors are highly expressed and subsequently
modulate the widespread neural systems [31]. Moreover, differ-
ences in 5-HT pathways are some of the most consistent findings
in ASD [32]. Elevated whole-blood serotonin has been recorded in
around a third of children and adults with ASD [33, 34], and ASD
has been strongly linked to 5-HT genetic polymorphisms and
candidate genes within 5-HT pathways [35–37]. Also, there is
preliminary evidence for differences in 5-HT2A receptor density in
the ‘social brain’ (including anterior cingulate cortex) of adults
with ASD [38]. Furthermore, using a tryptophan depletion
protocol, we have previously found that lowering 5-HT levels
has opposing effects on brain activation during processing of
facial emotions in individuals with and without ASD [17]. In
summary, 5-HT is a key regulator of facial-emotion processing and
brain temporal dynamics [30, 39–42], which are both altered in
ASD [3, 32, 33, 43]. However, nobody has directly examined how 5-
HT influences the dynamics of facial-emotion processing in ASD.
Therefore, in this study we tested the hypothesis that the effects

of 5-HT on the responsivity of brain dynamics of facial-emotion
processing are different in individuals with and without ASD.
Different aspects of brain dynamics, including the time-varying
connectivity and time-frequency coherence [44], have been
studied in ASD [22, 45, 46]. Here we were interested in the brain
dynamics as measured by fMRI activations during processing of
repeating facial-emotional stimuli [25–27, 47]. We conducted a
single oral-dose pharmacological-fMRI study, and examined how
the habituation pattern during baseline (i.e., placebo) would be
changed by citalopram, a selective serotonin reuptake inhibitor
(SSRI), administered in a double-blind, randomised order during a
facial-emotion processing task. We focussed on the major limbic
regions of interest (ROIs), namely the amygdala, vmPFC and NAc.

MATERIALS AND METHODS
Participants
We included 40 right-handed adult males (19 with ASD and 21
neurotypical controls, 18–60 years old), which the sample size is
comparable to the previous fMRI study [17]. Participants with ASD
were recruited through the National Adult Autism Service at the
Maudsley Hospital and had a clinical diagnosis of ASD made by
the multidisciplinary specialist team following ICD-10 research
diagnostic criteria [48] and the Autism Diagnostic Observation
Schedule (ADOS) [49] were completed for ASD participants where
possible. For individuals with and without ASD, we only included

individuals with no history of major medical disorders that could
influence cognitive performance, other major mental illnesses,
genetic disorders associated with ASD, alcohol or substance
dependence, and who were not taking any medication affecting
the 5-HT system. All participants underwent the Wechsler
Abbreviated Scale of Intelligence test [50] to ensure that we only
included those with an IQ of >70. Participants’ behaviours
including social traits related to autism, namely ‘autistic traits’,
were measured by autism-spectrum quotient [51]. Participants’
anxiety and depression were measured by Hamilton Anxiety
Rating Scale (HAM-A) [52] and Hamilton Depression Rating Scale
(HAM-D) [53], respectively. All participants gave written, informed
consent after receiving a complete description of the study. The
study was ethically approved by the Stanmore NHS Research
Ethics Committee (reference: 14/LO/0663).

Drug administration and study procedures
This study was conducted at the Institute of Psychiatry,
Psychology and Neuroscience at De Crespigny Park, SE5 8AF,
London, UK (December 2014 to December 2016). It adopted a
placebo-controlled, randomised, double-blind, repeated-mea-
sures, crossover case-control study design as part of a larger
investigation into the brain response to 5-HT medications in ASD
(clinicaltrials.gov identifier: NCT04145076). Placebo and citalopram
were allocated in a pseudo-randomised order, approximately half
in each group attended a placebo visit before citalopram and the
other half attended a citalopram visit before placebo. This random
allocation was administered by GMM (https://www.random.org/)
and both participants and researchers were blinded to the
allocation. Participants were asked to complete two scanning
visits, separated by at least 8 days to allow for complete washout
of the drug. Participants were given either an acute single dose of
encapsulated citalopram (20mg), or encapsulated placebo (ascor-
bic acid) 3 h before each scanning session, as citalopram reaches
its peak plasma level after ~3 h [54]. All the scanning sessions were
completed within 1.5 h to ensure that citalopram did not reach
half-life during scanning [55]. All participants received pre- and
post-scan medical screening by a physician after administration of
both drugs (placebo and citalopram).

