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Integration analysis of methylation quantitative trait loci
and GWAS identify three schizophrenia risk variants
Hao Yu 1, Weiqiu Cheng2, Xiao Zhang2, Xin Wang1 and Weihua Yue 2

Genome-wide association studies (GWAS) have identified hundreds of genetic variants associated with schizophrenia (SCZ).
However, prioritizing risk variants and regulatory elements for follow-up functional studies remains a major challenge. Therefore,
we performed an integrated analysis to identify variants who affect methylation levels of nearby genes and contribute to the risk of
SCZ, and to explore the potential role of these variants in SCZ pathogenesis. First, we used the Summary data-based Mendelian
Randomization (SMR) method to integrate GWAS and methylation quantitative trait loci data. Then, the SNP-methylation
combinations as associated with SCZ were replicated across multiple samples. Totally, we identified and replicated 14 and one SNP-
methylation combinations in blood and brain tissues, respectively, that significantly associated with SCZ. Furthermore, our
expression quantitative trait loci analysis, differential methylation analysis, neuroimaging genetics, and cognitive genetics analysis
consistently supported the potential roles of these 15 SNPs in the pathogenesis of SCZ. Finally, using the convergent functional
genomics method, we prioritized three risk SNPs, including rs3765971 (RERE, PSMR= 3.87 × 10−8), rs55742290 (ARL6IP4, PSMR=
1.50 × 10−7), and rs7293091 (CENPM, PSMR= 5.09 × 10−7), may represent promising risk variants in SCZ. These convergent lines of
evidence suggest that three risk variants may be involved in the pathogenesis of SCZ. Further investigation of the roles of these
variants in the pathogenesis of SCZ is warranted.

Neuropsychopharmacology (2020) 45:1179–1187; https://doi.org/10.1038/s41386-020-0605-3

INTRODUCTION
Recent approaches to understanding the pathogenesis of
schizophrenia (SCZ) have focused on describing the genetic
contribution to SCZ. A recent large-scale genome-wide associa-
tion study (GWAS) by the Psychiatric Genomics Consortium
(PGC) identified 108 independent loci exhibiting a genome-wide
significant association with SCZ [1]. Nevertheless, owing to
linkage disequilibrium, identified risk loci usually contain many
highly linked genetic variants that exhibit similar association
significance. Therefore, it is a major challenge to pinpoint causal
genes involved in SCZ pathogenesis and to elucidate the exact
genetic mechanisms underlying SCZ.
Considering that most identified risk variants reside in

noncoding regions of the genome, it is likely that these identified
risk variants confer risk for SCZ by modulating gene regulation,
for instance, through methylation and altered expression [2].
Recent studies have incorporated data on genetic variants
associated with DNA methylation (methylation quantitative trait
loci, mQTL) or gene expression (expression quantitative trait loci,
eQTL) into results from GWAS for complex traits to help identify
putative causal variants in a particular genomic region, as well as
to provide evidence, suggesting which genes might be influ-
enced by this variant [3]. These studies could integrate different
omics data to gain further insights into the mechanisms of
genetic variants and causally associated disease. In addition,
recent studies have successfully identified genetic variants

associated with DNAm, reporting that they appear to be enriched
in SCZ GWAS risk loci [4, 5].
To identify genes whose methylation levels are affected by

SCZ risk variants and to explore the potential role of these genes
in SCZ pathogenesis, we incorporated data from different levels,
including SCZ GWAS data, eQTL, mQTL, differential gene
methylation patterns in SCZ patients and controls, association
with human brain structure, and association with cognitive
performance. Through the convergent functional genomics
(CFG) method, we prioritize three risk SNPs may represent
promising causal variants in SCZ.

MATERIALS AND METHODS
Methodological overview
To identify genes whose methylation levels are affected by SCZ
risk variants and to explore the potential role of these genes in
SCZ pathogenesis, we performed integrative analyses by integrat-
ing data from different levels, including genetic associations from
large-scale GWAS, mQTL, eQTL, differential gene methylation in
SCZ patients and controls, and association with hippocampal
volume and cognitive function (Fig. 1). Our integrative analyses
showed that several identified genes may represent promising risk
genes for SCZ. This study used data of several public data sets. All
the samples used in the study were described in Table 1, including
the age, sex, and ethnic distributions of each cohort along with
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sample sizes and diagnoses included. For further specifics on the
respective ethics approvals, we refer to the single study
publications. All data are available in public databases as detailed
in the methods section.

