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Polygenic prediction and GWAS of depression, PTSD,
and suicidal ideation/self-harm in a Peruvian cohort
Hanyang Shen 1, Bizu Gelaye2, Hailiang Huang 3,4, Marta B. Rondon5, Sixto Sanchez6,7 and Laramie E. Duncan 1

Genome-wide approaches including polygenic risk scores (PRSs) are now widely used in medical research; however, few studies
have been conducted in low- and middle-income countries (LMICs), especially in South America. This study was designed to test
the transferability of psychiatric PRSs to individuals with different ancestral and cultural backgrounds and to provide genome-wide
association study (GWAS) results for psychiatric outcomes in this sample. The PrOMIS cohort (N= 3308) was recruited from prenatal
care clinics at the Instituto Nacional Materno Perinatal (INMP) in Lima, Peru. Three major psychiatric outcomes (depression, PTSD,
and suicidal ideation and/or self-harm) were scored by interviewers using valid Spanish questionnaires. Illumina Multi-Ethnic Global
chip was used for genotyping. Standard procedures for PRSs and GWAS were used along with extra steps to rule out confounding
due to ancestry. Depression PRSs significantly predicted depression, PTSD, and suicidal ideation/self-harm and explained up to 0.6%
of phenotypic variation (minimum p= 3.9 × 10−6). The associations were robust to sensitivity analyses using more homogeneous
subgroups of participants and alternative choices of principal components. Successful polygenic prediction of three psychiatric
phenotypes in this Peruvian cohort suggests that genetic influences on depression, PTSD, and suicidal ideation/self-harm are at
least partially shared across global populations. These PRS and GWAS results from this large Peruvian cohort advance genetic
research (and the potential for improved treatments) for diverse global populations.

Neuropsychopharmacology (2020) 45:1595–1602; https://doi.org/10.1038/s41386-020-0603-5

INTRODUCTION
Polygenic risk scores (PRSs) are individual-level metrics of genetic
risk for particular phenotypes, and they are also known as risk
profile scores (RPS) and genetic risk scores (GRS) [1]. Methods for
polygenic scoring were first developed for livestock and
agricultural purposes [2] and were applied in humans over a
decade ago [3, 4]. PRSs have become increasingly popular as the
size (and importantly, the statistical power) of genome-wide
association studies (GWAS) have increased, resulting in improved
performance of polygenic risk scores for the prediction of
psychiatric disorders. For example, as the sample size (and
statistical power) of schizophrenia GWAS increased from approxi-
mately N= 7000 to approximately N= 36,000, the maximum
amount of phenotypic variance explained by schizophrenia PRSs
increased from ~3 to ~12% [4, 5].
Over a decade ago, the original developers of PRSs demon-

strated the poorer transferability of PRSs across ancestry groups
as compared to within-ancestry predictions [4]. Subsequent
theoretical work suggested an approximately linear decline in
predictive performance of PRSs as a function of genetic distance
between training and target samples [6], and empirical observa-
tions are generally consistent with this expectation [7, 8].
However, it is still the case that most GWAS (training) PRS
(testing) studies are conducted in high-income countries. GWAS

analyses conducted in populations with different environmental,
cultural, and ancestral backgrounds are needed to increase the
generalizability of PRS prediction, and PRS studies are needed to
clarify the extent to which environmental factors also impact
generalizability of PRSs.
As has been the case in medical genetics more broadly, there

have been few GWAS and PRS studies of psychiatric outcomes in
South America. Of the available studies, Hispanic/Latino samples
from the US are most similar to admixed populations in South
America in terms of ancestry. However, environmental conditions
and culture are oftentimes considerably different. Compared to
people living in North America and Europe, many individuals
living in South America are exposed to high rates of traumatic
events and low-socioeconomic status, which lead to increased
burden of psychiatric disorders [9].
Despite knowledge of the impact of environmental factors on

psychiatric disorder risk, environmental variables have often been
omitted from polygenic analyses. The challenge is often a practical
one in consortium analyses, in which collecting genetic and
minimal phenotypic data is already a tremendous challenge, and
consequently environmental variables are not collected from
contributing investigators. Thus, there is a need for inclusion of
relevant environmental variables in GWAS and polygenic predic-
tion studies.
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Here we present a genetics study of 3308 participants from Lima,
Peru [10, 11]. This is the largest psychiatric genetics study in South
America to date. The goals of the current study were twofold. First,
polygenic prediction analyses were conducted on three major
psychiatric phenotypes—depression, PTSD, and suicidal ideation/
self-harm—with controlling for potential environmental variables.
The results demonstrate successful cross-ancestry, cross-cultural
predictions. Second, GWASs of these three phenotypes were
conducted in the cohort in order to make summary statistics from
this Peruvian cohort available to researchers worldwide.

