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Abstract 

Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental 1 

disorder characterized by age-inappropriate symptoms of inattention, impulsivity and 2 

hyperactivity that persist into adulthood in the majority of the diagnosed children. 3 

Despite several risk factors during childhood predicting the persistence of ADHD 4 

symptoms into adulthood, the genetic architecture underlying the trajectory of ADHD 5 

over time is still unclear. We set out to study the contribution of common genetic 6 

variants to the risk for ADHD across the lifespan by conducting meta-analyses of 7 

genome-wide association studies on persistent ADHD in adults and ADHD in childhood 8 

separately and jointly, and by comparing the genetic background between them in a 9 

total sample of 17 149 cases and 32 411 controls. Our results show nine new 10 

independent loci and support a shared contribution of common genetic variants to 11 

ADHD in children and adults. No subgroup heterogeneity was observed among 12 

children, while this group consists of future remitting and persistent individuals. We 13 

report similar patterns of genetic correlation of ADHD with other ADHD-related 14 

datasets and different traits and disorders among adults, children, and when combining 15 

both groups. These findings confirm that persistent ADHD in adults is a 16 

neurodevelopmental disorder and extend the existing hypothesis of a shared genetic 17 

architecture underlying ADHD and different traits to a lifespan perspective. 18 

19 
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Introduction 20 

Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental 21 

disorder that severely impairs the daily functioning of patients due to age-inappropriate 22 

levels of impulsivity and hyperactivity, and/or difficulties in focusing attention [1]. 23 

ADHD has a prevalence of 5-6% in childhood, and impairing symptoms persist into 24 

adulthood in around two-thirds of children with ADHD diagnosis, with an estimated 25 

adult prevalence around 3.4%[1, 2]. 26 

ADHD is a multifactorial disorder with heritability averaging 76% throughout the 27 

lifespan[3-5]. There is consistent evidence that both common and rare variants make an 28 

important contribution to the risk for the disorder[6-11]. Several genome-wide 29 

association studies (GWAS) and meta-analyses across those have been conducted[7], 30 

but only the largest GWAS meta-analysis (GWAS-MA) performed to date reported 31 

genome-wide significant loci[6]. This study concluded that common genetic variants 32 

(minor allele frequency, MAF, >0.01) account for 22% of the heritability of the 33 

disorder[6] and supported substantial genetic overlap between ADHD and other brain 34 

disorders and behavioral/cognitive traits[6,12]. 35 

The presentation of ADHD symptoms changes from childhood to adulthood, with lower 36 

levels of hyperactivity in adulthood but a high risk for ongoing attention problems, 37 

disorganization, and emotional dysregulation[13, 14]. As in the general population, the 38 

pattern of psychiatric and somatic comorbid conditions in ADHD also changes 39 

substantially over time, with learning disabilities, oppositional defiant disorder, and 40 

conduct disorder being more prevalent in children, and substance use disorders, social 41 

phobia, insomnia, obesity, and mood disorders becoming more pronounced in 42 

adulthood[1, 15-18]. In addition, persistent ADHD in adults is, compared to the general 43 

population (and to cases with remitting ADHD), associated with higher risk for a wide 44 

©    2020 The Author(s). All rights reserved.
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range of functional and social impairments, including unemployment, accidents, and 45 

criminal behavior[7, 19-23]. 46 

Several risk factors measured in childhood predict the persistence of ADHD symptoms 47 

into adulthood, such as the presence of comorbid disorders, the severity of ADHD 48 

symptoms, being exposed to psychosocial adversity as well as having a high polygenic 49 

risk score for childhood ADHD[24-28]. Twin studies suggest that both stable and 50 

dynamic genetic influences affect the persistence of ADHD symptoms[4, 5, 29, 30]. 51 

However, specific genetic factors differentiating childhood and persistent ADHD into 52 

adulthood are not well understood due to the lack of longitudinal studies. Molecular 53 

studies, including the most recent GWAS-MA of ADHD[6], have been performed in 54 

children and adults either separately or jointly[6, 31-40], but large-scale analyses 55 

comparing their genetic basis are yet to be conducted.  56 

Given this background, we set out to study the contribution of common genetic variants 57 

to the risk for ADHD from a lifespan perspective by conducting the largest GWAS-58 