Facial-emotion processing fMRI task
An adapted version of a face-matching task [5] was administered
to participants during each scanning session. The task consisted of
four blocks of faces and four blocks of geometric shapes, with six
5-s trials per block (Fig. 1). In each trial, participants were asked to
indicate, by pressing buttons on a response box with their right
hand, which of the two images in the lower panel were identical
to the target image in the upper panel. Each trial was presented

Fig. 1 The design of the facial-emotion processing task. The task
had four blocks of trials with fearful or angry faces and four blocks of
trials with geometric shapes. There were six trials in each block and
each trial was 5-s long. Participants were asked to indicate which
image in the lower panel was identical to the target image in the
upper panel in each trial. Each trial was presented twice throughout
the task and the faces were sex and emotion balanced.
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twice. Half of the faces were ‘angry’ and the other half were
‘fearful’. All faces were balanced for sex.

MRI data acquisition and preprocessing
The fMRI data were acquired on a 3T General Electric Signa HD ×
Twinspeed scanner (Milwaukee, Wisc.) fitted with a quadrature
birdcage head coil: TR= 2000ms, TE= 30ms, FOV= 192 × 192
mm, voxel size= 3 × 3 × 5mm, flip angle= 80°, number of time
points= 135. T1-weighted structural data was acquired sagittally:
TR= 7.312 ms, TE= 3.016 ms, FOV= 270 × 270 mm, matrix size=
256 × 256, slice thickness= 1.2 mm, flip angle= 11°.
Each participant’s fMRI images were first corrected for slice-

timing and head movement with FSL [56, 57]. Volumes in each
subject that had framewise displacement (FD) >0.5 mm [57] were
identified using fsl_motion_outliers and were subsequently
regressed out in the first-level general linear model (GLM) in FSL
[56, 57]. A temporal high-pass filter at 128 s was applied and the
fMRI data were smoothed by 8mm full width at half-maximum
kernel. One ASD participant had more than 30% volumes with FD
> 0.5 mm and was removed from further analyses, giving us a final
sample of 39 individuals.

ROI selection
We specifically focused on the amygdala, vmPFC and NAc based
on hypotheses derived from previous work [4]. The amygdala ROIs
were derived from FSL’s Juelich histological atlas [58] thresholding
at 50%, and each voxel was assigned to one ROI, consistent to
previous studies [59]. Our amygdala ROIs included the
centromedial amygdala, basolateral amygdala (BLA) and the
superficial amygdala (SFA). The vmPFC ROIs were derived
from the vmPFC atlas of asymmetric and probabilistic cytoarch-
itectonic maps [60], and included the subgenual anterior cingulate
cortex (sgACC), the rostral ACC (rACC), the ventral ACC (vACC) and
the anterior vmPFC (avmPFC) [59] (Fig. 2). The NAc ROIs were
defined according to FSL’s Harvard-Oxford subcortical structural
atlas [61].