MATERIALS AND METHODS
Study population
The population for the present study was drawn from participants
of the Pregnancy Outcomes, Maternal and Infant Study (PrOMIS)
cohort. The PrOMIS cohort is a longitudinal study aimed at
understanding the life course and intergenerational effects of
interpersonal violence and other forms of trauma among Peruvian
women. The study was conducted between February 2012 and
November 2015. The methodology and study procedures have
been described previously [12]. Briefly, the present sample
consists of 3308 women who attended prenatal care clinics at
the Instituto Nacional Materno Perinatal (INMP) in Lima, Peru. The
INMP is a reference national institution for maternal and perinatal
care. Participants were invited to take part in an interview where
trained research personnel used a structured questionnaire to
elicit information regarding maternal socio-demographics, lifestyle
characteristics, medical and reproductive histories, and mental
health symptoms. All participants provided written informed
consent. The institutional review boards of the INMP, Lima, Peru,
and the Office of Human Research Administration, Harvard T.H.
Chan School of Public Health, Boston, MA approved all procedures
used in this study.

Depressive symptoms
Depression symptoms were assessed using the Patient Health
Questionnaire (PHQ-9). The PHQ-9 is a nine-item, self-report
depression screening scale derived from the Primary Care
Evaluation of Mental Disorders [13, 14]. This questionnaire
assesses nine depressive symptoms experienced over the past
2 weeks prior to the interview: anhedonia, depressed mood,
trouble sleeping, feeling tired, change in appetite, guilt or
worthlessness, concentration problems, psychomotor agitation/
retardation, and suicidal thoughts/self-harm. The total PHQ-9
score was calculated by summing scores of 0, 1, 2, or 3 to the
response categories of “not at all,” “several days,” “more than half
the days,” or “nearly every day” for each symptom. As a symptom
measure, the total score ranged from 0 to 27. The PHQ-9 has been
previously validated in Spanish-speaking populations [15].

PTSD assessment
The Post-traumatic Stress Disorder Checklist-Civilian Version (PCL-
C) was used to assess PTSD symptoms. The PCL-C is a 17-item self-
reported questionnaire designed according to the Diagnostic and
Statistical Manual of Mental Disorders (DMS-IV) criteria. Each item
assesses PTSD symptoms experienced over the past month on a 5-
point Likert scale, with a total score ranging from 17 to 85. Higher
scores indicate more severe PTSD. The PCL-C has demonstrated
adequate levels of internal consistency, inter-rater reliability, test
−retest reliability, and convergent validity when applied to
different clinical and nonclinical populations [16]. The Spanish-
language version has been found to have similar psychometric
properties to the English-language version.

Suicidal ideation and self-harm
The phenotype of suicidal ideation/self-harm in our study is based
on one single item from the PHQ-9 form [13]. Item 9 asks about

“thoughts that you would be better off dead, or of hurting yourself”
in the 14 days prior to evaluation. Participants who responded “not
at all” were classified as no for suicidal ideation/self-harm and
participants with any other responses were coded as yes.

Clinical, demographic, and environmental covariates
Self-reported clinical, demographic, and environmental variables
were also collected at participants’ prenatal care visits [17]. These
environmental variables include: experience of any childhood
abuse (yes vs. no); experience of any lifetime Intimate Partner
Violence (IPV) (yes vs. no); age (<20, 20−24, 25−29, 30−34,
and ≥35 years); educational attainment (≤6, 7−12, and >12
completed years of schooling); marital status (married/living with
a partner vs. others); access to basic foods (hard vs. not very hard);
employment status (employed vs. not); ethnicity (Mestizo vs.
others); early pregnancy body mass index (BMI) (<18.5, 18.5−24.9,
25−29.9, ≥30); parity (nulliparous vs. multiparous); and planned
pregnancy (yes vs. no).

