Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Medial orbitofrontal cortex dopamine D1/D2 receptors differentially modulate distinct forms of probabilistic decision-making


Efficient decision-making involves weighing the costs and benefits associated with different actions and outcomes to maximize long-term utility. The medial orbitofrontal cortex (mOFC) has been implicated in guiding choice in situations involving reward uncertainty, as inactivation in rats alters choice involving probabilistic rewards. The mOFC receives considerable dopaminergic input, yet how dopamine (DA) modulates mOFC function has been virtually unexplored. Here, we assessed how mOFC D1 and D2 receptors modulate two forms of reward seeking mediated by this region, probabilistic reversal learning and probabilistic discounting. Separate groups of well-trained rats received intra-mOFC microinfusions of selective D1 or D2 antagonists or agonists prior to task performance. mOFC D1 and D2 blockade had opposing effects on performance during probabilistic reversal learning and probabilistic discounting. D1 blockade impaired, while D2 blockade increased the number of reversals completed, both mediated by changes in errors and negative feedback sensitivity apparent during the initial discrimination of the task, which suggests changes in probabilistic reinforcement learning rather than flexibility. Similarly, D1 blockade reduced, while D2 blockade increased preference for larger/risky rewards. Excess D1 stimulation had no effect on either task, while excessive D2 stimulation impaired probabilistic reversal performance, and reduced both profitable risky choice and overall task engagement. These findings highlight a previously uncharacterized role for mOFC DA, showing that D1 and D2 receptors play dissociable and opposing roles in different forms of reward-related action selection. Elucidating how DA biases behavior in these situations will expand our understanding of the mechanisms regulating optimal and aberrant decision-making.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Task procedures and histology.
Fig. 2: Blockade of D1 vs D2 receptors within mOFC differentially alters probabilistic reversal learning.
Fig. 3: Effects of stimulation of mOFC D1 and D2 receptors on probabilistic reversal performance.
Fig. 4: Blockade of D1 and D2 receptors within the mOFC differentially impairs probabilistic discounting.
Fig. 5: Effects of DA agonist  in the mOFC on probabilistic discounting and reward magnitude discrimination.


  1. 1.

    Izquierdo A. Functional heterogeneity within rat orbitofrontal cortex in reward learning and decision making. J Neurosci. 2017;37:10529.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Carmichael ST, Price JL. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol. 1996;371:179–207.

    CAS  PubMed  Google Scholar 

  3. 3.

    Ongür D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10:206–19.

    PubMed  Google Scholar 

  4. 4.

    Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ, Groenewegen HJ, Haber SN. Circuit-based corticostriatal homologies between rat and primate. Biol Psychiatry. 2016;80:509–21.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Hoover WB, Vertes RP. Projections of the medial orbital and ventral orbital cortex in the rat. J Comp Neurol. 2011;519:3766–801.

    PubMed  Google Scholar 

  6. 6.

    Malvaez M, Shieh C, Murphy MD, Greenfield VY, Wassum KM. Distinct cortical–amygdala projections drive reward value encoding and retrieval. Nat Neurosci. 2019;22:762–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Dalton GL, Wang NY, Phillips AG, Floresco SB. Multifaceted contributions by different regions of the orbitofrontal and medial prefrontal cortex to probabilistic reversal learning. J Neurosci. 2016;36:1996–2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bradfield LA, Dezfouli A, Van Holstein M, Chieng B, Balleine BW. Medial orbitofrontal cortex mediates outcome retrieval in partially observable task situations. Neuron. 2015;88:1268–80.

    CAS  PubMed  Google Scholar 

  9. 9.

    Stopper CM, Green EB, Floresco SB. Selective involvement by the medial orbitofrontal cortex in biasing risky, but not impulsive, choice. Cereb Cortex. 2014;24:154–62.

    PubMed  Google Scholar 

  10. 10.

    Balleine BW, Leung BK, Ostlund SB. The orbitofrontal cortex, predicted value, and choice. Ann N Y Acad Sci. 2011;1239:43–50.

    PubMed  Google Scholar 

  11. 11.

    Noonan MP, Kolling N, Walton ME, Rushworth MFS. Re-evaluating the role of the orbitofrontal cortex in reward and reinforcement. Eur J Neurosci. 2012;35:997–1010.

    CAS  PubMed  Google Scholar 

  12. 12.

    Gourley SL, Zimmermann KS, Allen AG, Taylor JR. The media orbitofrontal cortex regulates sensit outcome value. J Neurosci. 2016;36:4600–13.