Discovery mQTL and SCZ GWAS data sets
In the discovery phase, to keep homogeneity in the genetic
background, we used SCZ GWAS and mQTL data from individuals
of European ancestry. For SCZ GWAS, we utilized the PGC
SCZ GWAS data set for individuals of European ancestry,
consisting of 35,476 SCZ patients and 46,839 healthy controls
[1]. Genome-wide SNP associations were download from the PGC
website (http://www.med.unc.edu/pgc/). Considering the high
linkage disequilibrium and complexity of the major histocompat-
ibility complex region, we excluded SNPs in this region
(chr6:28477797–33448354; GRCh37.p13 version). The blood mQTL
data were from the study of McRae et al. [6]. In brief, blood mQTL
data originated from two samples, including Brisbane Systems

Genetics Study (BSGS, n= 614) and Lothian Birth Cohorts (LBC,
n= 1366). DNA were extracted using standard procedures. All
individuals were of European ancestry [6]. Meanwhile, brain mQTL
data were from a study by Hannon et al. in which mQTLs were
characterized in a large collection (n= 166) of human fetal brain
samples [7].

Integration of SCZ GWAS and mQTL data
We investigate the association between DNAm and SCZ owing to
a shared variant at a locus by an integrated method called
Summary data-based Mendelian Randomization (SMR), which
utilizes a Mendelian randomization approach to test for joint
association in GWAS and mQTL data [3]. In our SMR analysis,
DNAm is the exposure (X), SCZ is the outcome (Y), and the top cis-
mQTL that is strongly associated with DNAm is used as the
instrumental variable (Z). Equivalently, it is an analysis to test
whether the effect of Z on Y is mediated by X (a model of Z→
X→ Y). The significant SMR results could reflect pleiotropic or
linkage model. A pleiotropic model reflects gene methylation and
SCZ risk are associated owing to a single shared genetic variant.
Meanwhile, a linkage model is that there are two or more distant
genetic variants in LD-affecting gene methylation and SCZ risk
independently. However, linkage was of less-biological interest.
Therefore, we used the heterogeneity in dependent instruments
(HEIDI) test to distinguish pleiotropy model from linkage model.
The HEIDI test compares the profile of association for nearby
coinherited variants in GWAS and mQTL data to assess whether
the signals are dissimilar. If the HEIDI test is not significant, the
identified GWAS and mQTL signals are likely to be driven by the
same genetic variant, and overlap can be incidental as a result of
pleiotropy. Therefore, to account for multiple testing, we adjusted
p-SMR values using the Bonferroni approach. SNPs passed
SMR and HEIDI tests were inferred as plausible causal variants.
The set of GWAS associated genes was defined as genes with a
Bonferroni-corrected p-SMR significant at a threshold of < 0.05
and a p-HEIDI > 0.05.

mQTL data for replication analysis
We also used four well-characterized databases for replication
analysis of blood and brain mQTL associations. (1) The first blood
mQTL data were from the ARIES mQTL database [8]. Samples were
drawn from the Avon Longitudinal Study of Parents and Children.
In this study, we only used mQTL data of mothers in middle age
(n= 742) [8]. (2) The second blood mQTL data set were from the
first- and second-stage data of the study by Hannon et al. [9]. This
study performed a two-stage epigenome-wide association study.
First- and second-stage samples were from the University College
London (n= 639) and Aberdeen (n= 665) case–control samples,
respectively. (3) The first brain mQTL data were from a study by
Jaffe et al. [7] wherein they characterized mQTL data in the
prefrontal cortex from 335 nonpsychiatric controls and 191 SCZ
patients [7]. (4) The second brain mQTL data were from a study by
Ng et al. [10]. Samples were collected from healthy participants
in the Religious Orders Study and the Rush Memory and
Aging Project (ROSMAP), two longitudinal studies of aging
designed by the same group of investigators. ROSMAP mQTL
data were generated from the dorsolateral prefrontal cortex of 468
individuals [10].