GWAS: quality control, imputation, and GWAS methods
GWAS quality control and imputation was performed according to
published PGC procedures, and this (PrOMIS) sample is part of the
second empirical paper from the PTSD group of the PGC (PGC-
PTSD) [18]. Briefly, samples and variants were excluded sequen-
tially according to the following criteria: SNPs with missingness
>5%, samples with variant missingness >2%, samples with
deviation from expected inbreeding coefficient (fhet <−0.2 or
>0.2), samples with sex discrepancy (discordant reported vs. sex
estimated from genotypes), SNPs with missingness >2%, SNPs
with missingness differences between cases and controls >2%,
monomorphic SNPs, SNPs with Hardy Weinberg Equilibrium
deviation p value < 1 × 10−6 in controls from the largest ancestry
group (list of SNPs then applied to all samples). For imputation,
the 1000Genomes phase 3 data were used [19]. Prephasing was
conducted with default settings in SHAPEIT2 v2.r837 [20], followed
by phasing in 3 megabase (MB) blocks, where an additional 1 MB
of buffer was added to either end of each block. IMPUTE2 v2.2.2
was then used with default settings in order to obtain imputed
genotypes. For subsequent analyses, imputed variants with
imputation quality (INFO) scores >0.8, missingness <1%, and
minor allele frequency >5% were retained.
We used PC-relate to exclude related participants, and we also

used PC-Air for principal component (PC) analysis in our finalized
sample [21]. In order to show how PrOMIS samples are distributed
among global populations with various ancestries, we merged the
cleaned PrOMIS genotype data with the 1000Genomes dataset
[22]. PCs were also calculated for the merged dataset using PC-Air
method. Scatterplots of individuals’ scores on pairs of PCs were
visually inspected.

Construction and analysis of PRSs
This investigation used cleaned individual-level genotype data from
the PrOMIS participants and summary statistics for depression [23]
and PTSD [18] to calculate PRSs for each participant. Summary
statistics files were downloaded from the PGC website (https://www.
med.unc.edu/pgc/results-and-downloads). The depression summary
statistics were from a meta-analysis of 807,553 people of European
ancestry (file name: 2019-pgc-ukb-depression-genome-wide.txt;
md5checksum value: ed4597a4e7fa168fb96970e3286a0b31). The
PTSD summary statistics were from a study of 206,655 people of
diverse ancestries. In order to avoid overlapping samples between
training GWAS and target PRS analysis, we used internal PGC GWAS
summary statistics file that had PrOMIS samples omitted (file name:
all_prom_maf01_info6.results_neff.gz; md5checksum value:
dde2a515fb1274a9014a5f4c425437b2). We pruned the publicly
available dataset using LD information from the 1000Genomes
samples (all participants) with window size 500, p value < 1, and r2

equals 0.2.
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PRSs were calculated with PLINK. Each person’s score was the
sum of weighted risk alleles. Weights were the log of odd ratios
(OR) from the summary statistics files, for each risk allele. SNPs
with missing ORs were excluded from the calculation and the –no-
mean-imputation flag was used. Our original analysis plan was to
use 13 p value thresholds for inclusion of SNPs to calculate PRSs
based on sets of variants ranging from Psi (meaning genome-wide
significant variants only, i.e. pT < 5 × 10−8), to all, meaning all
(pruned) SNPs available. The 13 possible thresholds were: Psi (pT <
5 × 10−8), Pe6 (pT < 1 × 10−6), pe4 (pT < 1 × 10−4), pe3 (pT < 1 ×
10−3), pe2 (pT < 1 × 10−2), P05 (pT < 0.05), P10 (pT < 0.1), P20 (pT <
0.2), P30 (pT < 0.3), P40 (pT < 0.4), P50 (pT < 0.5), P75 (pT < 0.75), and
all (pT < 1). However, we could only use the latter 12 thresholds for
PTSD, given that the PTSD dataset had no genome-wide
significant variants.
First, we standardized the scores by subtracting the mean and

dividing by the standard deviation of each score. Then we then fit
logistic regression models using these standardized PRSs to
predict the phenotypes. The reported p values for the polygenic
prediction terms were from a full model that included the top ten
PCs calculated in PrOMIS samples (as noted above) and the
additional clinical, demographic, and environmental covariates
given in Table 1. The effect size reported for polygenic analyses
was linear r2/Nagelkerke’s pseudo-r2 of the full model minus by
linear r2/Nagelkerke’s pseudo-r2 from a basic model which
included no PRS term, to predict phenotype. R [24] 3.5 was used
for regression models and visualizing the results.

Multiple testing correction
Multiple testing correction was conducted for polygenic predic-
tion analyses, for the 39 depression-based polygenic predictions
(p < 0.05/39 tests= p < 1.3 × 10−3), given that these were, a priori,
the tests deemed likely to be adequately powered. We also
corrected for all 75 statistical tests (p < 0.05/75= p < 6.7 × 10−4), in
order to denote statistical significance with full Bonferroni
correction.