  13. 13.

    Sharpe MJ, Wikenheiser AM, Niv Y, Schoenbaum G. The state of the orbitofrontal cortex. Neuron. 2015;88:1075–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Dalton GL, Phillips AG, Floresco SB. Preferential involvement by nucleus accumbens shell in mediating probabilistic learning and reversal shifts. J Neurosci. 2014;34:4618–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hall-McMaster S, Millar J, Ruan M, Ward RD. Medial orbitofrontal cortex modulates associative learning between environmental cues and reward probability. Behav Neurosci. 2016;131:1–10.

    PubMed  Google Scholar 

  16. 16.

    Clark L, Bechara A, Damasio H, Aitken MRF, Sahakian BJ, Robbins TW. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain. 2008;131:1311–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hervig ME, Fiddian L, Piilgaard L, Bo T, Knudsen C, Olesen SF, et al. Dissociable and paradoxical roles of rat medial and lateral orbitofrontal cortex in visual serial reversal learning. Cereb Cortex. 2020;30:1016–29.

    CAS  PubMed  Google Scholar 

  18. 18.

    Floresco SB, Magyar O, Ghods-Sharifi S, Vexelman C, Tse MTL. Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology. 2006;31:297–309.

    CAS  PubMed  Google Scholar 

  19. 19.

    Seamans JK, Floresco SB, Phillips aG. D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci. 1998;18:1613–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Jenni NL, Larkin JD, Floresco SB. Prefrontal dopamine D1 and D2 receptors regulate dissociable aspects of risk/reward decision-making via distinct ventral striatal and amygdalar circuits. J Neurosci. 2017;37:6200–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    St. Onge JR, Stopper CM, Zahm DS, Floresco SB. Separate prefrontal-subcortical circuits mediate different components of risk-based decision making. J Neurosci. 2012;32:2886–99.

    Google Scholar 

  22. 22.

    Verharen JPH, Adan RAH, Vanderschuren LJMJ. Differential contributions of striatal dopamine D1 and D2 receptors to component processes of value-based decision making. Neuropsychopharmacology. 2019;44:2195–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Alsiö J, Phillips BU, Sala-Bayo J, Nilsson SRO, Calafat-Pla TC, Rizwand A, et al. Dopamine D2-like receptor stimulation blocks negative feedback in visual and spatial reversal learning in the rat: behavioural and computational evidence. Psychopharmacology. 2019;236:2307–23.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Oades RD, Halliday GM. Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res Rev. 1987;12:117–65.

    Google Scholar 

  25. 25.

    Tomm RJ, Tse MT, Tobiansky DJ, Schweitzer HR, Soma KK, Floresco SB. Effects of aging on executive functioning and mesocorticolimbic dopamine markers in male Fischer 344 × brown Norway rats. Neurobiol Aging. 2018;72:134–46.

    CAS  PubMed  Google Scholar 

  26. 26.

    Cosme CV, Gutman AL, Worth WR, Lalumiere RT. D1, but not D2, receptor blockade within the infralimbic and medial orbitofrontal cortex impairs cocaine seeking in a region-specific manner. Addict Biol. 2016;23:16–27.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Münster A, Sommer S, Hauber W. Dopamine D1 receptors in the medial orbitofrontal cortex support effort-related responding in rats. Eur Neuropsychopharmacol. 2020;32:136–41.

    PubMed  Google Scholar 

  28. 28.

    Orsini CA, Setlow B. Sex differences in animal models decision making. J Neurosci Res. 2017;269:260–9.

  29. 29.

    Islas-preciado D, Wainwright SR, Sniegocki J, Lieblich SE, Yagi S, Floresco SB, et al. Hormones and behavior risk-based decision making in rats: modulation by sex and amphetamine. Horm Behav. 2020;125:104815.

    CAS  PubMed  Google Scholar 

  30. 30.

    Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A, Dalley JW, et al. Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology. 2010;35:1290–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    St. Onge JR, Floresco SB. Prefrontal cortical contribution to risk-based decision making. Cereb Cortex. 2010;20:1816–28.

    Google Scholar 

  32. 32.

    St. Onge JR, Abhari H, Floresco SB. Dissociable contributions by prefrontal D1 and D2 receptors to risk-based decision making. J Neurosci. 2011;31:8625–33.

    Google Scholar 

  33. 33.

    Chudasama Y, Robbins TW. Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology. 2004;29:1628–36.

    CAS  PubMed  Google Scholar 

  34. 34.