SCZ GWAS data for replication analysis
Replication analyses on SCZ used summary statistics from a large-
scale SCZ GWAS of the PGC and CLOZUK study [11]. After
excluding related and overlapping samples of PGC and CLOZUK
study, it comprised of 40,675 cases and 64,643 controls [11].
Genome-wide SNP associations were download from the website
of Walters group data repository (http://walters.psycm.cf.ac.uk).
Meta-analyses across all samples were conducted using a fixed-
effects model with inverse-variance weighting. If the SNPs

Fig. 1 Flow chart of the present study. Based on the hypothesis
that SCZ risk variants are enriched among mQTL, we systematically
integrated SCZ GWAS and genome-wide mQTL data with the SMR
software tool. The top genes identified by SMR were then replicated
in a larger scale SCZ sample and mQTL data sets. Moreover, we
explored the genetic mechanisms, using eQTL analysis, differential
methylation analysis in SCZ patients and controls, association with
human brain structure, and association with cognitive performance.
Finally, we used the convergent functional genomics method to
prioritize SCZ risk genes. SNP, single-nucleotide polymorphism; SCZ,
schizophrenia; DNAm, DNA methylation; SMR, summary data-based
Mendelian randomization; mQTL, methylation quantitative trait
loci; eQTL, expression quantitative trait loci GWAS, genome-wide
association study.
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identified by SMR achieve the genome-wide significance level (P
< 5 × 10−8) in the replication analysis, they are likely to be risk
variants. Then, we would perform follow-up analyses based on
these validated SNPs.

Methylomic pattern of SCZ risk CpG sites
To explore whether SCZ risk CpG sites identified by SMR
integrative analysis were differentially methylated in SCZ
patients compared with controls, we analyzed publicly available
blood (GSE80417 [12] and GSE84727 [12]) and brain (GSE74193
[7]) methylation data sets. DNA methylation data was prepro-
cessed including: quality control on samples, probes filtering,
normalization, and converted to M-values. To avoid technical
inference, batch effect was corrected by “Combat”. The
algorithm ‘projectCellType’ in minfi R package was used to
perform cell correction [13]. Differentially methylated probes
were accessed by a multiple linear regression model using
“limma”, with age and gender as covariates [14]. The P values
were adjusted using the Benjamini–Hochberg method.

eQTL analysis
We explored the effects of identified SNPs on expression in eQTL
studies using two eQTL databases as follows. (1) Blood eQTL data
were from the eQTLGen database. The eQTLGen Consortium has
been set up to identify the downstream consequences of trait-
related genetic variants. The eQTLGen consortium incorporates 37
data sets, with a total of 31,684 individuals [15]. (2) Brain eQTL
data were from the Brain-eMeta data set. The brain eQTL database
was from the brain eQTL analysis by Qi et al. (n= 1194) [16]. To
increase the power of detecting brain eQTLs, the authors
performed a meta analysis using eQTL data from the GTEx [17],
CommonMind Consortium [18], and ROSMAP [10].

Association of SCZ risk genes with hippocampal volume and
cognitive function
Previous studies have shown that hippocampus volume was
smaller in patients with SCZ compared with control and SCZ risk
variants were associated with hippocampal volume [19–22]. Thus,
to examine the associations between SCZ risk variants and
hippocampal volume, we used a recent GWAS of hippocampal
volume conducted by two independent consortia: Cohorts for
Heart and Aging Research in Genomic Epidemiology (CHARGE)
and Enhancing Neuro Imaging Genetics through Meta Analysis
(ENIGMA), comprised of 33,536 individuals of European ancestry
[23]. Recent studies have shown that SCZ risk variants were
associated with cognitive function in either SCZ patients or
healthy control [24, 25]. Therefore, we used two large-scale GWAS
data sets to investigate the associations between SCZ risk variants
and cognitive function. The first GWAS examined the association
between educational attainment and genetic variants and was
conducted by the Social Science Genetic Association Consortium
(SSGAC, N= 766,345) [26]. The second GWAS was from the
Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE)
(http://www.ccace.ed.ac.uk/node/335), which performed a study
to identify genetic loci influencing cognitive function, including
general cognitive function (N= 282,014), reaction time (N=
330,069), and verbal numerical reasoning (N= 168,033) [27].