Habituation of functional activation to negative facial emotions
To investigate the habituation of neural response to facial
emotions, the first-level GLM analysis for each subject was
conducted at voxel-level across the whole brain with one
regressor per block of faces or shapes in addition to the
six motion regressors derived from the correction procedure of
motion artefact (i.e., 14 regressors in total). The block regressors
modelled the onset and duration of each block and were
convolved with the canonical hemodynamic response function.
Each block was contrasted to the mean of all remaining blocks to
scale the output block-wise beta to the overall mean [23].
The output beta maps were then normalised to standard space
through registering to their skull-stripped structural data. All the

fMRI images were re-sampled to a voxel size of 2 × 2 × 2mm. The
average block-wise beta of Faces>Shapes within each ROI in each
subject for their two drug conditions were then extracted (Fig. 3a).
As suggested by previous studies, an absolute habituation index is
a reliable way to characterise the decrease in fMRI activation
across blocks correcting for the initial activation [23]. This was
obtained by regressing the block-wise beta on the logarithm of
block numbers. Based on the regression,

Y ¼ bX þ a

the average beta of an ROI of each block in each participant (Y)
was set up to be predicted by the logarithm of block numbers (X)
(i.e., ln(1)= 0, ln(2)= 0.69, ln(3)= 1.10, ln(4)= 1.39). The logarithm
of block numbers was adopted because habituation might not
have a linear profile and logarithm transform has been reported to
allow a better model fit [23, 62]. This also allows comparison with
previous studies that used the same approach [23, 27]. As (b) (the
change of activation of the ROI across blocks) was dependent on
(a) (the estimated initial activation), an absolute habituation index
of the ROI (b′) was further obtained,

b0 ¼ b� c a� að Þ

by accounting for the slope (c) of (b) on (a) and the mean (ā)
of (a).

Statistical analyses
All the analyses of demographics, autism traits, anxiety &
depression levels and behavioural task performances were
performed with t-tests and mixed-design analysis of variance
(ANOVA) using t.test and ezANOVA respectively in R (https://www.
r-project.org). Significance was inferred when p < 0.05.
For the task-fMRI data, exploratory whole-brain voxel-wise analysis

on the functional activations investigating group× drug interaction
effects in the contrast Block 1Faces > Shapes > Block 4Faces > Shapes (i.e.,
difference in Faces > Shapes functional activations between block 1
and block 4) were performed to explore whether any differences in
the habituation profile observed were a generalised ‘whole-brain’
phenomenon. Please refer to Supplementary Information for details
and results.
We focused our investigation on the functional activation within

our hypothesised ROIs. Group × drug interaction effects on the
absolute habituation indices for the contrast Faces > Shapes were
compared between individuals with and without ASD in the
placebo and citalopram conditions, tested by linear mixed-effect
models using lmer in R (https://www.r-project.org). We investi-
gated whether the absolute habituation indices were modulated
by group and drug conditions while accounting for the random
intercept for each participant in the linear mixed-effect models

Fig. 2 Regions of interest. The amygdala regions of interest (ROIs) included the basolateral amygdala (BLA), centromedial amygdala (CMA)
and the superficial amygdala (SFA). The ventromedial prefrontal cortex (vmPFC) ROIs included the subgenual anterior cingulate cortex
(sgACC), the rostral ACC (rACC), the ventral ACC (vACC) and the anterior vmPFC (avmPFC). The nucleus accumbens (NAc) were also included
as ROIs.
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Fig. 3 Habituation to negative facial emotions. a The block-wise beta of Faces>Shapes within the ROIs of controls and individuals with
autism spectrum disorder (ASD) for the two drug conditions (placebo and citalopram) were extracted and here the means are plotted with
standard error bars. b Using a regression approach to summarise the decrease in activations across time (i.e., habituation), absolute
habituation indices were obtained and significant group × drug interaction effects on absolute habituation indices could be observed in all
ROIs, including basolateral amygdala (BLA), centromedial amygdala (CMA), superficial amygdala (SFA), nucleus accumbens (NAc), subgenual
anterior cingulate cortex (sgACC), ventral ACC (vACC), rostral ACC (rACC) and anterior ventromedial prefrontal cortex (avmPFC) (p corrected <
0.001). Significance for post-hoc analyses corrected for multiple comparisons is demonstrated with asterisks. *p < 0.05; ***p < 0.001.
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fitted by maximum likelihood for model comparisons. As laterality
was not the focus of the current study, hemisphere (left vs. right),
in addition to age, IQ, anxiety and depression, were included as
covariates in all the linear mixed-effect models. P values for effects
were estimated by likelihood ratio tests between models and were
corrected (pcorrected) for the eight subregions. Post-hoc pairwise
tests corrected for multiple comparisons were performed.
Significance was inferred when corrected p values < 0.05 and
potential confounding effects of any differences in covariate
measures were examined using regression.
We also collapsed the block-wise beta estimates across blocks