MAs performed so far on persistent ADHD in adults (diagnosed according to DSM-59 

IV/ICD-10 criteria) and on ADHD in childhood (that may include remittent and 60 

persistent forms of the disorder) separately and jointly. For the first time, we estimated 61 

the genetic correlation between childhood and persistent ADHD, compared their 62 

patterns of genetic correlation with other traits and disorders, assessed the effect of 63 

childhood ADHD polygenic risk scores on persistent ADHD and explored whether 64 

individuals in which ADHD symptoms may persist into adulthood could be 65 

distinguished already in childhood using genetic data. 66 

 67 

68 
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Material and Methods 69 

Sample description 70 

A total of 19 GWAS of ADHD comprising 49 560 individuals (17 149 cases and 32 411 71 

controls), provided by the Psychiatric Genomics Consortium (PGC), the Lundbeck 72 

Foundation Initiative for Integrative Psychiatric Research (iPSYCH), and the 73 

International Multi-centre persistent ADHD CollaboraTion (IMpACT), were analyzed. 74 

All participants were of European ancestry, had provided informed consent and all sites 75 

had documented permission from local ethics committees.  76 

The meta-analysis on persistent ADHD was conducted in 22 406 individuals (6 532 77 

ADHD adult cases and 15 874 controls) using six datasets from the IMpACT 78 

consortium, two datasets from the PGC, and the adult subset from the iPSYCH cohort 79 

included in Demontis and Walters et al.[6] The meta-analysis on ADHD in childhood 80 

included 27 154 individuals (10 617 cases and 16 537 controls), comprising two 81 

Brazilian and Spanish cohorts, seven datasets from the PGC, and the children subset 82 

from the iPSYCH cohort included in Demontis and Walters et al.[6] All patients met 83 

DSM-IV/ICD-10 diagnostic criteria. In total, 7 086 new samples not included in 84 

Demontis and Walters et al.[6] were considered in the present study. Detailed 85 

information on each dataset is provided in Table S1 and in the Supplementary Methods. 86 

GWAS and meta-analyses 87 

Genotyping platforms and quality control (QC) filters for each of the datasets are shown 88 

in Table S1. Pre-imputation QC at individual and SNP level were performed using the 89 

Rapid Imputation and COmputational PIpeLIne (Ricopili) with the default settings 90 

(https://sites.google.com/a/broadinstitute.org/ricopili/). Non-European ancestry samples, 91 

related and duplicated individuals, and subjects with sex discrepancies were excluded. 92 

©    2020 The Author(s). All rights reserved.
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Phasing of genotype data was performed using the SHAPEIT2 algorithm, and 93 

imputation for unrelated samples and trios was performed with MaCH, IMPUTE2, or 94 

MINIMAC3 (http://genome.sph.umich.edu/wiki/Minimac3) depending on software 95 

availability at the time of imputation[41-43] (Table S1). The European ancestry panel of 96 

the 1 000 Genomes Project using genome build hg19 was considered as reference for 97 

genotype imputation (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/). After imputation, the 98 

association with ADHD of genotype dosages was tested using logistic regression in 99 

PLINK 1.9[44], assuming an additive genetic model and including sex, the first 10 100 

principal components, and other relevant covariates for each case-control study (Table 101 

S1). GWAS summary statistics were filtered prior to meta-analysis, excluding variants 102 

with MAF <0.01, and imputation quality scores (INFO) ≤0.8. Inverse-variance 103 

weighted fixed-effects meta-analyses were conducted using METAL[45] and results 104 

were filtered by effective sample size >70% of the total, defined as Ne   
 

(
 

   
)  

 

   
 
 105 

[46]. The genome-wide significance threshold was set at P<5.00E-08 to correct for 106 

multiple testing. Independent loci for variants exceeding this threshold were defined 107 

based on clumping using PLINK 1.9. Variants that were 250 kb away from the index 108 

variant (variant with smallest P-value in the region), with P-value<0.001, and with an 109 

estimated linkage disequilibrium (LD) of r2 >0.2 with the index variant were assigned to 110 

a clump (p1=5.00E-08, p2=0.001, r2=0.2, kb=250). Manhattan and Forest plots were 111 

generated using the ‘qqman’ and ‘ orestplot’ R packages (3.4.4 R version), respectively. 112 

The LocusZoom software[47] was used to generate regional association plots.  113 

 114 

Details of downstream analyses for top-signals identified are provided in the online 115 

supplement and include conditional analysis, Bayesian credible set analysis and 116 

functional characterization of the significant variants. 117 
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SNP-based heritability 118 