Sensitivity analyses
First, we repeated our analyses without the clinical, demographic,
and environmental covariates. Recognizing that population strati-
fication might be the biggest threat to the validity of our results, we
also conducted sensitivity analyses. Second, we conducted our
analyses in more homogeneous subgroups of participants. Visual
inspection of PC scatterplots was used to select two increasingly
stringent subgroups of participants (from original N= 3308 to 2964,
to 2690). Third, we repeated our analyses with multiple choices of
PCs in order to test the robustness of our results to varying choices
of which PCs to include. The choices tested, in addition to our a
priori decision to use ten PCs were: (1) no PCs, (2) first PC, (3) first
two PCs, (4) first three PCs, and (5) 20 PCs.
There is no PGC-PTSD plan to make the PrOMIS summary

statistics (alone) publicly available, so we are releasing them
with this publication. In addition to the PTSD GWAS for this
sample (N= 3414, 1698 cases), we also conducted GWAS on
depression (N= 3404, 1076 cases) and suicidal ideation/self-harm
(N= 3404, 522 cases) in order to make these summary statistics
available. For these analyses, we use binary outcomes so that
researchers may meta-analyze these results with other psychiatric
GWAS, which nearly always use binary (rather than continuous)
outcomes. Ten principal components were used as covariates in
all GWAS (logistic regression conducted with PLINK). Manhattan
plots of results were created using R [24].

RESULTS
Participant characteristics
The participants’ clinical, demographic, and environmental char-
acteristics are shown in Table 1. All participants in our cohort are

females between the age of 17−47 years old (mean= 28.2, SD=
6.3). BMI was in the normal range for 46.6% of participants. A
majority of the participants self-identified as Mestizo ethnicity
(76.1%), married/living with a partner (81.4%), unemployed
(53.5%), and with less than 12 years of education (53.5%). The
mean depression (PHQ-9) score and PTSD (PCL-C) scores are 8.2
(SD= 5.3) and 27.4 (SD= 9.3) respectively. The prevalence of
suicidal ideation/self-harm in the cohort is 15.4%.

Ancestry assessment, plus matching of cases and controls on
ancestry indicators
The PC results from the combined dataset of PrOMIS and
1000Genomes were informative regarding the ancestry of PrOMIS
samples. Figure 1a shows how PrOMIS samples are distributed
when plotted with 1000Genomes participants, as represented in
scatterplots of pairs of the first three PCs. Most of the PrOMIS
participants aligned well with the 1000Genomes PEL samples
(Peruvians from Lima, Peru). A small number of PrOMIS samples
were dispersed among other samples from populations in the
Americas, and this was also the case for a minority of the PEL
samples as well. Figure 1b shows the top three PCs from PrOMIS
participants only, with PTSD cases and controls denoted. Figure S1
shows the same plot but with depression and suicidal ideation/self-
harm status denoted by color. The even distribution of symptom
scores reflects good matching on ancestry indicators (PCs).

PRS predictions and comparison to effect sizes for covariates
The PRS prediction results are shown in Fig. 2 and Table S1.
Depression PRS constructed using SNPs with discovery GWAS pT <
1 yielded the best prediction result for depression score,
explaining 0.62% of phenotypic variance (pT < 4 × 10−6). The betas
for all variables in the model are shown in Fig. 3a. Compared to
the covariate with the highest risk (education less than 6 years)
with beta as 1.66 on depression symptom score, depression PRS
with pT < 1 has a beta of 0.45. Compared to PRSs based on less
SNPs, PRSs based on more SNPs tended to yield better prediction
results. Depression PRS with pT < 0.2 and pT < 0.1 explained the
highest phenotypic variance in PTSD and suicidal ideation/self-
harm with both around 0.3% in the PrOMIS samples (p= 0.001
and p= 0.01 respectively). PRSs for PTSD constructed using SNPs
with discovery GWAS pT < 1 × 10−2 and pT < 0.05 predicted PTSD
(nominal significance), with variance explained at 1% (p= 0.04).
Compared to the covariate with the highest risk, IPV, with beta of
4.72 on PTSD symptom score, PTSD PRS with pT < 0.05 has a beta
of 0.54 as shown in Fig. 3b.

Sensitivity analyses
Three types of sensitivity analyses were conducted. The results
remained similar to our primary analyses. First, Fig. S2 shows PRS
results without covariates (note: PC covariates still included). The
variance explained by PRSs was slightly higher, but the results are
highly similar to the full model. Second, as shown in Figs. S3
and S4, with decreasing sample size the variance explained varied
somewhat, but the pattern of results did not change. Third,
alternative choices of PCs were used, and the results are shown in
Figs. S5−S9. The phenotypic variance explained varied somewhat
when different sets of PCs were included, but PRSs remained
statistically significant predictors of phenotypes. In sum, the
results of this analysis are robust to the inclusion/exclusion of
clinical, demographic, and environmental covariates. Further, the
results are also relatively similar even when the number of PCs
(which correct for ancestry) varied from zero to 20 PCs.