into average beta estimates within each ROI and findings on the
average beta estimates are reported in Supplementary Fig. 1.

RESULTS
Demographics and clinical characteristics
There were no significant differences in age (t36= 0.737, p=
0.466) and IQ (t36= 0.774, p= 0.444) between individuals
with ASD and neurotypical controls. As expected, individuals
with ASD scored significantly higher in autism traits (t28.2= 5.845,
p < 0.001), anxiety (t28.5= 2.863, p= 0.008) and depression
levels (t28.4= 3.281, p= 0.003) (Table 1). Only one individual with
ASD and one control had anxiety scores ≥17, the clinical threshold
of HAM-A and HAM-D. Both control and ASD groups had
significantly lower mean scores than the clinical threshold
of HAM-A and HAM-D, as revealed by one-sample t-tests (t ≥
5.803, p < 0.001).

Task behavioural performance
A group × drug × stimuli factorial design was used to investigate
the accuracy of the individuals’ responses during the task for the
two drug conditions (placebo and citalopram), and no interaction
effects were identified (p > 0.05). We only found a significant main
effect of stimuli type—with individuals having higher accuracy
in matching faces than shapes regardless of group (F1,35= 45.893,
p < 0.001) (Table 2). Similarly, no interaction effects were identified
in the individuals’ response reaction time during the task (p >
0.05). A significant main effect of stimuli type was observed—with
individuals matching faces slower than shapes regardless of group
(F1,35= 31.061, p < 0.001). Moreover, a significant main effect of
group was observed where individuals with ASD responded more
slowly than controls across all trials (F1,35= 4.698, p= 0.037)
(Table 2).

Group differences in habituation in ROIs
Using one-sample t-test, we found that there was habituation to
negative facial emotions in all the ROIs for both controls and
individuals with ASD in the placebo condition (pcorrected < 0.05).
However, only controls exhibited habituation in the citalopram
condition (pcorrected < 0.05). Habituation to negative facial emo-
tions was not evident in any ROI for individuals with ASD in the
citalopram condition (pcorrected ≥ 0.657). Using the mean absolute
habituation indices of controls in each condition (baseline and
citalopram) as references, the number of autistic adults having
higher or lower habituation at baseline (placebo) and post
citalopram are also reported (Table 3; Supplementary Fig. 2).
We also explored whether there were associations between

habituation in the ROIs and the task behavioural performance in
terms of the difference in accuracy and reaction time between
matching faces and shapes, and found no significant associations
(p ≥ 0.066).
To elucidate whether there was a significant difference between

the responsivity to citalopram in individuals with and without
ASD, we investigated whether group × drug interaction effects

Table 1. Demographics and clinical characteristics of the study
sample.

ASD Controls T p

(n= 18) (n= 21)

Demographics

Age (years) 29 (10) 27 (9) 0.737 0.466

Intelligence quotient 111 (17) 115 (10) 0.744 0.444

Clinical characteristics

AQ 31 (11) 13 (7) 5.845 <0.001

HAM-A 8 (7) 3 (4) 2.863 0.008

HAM-D 7 (5) 2 (3) 3.281 0.003

ADOS-C 3 (2) –

ADOS-S 6 (2) –

The means are presented with standard deviations in parenthesis.
HAM-A Hamilton Anxiety Rating Scale; HAM-D Hamilton Depression Rating
Scale, ADOS-C Autism Diagnostic Observation Schedule–Communication
domain, ADOS-S Autism Diagnostic Observation Schedule–Reciprocal
Social Interaction domain, AQ autism-spectrum quotient.