Prioritization of SCZ risk genes
To prioritize SCZ risk genes, we used the CFG [28] method to
combine the above-mentioned evidence. In brief, the CFG method
uses multiple layers of evidence to prioritize SCZ risk genes. In this
study, evidence used for scoring was as follows: (1) SMR analysis,
(2) differential gene methylation (DGM) analysis, (3) eQTL analysis,
(4) hippocampal volume association analysis, and (5) cognitive
function association analysis. All cross-validating lines of evidence
were weighted equally, receiving a maximum of 1 point each,
other than the evidence from SMR, DGM, and eQTL (0.5 point if

the results were from blood tissues; 1 point if the results are from
human postmortem brain). Thus, the maximum possible CFG
score for each gene is 5. Furthermore, we limited each line of
evidence at 1 point, regardless of how many different results
support that line of evidence, to avoid potential ‘popularity’ biases
[28]. A higher total score suggests that more evidence from
different analyses supports this gene as a SCZ risk gene.

RESULTS
SMR integrative analysis
To explain the logic of the present study, a flow chart describing
the analytical methods and movement of genetic variants from
one stage of analysis to the next is shown in Fig. 1. First, to identify
genes whose changes in DNAm level may confer risk for SCZ,
we systematically integrated genetic associations (a total of
15,358,497 SNPs) from the PGC GWAS of SCZ, including 33,640
patients and 43,456 controls, with blood (n= 1980) and brain
mQTL (n= 166) [6] data, respectively. After quality control,
associations between 86,655 probes from blood mQTL and 7728
probes from brain mQTL were used in the integrated analysis. It
should be noted that all probes included in the analysis had at
least a cis-mQTL at PmQTL < 5 × 10−8. For each probe, the top
associated cis-mQTL was used as the instrument for SMR testing.
To control the genome-wide type I error rate, we used Bonferroni
correction to account for multiple testing, which resulted in a
genome-wide significance level of P < 5.3 × 10−7 (i.e., 0.05/nSMR,
with nSMR= 94,383 being the total number of SMR tests using
blood and brain mQTL data sets).
Using the SMR statistical inference method to match the

signature of genes from blood and brain mQTL with patterns of
association in GWAS, we identified 168 and 33 SCZ susceptibility
loci in blood and brain, respectively, whose methylation levels
may affect SCZ risk. If a single variant is associated with both
phenotype and DNAm, the HEIDI P value will be non-significant.
We conducted the HEIDI test and retained for further investigation
only those probes with little evidence of heterogeneity PHEIDI ≥
0.05. After the application of the HEIDI test, 65 gene-trait
associations in blood (n= 60) and brain (n= 5) tissues significantly
affected risk for SCZ (Fig. 2; Supplementary Table 1).

Replication of mQTL effects
Given the myriad confounders in the single mQTL database, we
validated the above SNP-DNAm associations using three blood
and two brain mQTL data sets. In the blood mQTL analysis, of 60
identified SNP-methylation associations, 15 were validated across
all three blood mQTL databases and survived after Bonferroni
correction (P < 0.05/n= 2.73 × 10−4, with n= 183 the total num-
ber of blood eQTL tests using three data sets; Supplementary
Table 2). In the replication analysis of brain mQTL, only one SNP-
methylation (rs876701-cg22675791) association was validated in
two independent follow-up brain mQTL databases (P < 0.05/n=
5 × 10−3, with n= 10 the total number of brain eQTL tests using
two data sets; Supplementary Table 3). Among these SNPs, the
SNP rs2743467 affected the DNA methylation levels of two
cytosine-phosphate-guanine (CpG) sites in blood tissue, including
cg15557168 and cg05082376. Therefore, 15 SNPs (14 SNPs in
blood and one SNP in brain) are validated across independent
databases and likely to be authentic mQTL SNPs (Supplementary
Tables 2, 3).

Replication of GWAS results
Given the replication of significant associations between the 15
risk SNPs and methylation levels of nearby genes, we opted to
further analyze these associations with regard to SCZ risk using a
meta analysis of PGC and CLOZUK studies (40,675 cases and
64,643 controls) [29]. All the 15 SNPs were validated within the
replication samples and attained a genome-wide significance level
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(P < 5 × 10−8; Supplementary Table 4). Therefore, these 15 SNPs
are likely to be risk variants. To investigate the potential roles of
risk genes in the pathogenesis of SCZ, we subsequently performed
follow-up analyses based on these validated SNP-DNAm combina-
tions, including eQTL analysis, differential methylation/expression
analysis, neuroimaging genetics analysis, and cognitive genetics
analysis.