The SNP-based heritability (SNP-h2) was estimated by single-trait LD score regression 119 

using summary statistics, HapMap 3 LD-scores, considering default SNP QC filters 120 

(INFO>0.9 and MAF>0.01) and assuming population prevalence of 3.4%, 5.5% and 5% 121 

for persistent ADHD, ADHD on childhood, and ADHD across the lifespan, 122 

respectively[48]. Data of 1 113 287, 1 072 558, and 1 092 418 SNPs from the GWAS-123 

MA of persistent ADHD, ADHD on childhood, and ADHD across the lifespan, 124 

respectively, were considered to estimate the liability scale SNP-h2. Partitioning and 125 

enrichment of the heritability by functional categories was analyzed using the 24 main 126 

annotations (no window around the functional categories) described by Finucane et 127 

al[49]. Statistical significance was set using Bonferroni correction (P<2.08E-03). 128 

Gene-based and gene-set analyses 129 

MAGMA software was undertaken for gene-based and gene-set association testing 130 

using summary data from our GWAS-MAs[50]. Variants were mapped to a gene if they 131 

were within 20 kb upstream or downstream from the gene according to dbSNP build 132 

135 and NCBI 37.3 gene definitions. Genes in the MHC region (hg19:chr6:25-35M) 133 

were excluded from the analyses. LD patterns were estimated using the European 134 

ancestry reference panel of the 1000 Genomes Project. Gene sets denoting canonical 135 

pathways were downloaded from MSigDB 136 

(http://www.broadinstitute.org/gsea/msigdb), which integrates Kyoto Encyclopedia of 137 

Genes and Genomes (KEGG) (http://www.genome.jp/kegg/), BioCarta 138 

(http://www.biocarta.com/), Reactome (https://reactome.org/) and Gene Ontology (GO) 139 

(http://www.geneontology.org/) resources. Bonferroni correction (P<2.77E-06 for 18 140 

038 genes in persistent ADHD; P<2.75E-06 for 18 218 genes in childhood ADHD; 141 

©    2020 The Author(s). All rights reserved.
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P<2.79E-06 for 17 948 genes in ADHD across the lifespan) and 10 000 permutations 142 

were used for multiple testing correction in the gene-based and gene-set analyses, 143 

respectively.   144 

BUHMBOX analysis 145 

The Breaking Up Heterogeneous Mixture Based On cross(X)-locus correlations 146 

(BUHMBOX) analysis[51] was used to test whether the genetic correlation between 147 

persistent ADHD and ADHD in childhood was driven by subgroup heterogeneity, 148 

found when there is a subset of children enriched for persistent ADHD-associated 149 

alleles. Subgroup heterogeneity was tested in each childhood dataset considering 150 

independent SNPs (r2=0.1, kb=10,000) with MAF>0.05 from the GWAS-MA of 151 

persistent ADHD using two different P-value thresholds of P<5.00E-05 (62 SNPs) and 152 

P<1.00E-03 (710 SNPs). Results were meta-analyzed using the standard weighted sum 153 

of z-score approach, where z-scores are weighted by the square root of the effective 154 

sample size. The statistical power was calculated using 1 000 simulations, considering 155 

the ADHD children meta-analysis sample size, the odds ratios and risk allele 156 

frequencies from the GWAS-MA of persistent ADHD, and assuming 65% of 157 

heterogeneity proportion (π).  158 

Sign test 159 

The direction of the effect of variants associated with ADHD in childhood was tested in 160 

persistent ADHD and vice versa, using strict clumping (r2=0.05, kb=500, p2=0.5) and 161 

different P-value thresholds (1.00E-07, 5.00E-07, 1.00E-06, 5.00E-06, 1.00E-05, 5.00E-162 

05, 1.00E-04, and 5.00E-04). The concordant direction of effect was evaluated using a 163 

one sample test o  the proportion with Yates’ continuity correction against a null 164 

hypothesis o  P=0.50 with the ‘stats’ R package.  165 

©    2020 The Author(s). All rights reserved.
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Polygenic risk scoring  166 

Polygenic risk scores (PRSs) were constructed using different P-value thresholds 167 