GWAS results
Three sets of GWAS results (for depression, PTSD, and suicidal
ideation/self-harm) are available as Supplementary Data (see
GWAS results files for depression, PTSD, and suicidal ideation/self-
harm). Manhattan plots of these analyses are shown in Fig. S10.
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Full GWAS results are provided in the service of increasing access
to non-European-ancestry summary statistics and to facilitate
future meta-analyses. As shown in Fig. S10, the results are null
with respect to individual loci. This was the expected outcome for

an appropriately cleaned but underpowered GWAS. For complete-
ness, we also provided the polygenic prediction results for our
binary phenotypes in Fig. S11; results are similar to those using
continuous phenotypic outcomes.

Fig. 1 Principal components plots of PrOMIS and 1000Genomes participants. Each point is one person. a PrOMIS samples and
1000Genomes samples are plotted together, based upon principal components computed on combined samples. PrOMIS samples (magenta)
cluster with PEL 1000Genomes samples (gold triangles). b PrOMIS samples only: depression severity scores are evenly distributed across
principal components. Population abbreviations are those specified by the 1000 Genomes Consortium. *For major populations: AFR African
ancestry, AMR Americas ancestry, EAS East Asian ancestry, EUR European ancestry, SAS South Asian ancestry [22]. **For subpopulations: ACB
African Caribbean in Barbados, ASW African Ancestry in Southwest US, BEB Bengali in Bangladesh, CDX Chinese Dai in Xishuangbanna, CEU
Utah residents with Northern and Western European ancestry, CHB Han Chinese in Beijing, CHS Southern Han Chinese, CLM Colombian in
Medellin, ESN Esan in Nigeria, FIN Finnish in Finland, GBR British in England and Scotland, GIH Gujarati Indian in Houston, GWD Gambian in
Western Division, IBS Iberian populations in Spain, ITU Indian Telugu in the UK, JPT Japanese in Tokyo, KHV Kinh in Ho Chi Minh City, LWK
Luhya in Webuye, MSL Mende in Sierra Leone, MXL Mexican Ancestry in Los Angeles, PEL Peruvian in Lima, PJL Punjabi in Lahore, PUR Puerto
Rican in Puerto Rico, STU Sri Lankan Tamil in the UK, TSI Toscani in Italy, YRI Yoruba in Ibadan.

Fig. 2 Polygenic prediction results in the PrOMIS cohort for three phenotypes (depression severity score, PTSD severity score, and
suicidal ideation/self-harm) using two psychiatric polygenic risk scores, controlling for covariates. a Depression polygenic risk scores;
b PTSD polygenic risk scores.

Polygenic prediction and GWAS of depression, PTSD, and suicidal. . .
H Shen et al.

1599

Neuropsychopharmacology (2020) 45:1595 – 1602



DISCUSSION
To our knowledge, this is the first report to provide psychiatric
polygenic scoring and GWAS results from a large South American
sample. Our results demonstrate that polygenic scores derived
from primarily European-ancestry, non-admixed individuals, from
high-income countries (almost exclusively in Europe, the US, and
Australia) are valid predictors of psychiatric phenotypes, even for
individuals from considerably different environments, cultures,
and ancestries. This means that genetic influences on depression,
PTSD, and suicidal ideation/self-harm are at least partially shared
across these populations [4, 7, 8]. The GWAS results made
available here support the broader research goal of increasing
genetic resource availability from non-European-ancestry popula-
tions, and from LMICs. To the extent that polygenic risk scores and
other genetics-based treatments become useful in the clinic, it is
critical that such genetic data resources be made available for
multiple major global populations, so that new interventions are
not disproportionately helpful to European-ancestry individuals.
The present polygenic results are consistent with previous

literature; depression and PTSD PRSs are predictive of psychiatric
outcomes in population from other ancestries [4, 8, 25]. However,
compared to previous PRS prediction in European-ancestry
samples, the variance explained in our study was lower. In Levey
et al. [26], the depression-based PRSs explained up to 0.7% of the
phenotypic variance for suicide attempt, which is higher than our
results (0.3%). In Nievergelt et al. [18] the PTSD-based PRSs
explained 0.15% variance of PTSD phenotype in their samples,
which is also higher than our results (0.12%). There are several
potential explanations for these differences. First, as has been
reported previously, polygenic scores tend to work best when the
ancestry of the training cohort (typically European, given historical
sample collection rates) matches the testing cohort. As genetic
distance between populations increases, prediction performance
is hypothesized to decrease [6], and this has been demonstrated
empirically [7, 8].
Notably, PRS performance in Latino and Hispanic samples has