Identified SCZ risk SNPs affect expression levels of nearby genes
Considering that DNAm might regulate the expression of nearby
genes, we examined the associations between the 15 identified
SNPs and expression levels of nearby genes using public blood
and brain eQTL databases, respectively. In blood eQTL analysis,
all the 14 SNPs identified by SMR analysis in blood were
significantly associated with expression level of nearby genes
after multiple testing (P < 3.50 × 10−4, i.e., 0.05/n with n= 143;
n being the total number of blood eQTL tests; Supplementary

Table 5). In brain eQTL analysis, the SNP rs3765971 identified by
SMR analysis in brain was significantly associated with expres-
sion levels of nearby gene RERE (P < 2 × 10−3, i.e., 0.05/n
with n= 25; n being the total number of brain eQTL tests;
Supplementary Table 6).
Then, to identify risk genes whose DNAm level changes may

affect gene expression, we further applied the SMR approach to
assess for pleiotropic associations between DNAm sites and gene
expression in blood and brain, respectively. First, we performed
SMR analysis using blood eQTL [15] and mQTL [6] data. Totally, 12
DNAm sites in blood were associated with 25 gene expressions at
an experimental-wise significance level (PSMR < 1.35 × 10−4, i.e.,
0.05/mSMR, with mSMR= 371; mSMR being the total number of
SMR tests; Supplementary Table 7). Of the genes that passed the
SMR test, 34 DNAm-gene combinations were not rejected by the
HEIDI test (PHEIDI > 0.05; Supplementary Table 7). Similarly, we
performed SMR analysis using brain eQTL (n= 1194) [16] and

Fig. 2 Manhattan plots of SMR tests for association between DNA methylation and schizophrenia. a SMR test for blood mQTL. b SMR test
for brain mQTL. Shown on each y axis are the −log10 (P values) from SMR tests. The red line represents the genome-wide significance level (P
< 5.3 × 10−7).
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mQTL (n= 1980) data. However, no DNAm site was associated
with gene expression in brain.

Methylation analysis of SCZ risk CpG sites in patients and controls
SMR infers disease-associated genes under the assumption that
DNAm of the candidate genes are altered in patients. Therefore, we
performed methylation analysis of the identified CpG sites in SCZ
patients and healthy controls using blood and brain GEO data sets,
respectively. For risk DNAm sites identified by SMR analysis, three
sites shown significantly differential methylation levels across two
different GEO databases (Supplementary Table 8) [12], including
cg00376283 (PGSE80417= 4.54 × 10−3; PGSE84727= 1.36 × 10−5; ABCB9),
cg21663219 (PGSE80417= 2.01 × 10−3; PGSE84727= 2.08 × 10−14;
TNFRSF13C), and cg21782813 (PGSE80417= 2.81 × 10−3; PGSE84727=
4.04 × 10−6; MAD1L1) across two blood GEO data sets. Therefore,
they are likely to be risk CpG sites of SCZ.

Effects of SCZ risk SNPs on hippocampal volumes and cognitive
functions
Among 15 risk SNPs, the SNP rs3765971 was significantly
associated with hippocampal volumes (P= 2.58 × 10−4; Supple-
mentary Table 9) after Bonferroni correction (P < 3.33 × 10−3, i.e.,
0.05/n, with n= 15). In addition, after Bonferroni correction (P <
6.67 × 10−4, i.e., 0.05/n, with n= 75, calculating with 15 SNPs and 5
cognitive domains), six risk SNPs (rs10460394, rs2675960,
rs1107592, rs1790129, rs55742290, and rs2036534) were signifi-
cantly associated with general cognitive function, three SNPs
(rs1727293, rs4148863, and rs7293091) were significantly asso-
ciated with reaction time, five SNPs (rs2675960, rs1107592,
rs55742290, rs2036534, and rs7293091) were significantly asso-
ciated with verbal numerical reasoning, seven SNPs (rs10460394,
rs2675960, rs1107592, rs876701, rs55742290, rs2036534, and
rs7293091) were significantly associated with cognitive perfor-
mance, and four SNPs (rs2675960, rs1107592, rs55742290, and
rs2036534) were significantly associated with educational attain-
ment (Supplementary Table 9).