    Verharen JPH, den Ouden HEM, Adan RAH, Vanderschuren LJMJ. Modulation of value-based decision making behavior by subregions of the rat prefrontal cortex. Psychopharmacology. 2020;237:1267–80.

  35. 35.

    Clarke HF, Cardinal RN, Rygula R, Hong YT, Fryer TD, Sawiak SJ, et al. Dopamine alters behavior via changes in reinforcement sensitivity. J Neurosci. 2014;34:7663–76.

  36. 36.

    Noonan MP, Walton ME, Behrens TEJ, Sallet J, Buckley MJ, Rushworth MFS. Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. Proc Natl Acad Sci USA. 2010;107:20547–52.

    CAS  PubMed  Google Scholar 

  37. 37.

    Stopper CM, Khayambashi S, Floresco SB. Receptor-specific modulation of risk-based decision making by nucleus accumbens dopamine. Neuropsychopharmacology. 2013;38:715–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol. 2004;74:1–57.

    CAS  PubMed  Google Scholar 

  39. 39.

    Durstewitz D, Seamans JK. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-O-methyltransferase genotypes and schizophrenia. Biol Psychiatry. 2008;64:739–49.

    CAS  PubMed  Google Scholar 

  40. 40.

    Cools R, D’Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry. 2011;69:e113–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    St. Onge JR, Floresco SB. Dopaminergic modulation of risk-based decision making. Neuropsychopharmacology. 2009;34:681–97.

    Google Scholar 

  42. 42.

    Münster A, Hauber W. Medial orbitofrontal cortex mediates effort-related responding in rats. Cereb Cortex. 2018;28:4379–89.

    PubMed  Google Scholar 

  43. 43.

    Floresco SB. Prefrontal dopamine and behavioral flexibility: Shifting from an ‘inverted-U’ toward a family of functions. Front Neurosci. 2013;7:1–12.

    Google Scholar 

  44. 44.

    Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW. Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci. 2000;20:1208–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Floresco SB, Phillips AG. Delay-dependent modulation of memory retrieval by infusion of a dopamine D1 agonist into the rat medial prefrontal cortex. Behav Neurosci. 2001;115:934–9.

    CAS  PubMed  Google Scholar 

  46. 46.

    Winstanley CA, Zeeb FD, Bedard A, Fu K, Lai B, Steele C, et al. Dopaminergic modulation of the orbitofrontal cortex affects attention, motivation and impulsive responding in rats performing the five-choice serial reaction time task. Behav Brain Res. 2010;210:263–72.

    CAS  PubMed  Google Scholar 

  47. 47.

    Mladinov M, Sedmak G, Fuller HR, Babić Leko M, Mayer D, Kirincich J, et al. Gene expression profiling of the dorsolateral and orbital prefrontal cortex in schizophrenia. Transl Neurosci. 2016;7:139–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Moorman DE. The role of the orbitofrontal cortex in alcohol use, abuse, and dependence. Prog Neuro-Psychopharmacology. Biol Psychiatry. 2018;87:85–107.

    Google Scholar 

  49. 49.

    Van EimerenT, Ballanger B, Pellecchia G, Janis MM, Lang AE, Strafella AP. Dopamine agonists diminish value sensitivity of the orbitofrontal cortex: a trigger for pathological gambling in Parkinson’s disease? Neuropsychopharmacology. 2009;34:2758–66.

    Google Scholar 

  50. 50.

    Robbins TW, Cools R. Cognitive deficits in Parkinson’s disease: a cognitive neuroscience perspective. Mov Disord. 2014;29:597–607.

    PubMed  Google Scholar 

  51. 51.

    Tanabe J, Tregellas JR, Dalwani M, Thompson L, Owens E, Crowley T, et al. Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals. Biol Psychiatry. 2009;65:160–4.

    PubMed  Google Scholar 

  52. 52.

    Volkow ND, Chang L, Wang G-J, Fowler JS, Ding Y-S, Sedler M, et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry. 2001;158:2015–21.

    CAS  PubMed  Google Scholar 

Download references

Author information




NLJ and YTL acquired the data. NLJ and SBF designed the study, analyzed the data, and wrote the manuscript.

Corresponding author

Correspondence to Stan B. Floresco.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jenni, N.L., Li, Y.T. & Floresco, S.B. Medial orbitofrontal cortex dopamine D1/D2 receptors differentially modulate distinct forms of probabilistic decision-making. Neuropsychopharmacol. 46, 1240–1251 (2021).

Download citation


Quick links