(P<0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 1) to select independent variants (p1=1, p2=1, 168 

r2=0.1, kb=250) from the childhood GWAS-MA of ADHD and were then tested for 169 

association with persistent ADHD in each of the nine datasets, adjusting for the 170 

covariates included in the GWAS and using PRSice-2 171 

(https://choishingwan.github.io/PRSice/). Best guess genotypes for non-ambiguous 172 

strand variants present in all the persistent ADHD studies (missing rate <=0.02) were 173 

included (NSNPs=32 584 for P=1). Results from the nine PRS analyses at each P-value 174 

threshold were combined using inverse-variance weighted meta-analysis. 175 

Genetic correlation  176 

Cross-trait LD score regression with unconstrained intercept was used to calculate 177 

genetic correlations (rg) between pairs of traits, considering HapMap3 LD-scores, 178 

markers with INFO≥0.90, and excluding the MHC region (hg19:chr6:25-35M)[48]. 179 

Other ADHD datasets[6, 52] and phenotypes from the LD-hub centralized database[53] 
180 

with heritability z-scores (observed heritability/observed standard error) >4 and with an 181 

observed heritability >0.1 were considered (N=139 out of 689 available traits). 182 

Statistical significance was set using Bonferroni correction (P<3.60E-04). Pearson’s 183 

correlation coe  icient (Pearson’s r) was calculated between the genetic correlations o  184 

persistent ADHD with the phenotypes from the LD-hub and the genetic correlations of 185 

ADHD in childhood with the phenotypes from the LD-hub.  186 

 187 

188 

©    2020 The Author(s). All rights reserved.
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Results 189 

GWAS meta-analysis of persistent ADHD in adults 190 

The GWAS-MA of persistent ADHD in adults included 6 532 adult ADHD cases and 191 

15 874 controls. Minimal population stratification or other systematic biases were 192 

detected (LD score regression intercept=1.01, Figure S1A). The proportion of 193 

heritability of persistent ADHD attributable to common single nucleotide 194 

polymorphisms on the liability-scale (SNP-h2) was 0.19 (SE=0.024), with a nominally 195 

significant enrichment in the heritability of variants located in conserved genomic 196 

regions (P=5.18E-03) and in the cell-specific histone mark H3K4me1 (P=3.17E-02) 197 

(Figure S2A). The gene-based analysis revealed six genes in four loci (ST3GAL3, 198 

FRAT1/FRAT2, CGB1, and RNF225/ZNF584) significantly associated with persistent 199 

ADHD, with ST3GAL3 being the most significant one (P=8.72E-07) (Table S2A). The 200 

single-marker analysis showed no variants exceeding genome-wide significance, with 201 

the most significant signal being rs3923931 (P=1.69E-07) (Figure 1A and Table S3A). 202 

Similarly, no significant gene sets were identified in the pathway analysis after 203 

correction for multiple comparisons (Table S4A [excel file]). 204 

GWAS meta-analysis of ADHD in childhood 205 

To compare the genetic background between persistent ADHD in adults and ADHD in 206 

childhood (that may include future remittent and persistent forms of the disorder), we 207 

conducted a GWAS-MA on children with ADHD in a total of 10 617 ADHD cases and 208 

16 537 controls. We found no evidence of genomic inflation or population stratification 209 

(LD score regression intercept=1.02, Figure S1B). The liability-scale SNP-h2 for ADHD 210 

in childhood was 0.19 (SE=0.021), with a significant enrichment in the heritability of 211 

variants located in conserved genomic regions after Bonferroni correction (P=1.21E-06) 212 

©    2020 The Author(s). All rights reserved.
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(Figure S2B). The gene-based analysis highlighted a significant association between 213 

FEZF1 and ADHD in childhood (P=5.42E-07) (Table S2B). No single genetic variant 214 

exceeded genome-wide significance, with the top signal being in rs55686778 (P=1.67E-215 

07) (Figure 1B and Table S3B), and no significant gene sets were identified in the 216 

pathway analysis after correction for multiple comparisons (Table S4B [excel file]). 217 