Table 2. Behavioural performance of controls and autistic adults
during the task.

Stimuli Drug Group Mean (SD)

Accuracy (%)

Shapes Placebo Controls 93.54 (6.550)

ASD 94.85 (5.419)

Citaloparm Controls 94.79 (5.036)

ASD 94.85 (4.780)

Faces Placebo Controls 97.92 (5.815)

ASD 98.53 (4.151)

Citaloparm Controls 98.96 (2.985)

ASD 99.51 (1.384)

FStimuli 45.893***

Fdrug 1.377

Fgroup 0.298

Fstimuli × drug 0.123

Fstimuli × group 0.007

Fdrug × group 0.221

Fstimuli × drug × group 0.291

Reaction time (s)

Shapes Placebo Controls 0.9835 (0.19788)

ASD 1.1374 (0.27225)

Citaloparm Controls 0.9945 (0.23690)

ASD 1.0865 (0.27116)

Faces Placebo Controls 1.0358 (0.20316)

ASD 1.2636 (0.25622)

Citaloparm Controls 1.0803 (0.22423)

ASD 1.2636 (0.25622)

Fstimuli 31.061***

Fdrug 0.048

Fgroup 4.698*

Fstimuli × drug 1.831

Fstimuli × group 3.539

Fdrug × group 2.115

Fstimuli × drug × group 0.027

The means, standard deviations (SD) and the statistics are presented.
*p < 0.05; ***p < 0.001.
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could be observed in our ROIs during habituation. All ROIs
revealed significant interaction effects (b ≥ 31.285, χ2 ≥ 27.843,
pcorrected < 0.001) (Fig. 3b). Post-hoc analyses revealed no group
differences in placebo condition in any ROI (p > 0.05). On
the contrary, significantly lower overall habituation (i.e., less
negative indices) in ASD compared with controls was evident in
the citalopram condition in avmPFC (b= 77.857, χ2= 7.291,
pcorrected= 0.042) and vACC (b= 84.339, χ2= 7.064, pcorrected=
0.047). No differences between habituation in placebo and
citalopram conditions were observed in controls (p > 0.05).
Compared with the placebo condition, lower habituation (i.e., less
negative indices) to negative facial emotions after citalopram
intake was only detected in individuals with ASD in all ROIs (b ≥
36.279, χ2 ≥ 90.001, pcorrected < 0.001).

Associations between covariates and 5-HT induced habituation
change
Autism traits, anxiety and depression scores were not associated
with the change in habituation in any ROI across groups (b ≤
4.028, χ2 ≤ 1.285, p ≥ 0.257). Also, no significant interaction effects
between autism traits, anxiety and depression scores and groups
were observed in any ROI (b ≥−10.783, χ2 ≤ 2.314, p ≥ 0.128).
Furthermore, the ADOS subscores (communication and social
interaction) were not associated with the change in habituation in
any ROI in individuals with ASD (b ≤ 2.145, χ2 ≤ 2.286, p ≥ 0.131).

DISCUSSION
We demonstrated (using a randomised double-blind crossover
pharmacological-fMRI design) that the habituation of fMRI
activation in key limbic regions during the processing of negative
facial emotions was altered by 5-HT reuptake inhibition—but only
in adults with ASD. In essence, in neurotypical adults, limbic
response to emotional faces response reverted to baseline within
3 h following a 5-HT challenge but not in ASD. We suggest that
this indicates altered homoeostatic control of limbic systems by 5-
HT in ASD.
Previous fMRI investigations of amygdala habituation in

response to sad [25], fearful [26] and neutral faces [25, 47] have
generally reported that habituation (without pharmacological
challenge) is reduced in ASD. Here we only observed a trend
towards lower habituation in the key limbic regions to the
emotional faces in ASD compared with controls at baseline (i.e.,