Prioritization of SCZ risk genes
Based on the above findings, we used the CFG method [28] to
prioritize identified genes (Table 2). Through integrating evidence at
different levels, we found that three SNP-DNAm-gene combinations,
rs3765971-cg00546117-RERE, rs7293091-cg21663219-TNFRSF13C, and
rs55742290-cg00376283-ABCB9, have the highest CFG scores 2.5,
strongly suggesting that they are promising candidates for SCZ risk.

DISCUSSION
Considering that SCZ is an environmentally influenced and
complex disease driven by both genetic and epigenetic variation,
understanding genetic control of DNAm may highlight regulatory
components involved in SCZ pathogenesis. To evaluate putative
causal influences of DNAm in SCZ, we used the SMR approach to
systematically integrate genome-wide SNP association results
from SCZ and mQTL data. Ultimately, we identified and validated
15 risk SNPs, which change DNAm levels of nearby genes and
contribute to risk for SCZ. This provides compelling evidence that
DNA methylation might have a mediating role for effects at these
loci. In addition, to investigate the potential roles of these risk
SNPs in the pathogenesis of SCZ, we incorporated data from
different levels, including eQTL analysis, differential methylation
analysis, and brain structure and cognitive function association
analysis. Using the CFG method, we prioritized the risk SNPs
and identified three promising candidates for SCZ risk, including
rs55742290-cg00376283-ABCB9, rs3765971-cg00546117-RERE,
rs7293091-cg21663219-TNFRSF13C and. Our analysis provides
opportunities to infer plausible regulatory mechanisms at these
risk loci for SCZ that could be prioritized in future functional
studies.

For the SNP rs55742290 located in ARL6IP4 gene, it was
genome-wide significantly associated with the risk of SCZ. In
addition, the SCZ risk allele [C] of SNP rs55742290 in ARL6IP4 gene
was also associated with decreased DNAm levels of the
cg00376283 site in ABCB9. Moreover, rs55742290 was also the
top eQTL in blood; the C allele of this SNP is associated with the
high expression levels of C12orf65 gene. Using the SMR method,
our results suggested that the C allele of rs55742290 potentially
upregulates the transcription of C12orf65 by reducing the
methylation level at cg00376283. Subsequently, using Haploreg
v4 database [30], we found that the risk SNP rs55742290 located in
promoter region and might affect the binding of the transcription
initiation complex, resulting in dysregulation of gene expression.
Moreover, we found that the SCZ risk allele [C] of SNP rs55742290
was also associated with dysfunction of cognitive performances
using several public GWAS databases. Leveraging all the informa-
tion above, we proposed a potential mechanism in which the risk
allele [C] of genetic variant rs55742290 at the promoter of ARL6IP4
gene decreased the DNAm level of cg00376283, which disrupts
the binding of repressor(s), increasing the expression of the
C12orf65 gene, affecting cognitive performances and increasing
the risk of SCZ (Fig. 3).
Intriguingly, the risk SNP rs7293091 share similar mechanism,

that is, the risk genetic variant rs7293091 affects DNAm levels,
dysregulates expression of nearby genes, disrupts cognitive
performance, and increases the risk of SCZ. Notably, in the
previous SCZ GWAS [1], the SNP rs7293091 in CENPM gene was
not genome-wide significantly associated with SCZ (P= 5.33 ×
10−8). It might not be found in previous GWAS owing to the lack
of power. Our SMR analysis identified this novel functional SNP
rs7293091. Hence, the SMR method has identified some of the
missing heritability of GWAS data and might contribute to the
identification of new genetic factors underlying SCZ.
At the RERE locus, we detected one DNAm site, cg00546117,