Comparison of the genetic background of persistent ADHD in adults and ADHD in 218 

childhood 219 

We found a strong genetic correlation between persistent ADHD in adults and ADHD 220 

in childhood (rg=0.81, 95% CI: 0.64-0.97), significantly different from 0 (P=2.13E-21) 221 

and from 1 (P=0.02). Sign test results provided evidence of a consistent direction of 222 

effect of genetic variants associated with ADHD in childhood in persistent ADHD and 223 

vice-versa (P=6.60E-04 and P=4.47E-03, respectively for variants with P<5.00E-05 in 224 

each dataset) (Table S5). In addition, PRS analyses showed that childhood ADHD PRSs 225 

were associated with persistent ADHD at different predefined P-value thresholds, with 226 

the P=0.40 threshold (NSNPs=20 398) explaining the most variance (R2=0.0041 and 227 

P=1.20E-27) (Figure 2A). The quintiles of the PRS built using this threshold showed the 228 

expected trend of higher ADHD risk for individuals in higher quintiles (Figure 2B, 229 

Table S6). 230 

We then tested whether the genetic correlation between persistent ADHD and ADHD in 231 

childhood was driven by a subset of children enriched for persistent ADHD-associated 232 

alleles using the Breaking Up Heterogeneous Mixture Based On Cross-locus 233 

correlations (BUHMBOX) analysis. We found no evidence of subgroup genetic 234 

heterogeneity in children, supporting that the sharing of persistent ADHD-associated 235 

alleles between children and adults was driven by the whole group of children, with a 236 
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statistical power of 98.4% and 100% for thresholds of P<5.00E-05 and P<1.00E-03, 237 

respectively (Table S7).  238 

GWAS meta-analysis of ADHD across the lifespan 239 

Given the strong genetic correlation between persistent ADHD in adults and in 240 

childhood, we performed a GWAS-MA of ADHD across the lifespan considering all 241 

datasets included in the GWAS-MAs. In total, 17 149 ADHD cases and 32 411 controls 242 

were included, and no evidence of genomic inflation or population stratification was 243 

found (LD score regression intercept=1.03, Figure S1C). The liability-scale SNP-h2 for 244 

ADHD across the lifespan was 0.17 (SE=0.013), and a significant enrichment in the 245 

heritability of variants located in conserved genomic regions was observed after 246 

Bonferroni correction (P=1.53E-06) (Figure S2C). We identified four genome-wide 247 

significant variants (Figure 1C, Figure 3, Table 1A and Figure S3) and nine genes in 248 

seven loci (FEZF1, DUSP6, ST3GAL3/KDM4A, SEMA6D, C2orf82/GIGYF2, AMN, 249 

and FBXL17) significantly associated with ADHD across the lifespan (Table 1B). The 250 

most significantly associated locus was on chromosome 6 (index variant rs183882582-251 

T, OR=1.43 (95% CI 1.26-1.60), P=1.57E-08), followed by loci on chromosome 7 252 

(index variant rs3958046), chromosome 4 (index variant rs200721207) and 253 

chromosome 3 (index variant rs1920644) (Table 1A, Figure 3). The gene-set analysis 254 

showed a signi icant association o  the “ribonucleoprotein complex” GO term with 255 

ADHD across the lifespan (P.adj=0.021) (Table S4C [excel file]).  256 

One of the four loci identified in the single variant analysis also reached genome-wide 257 

significance in the previous GWAS-MA on ADHD[6], and all of them showed 258 

consistent direction of the effect in that study (Table S8A). Significant loci reported by 259 

Demontis and Walters et al.[6] showed nominal association with ADHD across the 260 
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lifespan in our study (Table S8B and S8C), with single variant hits showing the same 261 

direction of the effect (Table S8B).  262 

Analyses conditioning on the index variant for the four ADHD-associated loci did not 263 

reveal new independent markers. These four significant loci were functionally 264 

characterized by obtaining Bayesian credible sets and searching for expression 265 

quantitative trait loci (eQTL) using available data in blood or brain [54,55]. We found 266 

that credible sets for three of the four loci contained at least one eQTL within 1Mb of 267 

the index variant. The credible set on chromosome 6 included the index variant 268 

(rs183882582) and rs12197454. This variant, in LD with the index variant (r2=0.56), 269 

was associated with the expression of RSPH3 in blood and brain (P.adj<1.65E-05 and 270 

P.adj=2.36E-07, respectively), and with the expression of VIL2 in blood (P.adj=3.21E-271 

03). The credible set for the second most associated locus on chromosome 7 included 24 272 

variants. The index variant, rs3958046, and other variants in this set, were eQTLs for 273 