been relatively comparable to performance in European-ancestry
samples in prior studies conducted within the United States [8].
Thus, it is possible that additional factors contributed to the

somewhat lower predictive performance of PRSs in this study.
Participants in this study are from a disadvantaged environment
compared to their peers in developed countries. These substantial
environmental differences could alter the relative importance of
genetic and environmental factors in the development of
depression, PTSD, and suicidal ideation/self-harm. Second, hetero-
geneity in the disease phenotype across populations and potential
differences in measurement could also decrease the maximum
potential prediction. Third, compared to other South American
populations, Peruvian individuals have been found to have a
higher proportion of Native American ancestry [27, 28]. Given all of
these differences, it is noteworthy that our results still show that
PRSs are valid predictors in a sample that differs in ancestry, culture,
and severity of environmental risks. Finally, it should be noted that
there is discussion within the research community regarding how
polygenic scoring results should be reported (e.g. as area under the
receiver operating characteristics, AUROC) and terminology (e.g.
whether or not the term “prediction” should be used) [29].
The depression PRSs explained more phenotypic variance in

PTSD, than the PTSD PRSs explained in PTSD. This is almost
certainly due to two factors. First, the best-available depression
GWAS is considerably better powered than the best-available
PTSD GWAS [18, 30]. Second, given that depression and PTSD
share genetic influences, the better-powered depression GWAS
affords better prediction of PTSD than the currently available PTSD
GWAS. As PTSD sample sizes increase, it is reasonable to expect
improvement in predictive performance of PTSD PRSs.
Regarding the biggest potential threat to external validity of

these results—population stratification—extra steps were taken to
ensure that these results were not attributable to confounding of
ancestry and phenotypic status. Sensitivity analyses used more
ancestrally homogeneous subsamples and alternative choices of
PCs to test the robustness of the main findings. Even using these
extra steps (which are infrequently employed in polygenic scoring
studies), the results were nearly identical to the main findings.
Regarding future directions, researchers can examine female- and
male-specific polygenic risk scores for PTSD when power increases
in discovery GWAS for PTSD. This is important given evidence that
there may be sex differences in the genetics of PTSD [30, 31].

 < 1) < 1Depression polygenic score (pT

Intimate Partner Violence (IPV)

Childhood abuse

Age (years)

    <20 vs 20 24 [Reference]

    25 29 vs Reference

    30  34 vs Reference

    >=35 vs Reference
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    >12 vs Reference

Married/living with a partner

Hard to access to basic foods

Employed

Ethnicity Other vs Mestizo

Early pregnancy BMI

    <18.5 vs 18.5 24.9 [Reference]
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    >12 vs Reference

Married/living with a partner

Hard to access to basic foods

Employed

Ethnicity Other vs Mestizo

Early pregnancy BMI

    <18.5 vs 18.5 24.9 [Reference]

    25 29.9 vs Reference

    >=30 vs Reference

Nulliparous parity

Planned pregnancy

Fig. 3 Magnitude of effects of polygenic scores and covariates on psychiatric outcome variables. Betas and 95% confidence intervals are
given with reference to the outcome variables of a Depression symptom score, and b PTSD symptom score.
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In sum, this study provides an important extension to global
genetics research focused on mental health. Clinically, our
participants are females from a low-socioeconomic status com-
munity in Peru. This is a population at higher risk of mental
disorders compared to their peers from high-income countries,
likely due to high exposure to adverse life events. The women in
our sample have been highly exposed to violence both during
childhood and adulthood, and—as in higher-income countries—
these are potent risk factors for psychiatric phenotypes. Consistent
with what has been found in high-income countries, these results
suggest that vulnerability to depression, PTSD, and suicidal
ideation/self-harm is also partially influenced by genetics, and
moreover, that polygenic liability to psychiatric phenotypes is at
least partially shared across populations around the globe. As
research continues in this and other populations from LMICs, the
ability to include genetic information will prove valuable
as scientists build upon the broader body of literature, which
has historically been more focused on European-ancestry popula-
tions from high-income countries. Thus, the sharing of GWAS
results from the PrOMIS samples is an important contribution
because these results can be included in future meta-analyses and
other genetic analyses, which are more tailored to South American
and other Latino and Hispanic populations.