tagging RERE that was significantly associated with SCZ. The CpG
site cg00546117 is in the enhancer regions of the RERE gene
according to chromatin state annotations from the Haploreg v4
database [30]. In SMR analysis, the regression coefficient of SCZ on
DNAm was − 0.06, indicating that a genetic increase in log2
transformed DNAm of RERE by one standard deviation decreased
SCZ by 0.06 standard deviation. Furthermore, the SNP rs3765971
affected expression levels of the RERE gene in both blood and
brain tissues. Moreover, expression levels of the RERE gene in the
brain were relatively high across developmental stages. The risk
allele C of SNP rs3765971 was significantly associated with smaller
hippocampal volume and longer reaction time, in accordance
with the conventional view that risk alleles generally lead to
smaller hippocampal volume and poorer cognition. Taking all the
evidence together, we hypothesize a potential mechanism in
which the risk allele C of the genetic variant rs3765971 in the RERE
gene decreases DNAm levels, upregulates expression of the RERE
gene, disrupts cognitive performance, and therefore, increases the
risk of SCZ.
These examples above provide hypotheses for how SNPs may

affect the SCZ risk through regulatory pathways. However, these
putative candidates need to be further validated in functional
experiments.
For the other identified SNPs, we identify that they affect the

DNAm levels of nearby genes and contribute to the risk of SCZ. In
addition, previous studies also indicate that these genes might
have a role in the pathogenesis of SCZ. For example, RFTN2 is a
member of the raftlin family and mediates clathrin-dependent
internalization of toll-like receptor 4 (TLR4) in dendritic cells [31].
Moreover, some studies indicate that TLR4 may play a significant
role in neurodevelopment and plasticity [32]. Considering the
correlation between RFTN2 and TLR4, RFTN2 may also have a role
in SCZ. Therefore, several lines of evidence suggest a plausible
regulatory mechanism for the RFTN2 locus, and further functional
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exploration of RFTN2 is needed. MAD1L1 encodes MAD1 (mitotic
arrest deficient-like 1) and contributes to cell cycle control through
the regulation of mitosis. GWAS have suggested that it is a
susceptibility gene associated with bipolar disorder and SCZ,
being involved in reward system functions in healthy adults
[33, 34]. The DGKZ gene belongs to the family of diacylglycerol
kinase enzymes, which are central to a wide range of signal
transduction pathways of potential relevance to neuropsychiatric
disorders [35]. PITPNM2 encodes a phosphatidylinositol transfer
protein with limited functional information. Whole-exome sequen-
cing of individuals has implicated rare risk variants of PITPNM2 in
bipolar disorder [36]. Therefore, the potential role of these genes
in the pathogenesis of SCZ requires further exploration.
This study also has several limitations. First, although our

findings provide new insights into the genetic mechanism of SCZ,
the susceptibility loci were identified in samples of European
ancestry. These identified variants might not be associated with
SCZ in other ethnic groups. Validation studies in other populations
are necessary, not only to investigate whether the identified loci
can be generalized to the other ethnicities but also to identify new
susceptibility loci for SCZ. Second, in the integrative analysis on
SCZ GWAS and mQTL data, the sample size of mQTL data were
relatively small. As such, it is possible that some genes that may
contribute to SCZ risk but did not meet the genome-wide
significance level could have been missed. To ensure a more
comprehensive and higher quality mQTL data, the mQTL data of
discovery and replication stages could be meta-analyzed. How-
ever, the results might be significantly affected by different data
process of DNA methylation, such as signal intensities analysis,
DNAm normalization, and quality control. Therefore, we validate
our findings across several samples. The biases in SNP mQTL
associations due to sample size are likely to be very modest. Third,
a significant finding of pleiotropic effect from SMR can be
explained as a SNP influencing SCZ by modifying a DNAm site
(e.g., biological pleiotropy), or it can be explained that the variant
is influencing both SCZ and the DNAm site independently (e.g.,
spurious pleiotropy) [37]. However, the SMR and HEIDI approach
could not separate biological pleiotropy from spurious pleiotropy.
Therefore, further investigation is needed to examine whether the
genetic variant is casually associated with SCZ through affecting
the DNAm level.

In summary, our integrative study identifies and validates 15
SCZ risk SNPs, whose DNAm levels may contribute to SCZ risk. The
integrated analysis links SCZ risk SNPs of a large-scale GWAS to
specific genes, providing a possible mechanistic explanation for
genetic variations and SCZ susceptibility.
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