CADPS2 in brain (maximum P.adj=2.91E-03). The credible set for the locus on 274 

chromosome 4 contained 50 variants, most of them located in or near PCDH7, but no 275 

eQTLs were identified. In the credible set for the locus on chromosome 3, which 276 

included 98 variants, the index variant, rs1920644, was associated with the expression 277 

of KPNA4, IFT80, and KRT8P12 in brain (P.adj=1.16E-04, P.adj=1.40E-03, and 278 

P.adj=1.77E-03, respectively). Many other variants in this set were eQTLs for these 279 

genes and also for TRIM59, OTOL1, and/or C3orf80 in brain (P.adj<0.05) (Table S9 280 

[excel file]).  281 

In a summary-data-based Mendelian Randomization (SMR) analysis, we used summary 282 

data from the GWAS-MA of ADHD across the lifespan and the eQTL data in blood and 283 

brain from Westra et al.[54] and Qi et al.[55] to identify gene expression levels 284 

associated with ADHD. We found a significant association between ADHD across the 285 
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lifespan and RMI1 expression in blood (PSMR=5.36E-06) (Table S10 [in excel]), finding 286 

not likely to be an artifact due to LD between eQTL and other ADHD-associated 287 

variants given that the PHEIDI was 0.47. 288 

Genetic correlation with other ADHD datasets and phenotypes 289 

We found significant genetic correlations of ADHD in children and adults from the 290 

previous GWAS-MA[6] (N=53 296) and persistent ADHD (rg=0.85, SE=0.04, 291 

P=5.49E-99), ADHD in childhood (rg=0.99, SE=0.03, P=5.02E-273), and ADHD 292 

across the lifespan (rg=0.98, SE=0.01, P<2.23E-308) (Table S11). When removing 293 

sample overlap (LD score genetic covariance intercept=0.75) and considering only the 294 

subset of new samples included in our GWAS-MA on ADHD across the lifespan (N=7 295 

086), a significant genetic correlation was also obtained between their sample and ours 296 

(rg=0.91, SE=0.35, P=8.70E-03).  297 

We also observed significant genetic correlations between childhood ADHD symptom 298 

scores from a GWAS-MA in a population of children reported by the EAGLE 299 

consortium[52] (N=17 666) and persistent ADHD (rg=0.65, SE=0.20, P=1.10E-03), 300 

ADHD in childhood (rg=0.98, SE=0.21, P=2.76E-06), and ADHD across the lifespan 301 

(rg=0.87, SE=0.19, P=4.80E-06). Similarly, significant genetic correlations between 302 

GWAS of self-reported ADHD status from 23andMe (N=952 652) and persistent 303 

ADHD (rg=0.75, SE=0.05, P=2.49E-45), ADHD in childhood (rg=0.63, SE=0.05, 304 

P=1.39E-42), and ADHD across the lifespan (rg=0.72, SE=0.04, P=4.86E-88) were 305 

observed (Table S11). 306 

We also estimated the genetic correlation of persistent ADHD in adults, ADHD in 307 

childhood, and ADHD across the lifespan with all available phenotypes in LD-hub. 308 

Results for 139 phenotypes passed the quality control parameters and 41 genetic 309 
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correlations were significant after Bonferroni correction in both children and adults with 310 

persistent ADHD (Table S12 [excel file]). Again, the genetic correlations with ADHD 311 

were consistent across the lifespan, with similar patterns found in adulthood and 312 

childhood (Pearson’s r=0.89) (Figure 4A, Table S12 [excel file]). The strongest genetic 313 

correlations with ADHD were found for traits related to academic performance, 314 

intelligence and risk-taking behaviors, including smoking and early pregnancy (Figure 315 

4B). 316 

317 
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Discussion 318 

 319 

In the current study, we set out to explore the contribution of common genetic variants 320 

to the risk of ADHD across the lifespan by conducting GWAS-MAs separately for 321 

children and adults with persistent ADHD that meet DSM-IV/ICD-10 criteria. Using the 322 

largest GWAS datasets available from the PGC, the iPSYCH, and IMpACT consortia 323 

we found evidence for a common genetic basis for ADHD in childhood and persistent 324 

ADHD in adults and identified nine new loci associated with the disorder. 325 

We found a highly similar proportion of the heritability of ADHD explained by 326 

common variants in children and in adults (SNP-h2=0.19), which is consistent with the 327 