FUNDING AND DISCLOSURE
LED and HS have been funded by startup funds from Stanford and
a pilot grant to LED from the Stanford Center for Clinical and
Translation Research and Education (UL1 TR001085, PI Greenberg).
LED has also been funded by Cohen Veterans Bioscience (CVB),
and she is part of the CVB Working Group for PTSD Adaptive
Platform Trial. BG has been funded by the NIH (R01-HD-059835, PI
Williams) and CVB. HH has been funded by the NIH (NIH
K01DK114379 and NIH R21AI139012), the Zhengxu and Ying He
Foundation, and the Stanley Center for Psychiatric Research. MBR
received funds from WPA Congress Mexico City 2018, Guayaquil
CEPAM 2019, Asunción X CONGRESO LATINOAMERICANO DE LA
FLAPB 2018, Guayaquil 2019 (Bago), and Lancet Psychiatry,
London (commission on Violence against women) 2019. SS
declares no potential conflict of interest.

ACKNOWLEDGEMENTS
The authors are indebted to the participants of the PrOMIS study for their
cooperation. They are also grateful to the dedicated staff members of Asociacion Civil
Proyectos en Salud (PROESA), Peru and Instituto Especializado Maternao Perinatal,
Peru, for their expert technical assistance with this research. Some of the computing
for this project was performed on the Sherlock cluster. We would like to thank
Stanford University and the Stanford Research Computing Center for providing
computational resources and support that contributed to these research results.

AUTHOR CONTRIBUTIONS
LED, BG, HS conceived of the investigation and developed the analysis plan. MBR, SS,
BG recruited and communicated with participants, and collected and cleaned the
clinical data. HS conducted the analyses. HS and LED did the literature review for the
paper. HS, LED, BG, and HH drafted the manuscript, and all authors contributed and
edited the final manuscript.

ADDITIONAL INFORMATION
Supplementary Information accompanies this paper at (https://doi.org/10.1038/
s41386-020-0603-5).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. Wray NR, Lee SH, Mehta D, Vinkhuyzen AAE, Dudbridge F, Middeldorp CM.

Research review: polygenic methods and their application to psychiatric traits. J
Child Psychol Psychiatry. 2014;55:1068–87.

2. Wray NR, Kemper KE, Hayes BJ, Goddard ME, Visscher PM. Complex trait pre-
diction from genome data: contrasting EBV in livestock to PRS in humans:
genomic prediction. Genetics. 2019;211:1131–41.

3. Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to dis-
ease from genome-wide association studies. Genome Res. 2007;17:1520–8.

4. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, et al.
Common polygenic variation contributes to risk of schizophrenia and bipolar
disorder. Nature. 2009;460:748–52.

5. Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al.
Publisher correction: common schizophrenia alleles are enriched in mutation-
intolerant genes and in regions under strong background selection. Nat Genet.
2019;51:1193.

6. Scutari M, Mackay I, Balding D. Using genetic distance to infer the accuracy of
genomic prediction. PLoS Genet. 2016;12:e1006288.

7. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of
current polygenic risk scores may exacerbate health disparities. Nat Genet.
2019;51:584–91.

8. Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, et al. Analysis of
polygenic risk score usage and performance in diverse human populations. Nat
Commun. 2019;10:3328.

9. Borba CPC, Gelaye B, Zayas L, Ulloa M, Lavelle J, Mollica RF, et al. Making strides
towards better mental health care in Peru: results from a primary care mental
health training. Int J Clin Psychiatry Ment Health. 2015;3:9–19.

10. Sanchez SE, Pineda O, Chaves DZ, Zhong Q-Y, Gelaye B, Simon GE. et al.
Childhood physical and sexual abuse experiences associated with post-
traumatic stress disorder among pregnant women. Ann Epidemiol. 2017;
27:716–.723.e1.

11. Gelaye B, Zhong Q-Y, Basu A, Levey EJ, Rondon MB, Sanchez S, et al. Trauma and
traumatic stress in a sample of pregnant women. Psychiatry Res.
2017;257:506–13.

12. Barrios YV, Sanchez SE, Nicolaidis C, Garcia PJ, Gelaye B, Zhong Q, et al. Childhood
abuse and early menarche among Peruvian women. J Adolesc Health Publ Soc
Adolesc Med. 2015;56:197–202.

13. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression
severity measure. J Gen Intern Med. 2001;16:606–13.

14. Spitzer RL, Kroenke K, Williams JB. Validation and utility of a self-report version of
PRIME-MD: the PHQ primary care study. Primary Care Evaluation of Mental Dis-
orders. Patient Health Questionnaire. JAMA. 1999;282:1737–44.

15. Gelaye B, Zheng Y, Medina-Mora ME, Rondon MB, Sánchez SE, Williams MA.
Validity of the posttraumatic stress disorders (PTSD) checklist in pregnant
women. BMC Psychiatry. 2017;17:179.