placebo condition), possibly due to differences in sample
characteristics and the task adopted. For example, some previous
studies investigated children and adolescents [25], whereas we
recruited adults [63]. Previous pharmacological studies have found
children are less likely to tolerate and/or respond to SSRIs with
increased risk of adverse effects [64, 65], suggesting that there
might be significant differences in brain 5-HT function in pre- and
post-pubertal individuals with ASD [66]. We also used an adapted
face-matching paradigm presenting a mix of angry and fearful
faces [5] whereas previous studies used paradigms with fearful
faces only [26], angry faces only [27] or included sad faces [25].
Thus, the studies differed in some key methodological aspects.
Furthermore, we examined habituation across multiple blocks in
the adapted face-matching paradigm, whereas previous studies
were comparing the change in activations between two runs of
their paradigms over a longer duration [25, 26]. Therefore, the
habituation patterns captured in our study are broadly equivalent
to the initial run of previous studies. Thus, the longer time-scale of
previous studies precludes direct comparison of our approaches. It
should also be emphasised that, due to the nature of the null
hypothesis testing, the interpretation of our insignificant baseline
differences should be considered with caution.
In our study, we found that citalopram (which increases levels of

5-HT) caused sustained activation in key limbic regions during
processing of negative facial emotions in adults with ASD—but
not in neurotypical adults. Although, the adults with ASD have
higher anxiety and depression levels than the neurotypical adults
in our study sample, the scores were significantly lower than the
clinical threshold that a neurotypical individual with anxiety or
depressive disorder would have. Nevertheless, given the group
difference we also controlled for anxiety and depression scores in
our statistical analyses to minimise any impact on our results and
their interpretation. We did not observe effects of citalopram on
task accuracy or response reaction time. We also did not observe
any associations between task accuracy or response reaction time
and habituation. Furthermore, we did not observe any associa-
tions between anxiety and depression scores and the effects of
citalopram on habituation. Therefore, the effects of citalopram in
ASD that we detected were not a consequence of more general
drug effects on performance and/or presence of common co-
occurring conditions. 5-HT has been strongly implicated in
emotional behaviours [67] and manipulation of brain 5-HT levels
has been shown to alter the processing and recognition of facial
emotions [39–42]. Consequently, when abnormalities in the 5-HT
system in individuals with ASD were identified [32, 33, 43] this was
considered to be consistent with social behavioural difficulties. For
example, reducing brain 5-HT using a tryptophan depletion
paradigm ‘restored’ an fMRI pattern of case-control differences
in ASD during facial-emotion processing to the baseline activation
levels observed in neurotypical controls. This was a BOLD level
response and we cannot be certain of the cellular mechanisms
underlying it. It does however suggest that the brain activations
generating the BOLD response in adults with and without ASD
responded differently to the availability of 5-HT [17]. The present
work takes this evidence for differential effects of 5-HT in ASD
further and suggests that 5-HT has a differential impact on the
brain temporal dynamics in people with and without ASD. This
may reflect group differences in functioning of the 5-HT system
and its relation to responsivity to modulation of 5-HT in individuals
with ASD.
The cellular basis of this difference in responsivity to 5-HT is not

known but may at least partly be genetic [35–37]. For example,
reduced habituation of the amygdala response to facia emotion
has been observed in individuals with ASD with low expression of
the 5-HT transporter-linked promoter region, indicating that the
altered facial-emotion processing in ASD could be genetically
influenced in relation to the serotonergic system [68]. This fits with
the suggestion that the 5-HT reuptake transporter protein, the

Table 3. Habituation characteristics of autistic adults comparing
relative to control mean at baseline placebo condition and post
citalopram.