SNP-h2 estimate reported in the recent GWAS-MA on ADHD[6] (SNP-h2=0.22), that 328 

included children and adults, and is in line with multiple studies supporting the stability 329 

of ADHD’s heritability from childhood to adulthood[3-5]. These results, together with 330 

the 0.81 genetic correlation found between children and adults with persistent ADHD 331 

reinforce the hypothesis of the neurodevelopmental nature of persistent ADHD in 332 

adults. Consistently, the sign test and the PRS analysis confirmed the extensive overlap 333 

of common genetic risk variants for ADHD in childhood and adulthood.  334 

In the view of the fact that children with ADHD may be an admixed group of 335 

individuals whose ADHD symptoms will persist or remit in adulthood, we ran a 336 

BUHMBOX analysis to elucidate if the potential “persistent” individuals could be 337 

distinguishable already in childhood. Our data supported genetic similarities in ADHD 338 

across the lifespan with no evidence of a subset of patients enriched for persistent 339 

ADHD-associated alleles within the group of children.  340 

Despite not having identified specific genetic contributions for ADHD in children or 341 

persistent ADHD, our results are not inconsistent with evidence suggesting changes in 342 
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the genetic contribution to ADHD symptoms from childhood into adulthood, as 343 

described in previous twin studies in the general population[4, 5, 29, 30]. Our study 344 

design and the still limited statistical power of the GWAS-MAs may have facilitated the 345 

identification of the shared genetic basis rather than specific genetic factors for 346 

persistence. Also, differences between the origin of the samples (population-based 347 

versus clinical) and/or discrepancies between self- and medical reports could explain 348 

why we found no group-specific genetic variants. In addition, given that Chen et al. [56] 349 

and Biederman et al. [57] reported that persistence of ADHD into adulthood indexed 350 

stronger familial aggregation of ADHD, we cannot yet discard influences of non-351 

additive genetic effects, or other types of genetic variation, such as rare mutations or 352 

copy number variation, playing a role in the different ADHD trajectories across the 353 

lifespan.  354 

We also found strong and significant positive genetic correlations of ADHD ascertained 355 

in clinical populations of adults, children or both with other ADHD-related measures 356 

from general population samples, including the largest GWAS of self-reported ADHD 357 

status from 23andMe participants (N=952 652) and the GWAS-MA of childhood rating 358 

scales of ADHD symptoms in the general population[52]. In agreement with previous 359 

reports, these data suggest that a clinical diagnosis of ADHD in adults is an extreme 360 

expression of continuous heritable traits[6] and that a single question about ever having 361 

received an ADHD diagnosis, as in the 23andMe sample, may be informative for 362 

molecular genetics studies.  363 

Similar patterns of genetic correlation of ADHD with different somatic disorders and 364 

anthropometric, cognitive, and educational traits were identified for children and adults. 365 

These findings were highly similar to those observed in the recent GWAS-MA[6] and 366 
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further extend the existing hypothesis of a shared genetic architecture underlying 367 

ADHD and these traits to a lifespan perspective.  368 

We report 13 loci in gene- and SNP-based analyses for childhood ADHD, adult ADHD, 369 

and/or ADHD across the lifespan. Four ADHD-associated loci were previously 370 

identified by Demontis and Walters et al.[6], which was expected due to the sample 371 

overlap between the two datasets. The new loci identified in the present study mainly 372 

included genes involved in brain formation and function, such as FEZF1, a candidate 373 

for autism spectrum disorder implicated in the formation of the diencephalon[58,59], 374 

RSPH3, which participates in neuronal migration in embryonic brain[60], CADPS2, 375 

which has been associated with psychiatric conditions due to its role in monoamine and 376 

neurotrophin neurotransmission[61-65], AMN, which is involved in the uptake of 377 

vitamin B12[65, 66], essential for brain development, neural myelination, and cognitive 378 

function[67], and FBXL17, which has previously been related to intelligence[68]. 379 

The main limitation of this study is the sample overlap (85.7%) between the present 380 

GWAS-MAs and the previous one by Demontis and Walters et al.[6] which highlighted 381 

loci previously associated with ADHD. Although sample overlap may have inflated the 382 

genetic correlation found between these studies, the estimate remained strong and 383 

significant when excluding non-overlapping datasets.  384 

In summary, the present cross-sectional analyses identify new genetic loci associated 385 

with ADHD and, more importantly, support the hypothesis that persistent ADHD in 386 

adults is a neurodevelopmental disorder that shows a high and significant genetic 387 

overlap with ADHD in children. Future longitudinal studies will be required to 388 

disentangle the role of common genetic variants on ADHD remittance and/or 389 

persistence. 390 
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Figure legends 856 