16. Wilkins KC, Lang AJ, Norman SB. Synthesis of the psychometric properties of the
PTSD checklist (PCL) military, civilian, and specific versions. Depress Anxiety.
2011;28:596–606.

17. Zhong Q-Y, Bizu G, Rondon MB, Sánchez SE, Simon GE, Henderson DC, et al.
Using the Patient Health Questionnaire (PHQ-9) and the Edinburgh Postnatal
Depression Scale (EPDS) to assess suicidal ideation among pregnant women in
Lima, Peru. Arch Women’s Ment Health. 2015;18:783–92.

18. Nievergelt CM, Maihofer AX, Klengel T, Atkinson EG, Chen C-Y, Choi KW, et al.
International meta-analysis of PTSD genome-wide association studies identifies
sex- and ancestry-specific genetic risk loci. Nat Commun. 2019;10:4558.

19. 1000 Genomes Project Consortium Auton A, Brooks LD, Durbin RM, Garrison EP,
Kang HM, et al. A global reference for human genetic variation. Nature.
2015;526:68–74.

20. Delaneau O, Zagury J-F, Marchini J. Improved whole-chromosome phasing for
disease and population genetic studies. Nat Methods. 2013;10:5–6.

21. Conomos MP, Reiner AP, Weir BS, Thornton TA. Model-free estimation of recent
genetic relatedness. Am J Hum Genet. 2016;98:127–48.

22. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, et al. A map
of human genome variation from population-scale sequencing. Nature.
2010;467:1061–73.

23. Howard DM, Adams MJ, Clarke T-K, Hafferty JD, Gibson J, Shirali M, et al. Genome-
wide meta-analysis of depression identifies 102 independent variants and
highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:
343–52.

24. Development Core Team. R: a language and environment for statistical com-
puting. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-
07-0. 2005. 2005.

25. Hoffmann TJ, Ehret GB, Nandakumar P, Ranatunga D, Schaefer C, Kwok P-Y, et al.
Genome-wide association analyses using electronic health records identify new
loci influencing blood pressure variation. Nat Genet. 2017;49:54–64.

Polygenic prediction and GWAS of depression, PTSD, and suicidal. . .
H Shen et al.

1601

Neuropsychopharmacology (2020) 45:1595 – 1602



26. Levey DF, Polimanti R, Cheng Z, Zhou H, Nuñez YZ, Jain S, et al. Genetic asso-
ciations with suicide attempt severity and genetic overlap with major depression.
Transl Psychiatry. 2019;9:22.

27. Homburger JR, Moreno-Estrada A, Gignoux CR, Nelson D, Sanchez E, Ortiz-Tello P,
et al. Genomic insights into the ancestry and demographic history of South
America. PLoS Genet. 2015;11:e1005602.

28. Luo Y, Suliman S, Asgari S, Amariuta T, Baglaenko Y, Martínez-Bonet M, et al. Early
progression to active tuberculosis is a highly heritable trait driven by 3q23 in
Peruvians. Nat Commun. 2019;10:1–10.

29. Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evi-
dence for prediction: a review. JAMA Psychiatry. 2019. https://doi.org/10.1001/
jamapsychiatry.2019.3671.

30. Duncan LE, Ratanatharathorn A, Aiello AE, Almli LM, Amstadter AB,
Ashley-Koch AE, et al. Largest GWAS of PTSD (N=20 070) yields genetic overlap
with schizophrenia and sex differences in heritability. Mol Psychiatry.
2018;23:666–73.

31. Duncan LE, Cooper BN, Shen H. Robust findings from 25 years of PTSD genetics
research. Curr Psychiatry Rep. 2018;20:115.

Polygenic prediction and GWAS of depression, PTSD, and suicidal. . .
H Shen et al.

1602

Neuropsychopharmacology (2020) 45:1595 – 1602

https://doi.org/10.1001/jamapsychiatry.2019.3671
https://doi.org/10.1001/jamapsychiatry.2019.3671

	Polygenic prediction and GWAS of depression, PTSD, and�suicidal ideation/self-harm in a Peruvian cohort
	Introduction
	Materials and methods
	Study population
	Depressive symptoms
	PTSD assessment
	Suicidal ideation and self-harm
	Clinical, demographic, and environmental covariates
	GWAS: quality control, imputation, and GWAS methods
	Construction and analysis of PRSs
	Multiple testing correction
	Sensitivity analyses

	Results
	Participant characteristics
	Ancestry assessment, plus matching of cases and controls on ancestry indicators
	PRS predictions and comparison to effect sizes for covariates
	Sensitivity analyses
	GWAS results

	Discussion
	Funding and disclosure
	Acknowledgements
	Author contributions
	ADDITIONAL INFORMATION
	References