Placebo Citalopram

Higher
habituation

Lower
habituation

Higher
habituation

Lower
habituation

n (%) n (%) n (%) n (%)

BLA 11 (61%) 7 (39%) 15 (83%) 3 (17%)

CMA 10 (56%) 8 (44%) 16 (89%) 2 (11%)

SFA 11 (61%) 7 (39%) 16 (89%) 2 (11%)

NAc 11 (61%) 7 (39%) 14 (78%) 4 (22%)

sgACC 11 (61%) 7 (39%) 15 (83%) 3 (17%)

vACC 11 (61%) 7 (39%) 17 (94%) 1 (6%)

rACC 11 (61%) 7 (39%) 17 (94%) 1 (6%)

avmPFC 11 (61%) 7 (39%) 17 (94%) 1 (6%)

BLA basolateral amygdala, CMA centromedial amygdala, SFA superficial
amygdala, NAc nucleus accumbens, sgACC subgenual anterior cingulate
cortex, vACC ventral ACC, rACC rostral ACC, avmPFC anterior vmPFC.
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major regulator of synaptic levels of 5-HT, is ‘overwhelmed’ or
even impaired in individuals with ASD [69]. The end result is long-
term impairment of serotonin transporter function which leads to
permanently up- or down-regulated ancillary clearance uptake
mechanisms for 5-HT and hence, altered homoeostasis of 5-HT in
ASD [70]. We postulate that such a mechanism may contribute to
the altered homeostasis of brain activity at the macro-scale level
observed here.
A corollary of these findings is that we cannot assume that

individuals with and without ASD respond to 5-HT drugs in the
same way. While there is some evidence supporting the use of
SSRIs for various indications in adults with ASD, the benefits are
modest and especially in young people there appears to be an
increased risk of adverse effects [64, 71]. Consensus guidelines for
SSRI use in individuals with ASD currently state that they should
be used in low doses and titrated up gradually with careful
monitoring of side effects [71]. Whether the differential effect of
SSRI on brain function observed here might contribute to a
greater sensitivity and/or different clinical response to this family
of medicines in ASD requires further investigation.

Limitations
We acknowledge several limitations of this study. First, we did not
have a large study sample size because we adhered to strict
recruitment criteria with repeated testing and drug administration.
However, we adopted a conservative statistical thresholding in
controlling for multiple comparisons and because each participant
provided both placebo and drug data, inter-individual variability
was reduced. Future studies may include a larger sample. Second,
the inclusion of only male participants limits generalisability of
findings. However, it also limits potential sex differences in clinical
profiles, pharmacology and functional activation in a modest
sample size. Third, we used citalopram to investigate the
modulatory effect of brain 5-HT levels and how brain activations
might respond to a 5-HT challenge. Future studies could explore
the receptor mechanisms underlying this finding with more
selective drug probes of the 5-HT system. Fourth, we measured
baseline anxiety and depression levels but could not measure
again at the time of peak blood levels of citalopram when
participants were in the scanner. Previous studies have shown that
using a tryptophan depletion protocol to lower 5-HT levels in
individuals with ASD would increase their anxiety levels [72]. Thus,
the role of the 5-HT system in ASD is likely to be complex with
effects depending on acute or chronic changes to 5-HT and the
age of participants in any given study.

CONCLUSIONS
We found that increasing levels of 5-HT using an SSRI caused a
sustained activation in key limbic regions during processing of
negative facial emotions in adults with ASD. In contrast the
neurotypical response to emotion reverted to baseline. Thus, the
homoeostatic control of serotonin pathways which regulate limbic
system habituation is distinct in adults with ASD. Our results
encourage a shift away from examining average differences in
brain activity towards a focus on brain temporal dynamics. Our
findings also indicate that we cannot assume that 5-HT drugs act
in the same way in people with and without ASD. This study
provides a fresh perspective on the biology of ASD and may help
inform approaches to pharmacological intervention. It also
encourages further examination of the clinical utility of altering
habituation pharmacologically in ASD.
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