 857 

Figure 1. Manhattan plots of GWAS meta-analyses of (A) Nine cohorts of 858 

persistent ADHD in adults, (B) 10 cohorts of ADHD in childhood and (C) GWAS 859 

datasets of ADHD across the lifespan (ADHD in childhood + persistent ADHD). 860 

Horizontal lines indicate suggestive (P-value=5.00E-06) and genome-wide significant 861 

(P=5.00E-08) thresholds in A-B and C, respectively.  862 

Figure 2. Polygenic risk scores for ADHD in childhood tested on persistent ADHD 863 

as target sample. (A) Bar plot and (B) Quintile plot of meta-analysis odds ratios (OR 864 

meta) with 95% confidence intervals for P-value threshold=0.4 using the third quintile 865 

as baseline. 866 

Figure 3. Regional association plots for genome-wide significant loci identified in 867 

the GWAS meta-analysis of ADHD across the lifespan. Each plot includes 868 

information about the locus, the location and orientation of the genes in the region, the 869 

local estimates of recombination rate (in the right corner), and the LD estimates of 870 

surrounding SNPs with the index SNP (r2 values are estimated based on 1 000 Genomes 871 

European reference panel), which is indicated by colour (in the upper left corner).  872 

Figure 4. Genetic correlation of ADHD and several traits. (A) Black and grey dots 873 

represent genetic correlations (rg) for all traits considered (with h2>0.1 and z-score>4) 874 

and for those traits which met Bonferroni correction in both children and adult ADHD 875 

groups, respectively. r indicates Pearson’s correlation coe  icient. (B) The 10 strongest 876 

genetic correlations (with 95% confidence intervals) surpassing Bonferroni corrections 877 

in the children and persistent ADHD analysis are shown for each trait and ADHD. 878 

879 
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Table 1. Genome-wide significant loci in the GWAS meta-analysis of ADHD across the lifespan identified through (A) single-variant 

analysis and (B) gene-based analysis. The location (chromosome (Chr) and base position (BP)), effect allele and its frequency, odds ratio (OR) 

of the effect allele with 95% confidence interval (CI 95%) and association P-values, along with genes in the locus are shown for each index 

variant ID (SNP). For the gene-based results, the number of single nucleotide polymorphisms in the genes (*) and the number of relevant 

parameters used in the model by MAGMA software (**) are given. 

A. 

Chr BP SNP Effect allele Freq Effect allele OR CI 95% P-value Gene 

6 159384224 rs183882582 T 0.98 1.43 1.26-1.60 1.57E-08 RSPH3 (+14kb) 

7 121955328 rs3958046 T 0.40 1.09 1.06-1.10 2.28E-08 
CADPS2 (+3.2kb) / 
FEZF1 (-13.9kb) / 

FEZF1-AS1 (+5.2kb) 

4 31151465 rs200721207 T 0.66 1.10 1.06-1.13 3.56E-08 PCDH7 (3.0kb) 

3 160313354 rs1920644 T 0.52 1.09 1.05-1.12 4.74E-08 

BC125159 (+27.9kb) / 

KPNA4 (-30kb) / ARL14 
(-81.6kb) 
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B. 

 

Gene Chr Start Stop N SNPs* N PARAM** Z-STAT P-value 

FEZF1 7 121921373 121971173 108 18 5.6 9.57E-09 

DUSP6 12 89721837 89766296 103 12 5.4 3.51E-08 

ST3GAL3 1 44153204 44416837 521 19 5.4 3.58E-08 

SEMA6D 15 47456403 48086420 1565 55 5.3 7.24E-08 

KDM4A 1 44095797 44191189 169 13 4.9 4.34E-07 

C2orf82 2 233713724 233761111 138 17 4.8 7.74E-07 

GIGYF2 2 233542015 233745287 511 19 4.8 8.36E-07 

AMN 14 103368993 103417179 101 21 4.6 2.56E-06 

FBXL17 5 107174734 107738080 1273 35 4.6 2.59E-06 

 

 

©    2020 The Author(s). All rights reserved.




