Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prelimbic cortical projections to rostromedial tegmental nucleus play a suppressive role in cue-induced reinstatement of cocaine seeking

Subjects

Abstract

The prelimbic (PL) region of prefrontal cortex has been implicated in both driving and suppressing cocaine seeking in animal models of addiction. We hypothesized that these opposing roles for PL may be supported by distinct efferent projections. While PL projections to nucleus accumbens core have been shown to be involved in driving reinstatement of cocaine seeking, PL projections to the rostromedial tegmental nucleus (RMTg) may instead suppress reinstatement of cocaine seeking, due to the role of RMTg in behavioral inhibition. Here, we used a functional disconnection approach to temporarily disrupt the PL-RMTg pathway during cue- or cocaine-induced reinstatement. Male Sprague Dawley rats self-administered cocaine during daily 2-h sessions for ≥10 days and then underwent extinction training. Reinstatement of extinguished cocaine seeking was elicited by cocaine-associated cues or cocaine prime. Prior to reinstatement, rats received microinjections of the GABA agonists baclofen/muscimol (1/0.1 mM) into unilateral PL and the AMPA receptor antagonist NBQX (1 mM) into contralateral or ipsilateral RMTg. Functional disconnection of PL-RMTg via contralateral inactivation markedly increased cue-induced reinstatement, but did not increase cocaine-induced reinstatement or drive reinstatement of extinguished cocaine seeking in the absence of cues or cocaine. Enhanced cue-induced reinstatement was also observed with ipsilateral inactivation of PL and RMTg, but not with unilateral inactivation of PL or RMTg alone, indicating that both ipsilateral and contralateral projections from PL to RMTg have an inhibitory influence on behavior. These data further support a suppressive role for PL in cocaine seeking by implicating PL efferent projections to RMTg in inhibiting cue-induced reinstatement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Retrogradely-labeled PL neurons projecting to RMTg.
Fig. 2: Microinjection cannulae placements for PL and RMTg.
Fig. 3: Effects of PL-RMTg functional disconnection on cue-induced reinstatement.
Fig. 4: Effects of PL-RMTg functional disconnection on cocaine-induced reinstatement and extinction responding.

References

  1. 1.

    McLaughlin J, See RE. Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology. 2003;168:57–65.

    CAS  PubMed  Google Scholar 

  2. 2.

    Capriles N, Rodaros D, Sorge RE, Stewart J. A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology. 2003;168:66–74.

    CAS  PubMed  Google Scholar 

  3. 3.

    McFarland K, Davidge SB, Lapish CC, Kalivas PW. Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci. 2004;24:1551–1560.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    McFarland K, Kalivas PW. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci. 2001;21:8655–8663.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Moorman DE, James MH, McGlinchey EM, Aston-Jones G. Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res. 2015;1628:130–146.

    CAS  PubMed  Google Scholar 

  6. 6.

    Chen BT, Yau H-J, Hatch C, Kusumoto-Yoshida I, Cho SL, Hopf FW, et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature. 2013;496:359–362.

    CAS  PubMed  Google Scholar 

  7. 7.

    Mihindou C, Guillem K, Navailles S, Vouillac C, Ahmed SH. Discriminative inhibitory control of cocaine seeking involves the prelimbic prefrontal cortex. Biol Psychiatry. 2013;73:271–279.

    CAS  PubMed  Google Scholar 

  8. 8.

    Stefanik MT, Moussawi K, Kupchik YM, Smith KC, Miller RL, Huff ML, et al. Optogenetic inhibition of cocaine seeking in rats. Addict Biol. 2013;18:50–53.

    CAS  PubMed  Google Scholar 

  9. 9.

    Stefanik MT, Kupchik YM, Kalivas PW. Optogenetic inhibition of cortical afferents in the nucleus accumbens simultaneously prevents cue-induced transient synaptic potentiation and cocaine-seeking behavior. Brain Struct Funct. 2016;221:1681–1689.

    CAS  PubMed  Google Scholar 

  10. 10.

    McGlinchey EM, James MH, Mahler SV, Pantazis C, Aston-Jones G. Prelimbic to accumbens core pathway is recruited in a dopamine-dependent manner to drive cued reinstatement of cocaine Seeking. J Neurosci. 2016;36:8700–8711.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    McFarland K, Lapish CC, Kalivas PW. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci. 2003;23:3531–3537.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Jhou TC, Geisler S, Marinelli M, Degarmo BA, Zahm DS. The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol. 2009;513:566–596.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron. 2009;61:786–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier M-J, Barrot M. Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol. 2009;513:597–621.

    PubMed  Google Scholar 

  15. 15.

    Balcita-Pedicino JJ, Omelchenko N, Bell R, Sesack SR. The inhibitory influence of the lateral habenula on midbrain dopamine cells: ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. J Comp Neurol. 2011;519:1143–1164.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Barrot M, Sesack SR, Georges F, Pistis M, Hong S, Jhou TC. Braking dopamine systems: a new GABA master structure for mesolimbic and nigrostriatal functions. J Neurosci. 2012;32:14094–14101.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Bourdy R, Sánchez-Catalán M-J, Kaufling J, Balcita-Pedicino JJ, Freund-Mercier M-J, Veinante P, et al. Control of the nigrostriatal dopamine neuron activity and motor function by the tail of the ventral tegmental area. Neuropsychopharmacology. 2014;39:2788–2798.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Yetnikoff L, Cheng AY, Lavezzi HN, Parsley KP, Zahm DS. Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. J Comp Neurol. 2015;523:2426–2456.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Fu R, Zuo W, Gregor D, Li J, Grech D, Ye J-H. Pharmacological manipulation of the rostromedial tegmental nucleus changes voluntary and operant ethanol self-administration in rats. Alcohol Clin Exp Res. 2016;40:572–582.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Huff ML, LaLumiere RT. The rostromedial tegmental nucleus modulates behavioral inhibition following cocaine self-administration in rats. Neuropsychopharmacology. 2015;40:861–873.

    CAS  PubMed  Google Scholar 

  21. 21.

    Li H, Vento PJ, Parrilla-Carrero J, Pullmann D, Chao YS, Eid M. et al. Three rostromedial tegmental afferents drive triply dissociable aspects of punishment learning and aversive valence encoding. Neuron. 2019;104:987–999.e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Caggiula AR, Donny EC, White AR, Chaudhri N, Booth S, Gharib MA, et al. Environmental stimuli promote the acquisition of nicotine self-administration in rats. Psychopharmacology. 2002;163:230–237.

    CAS  PubMed  Google Scholar 

  23. 23.

    Bastle RM, Kufahl PR, Turk MN, Weber SM, Pentkowski NS, Thiel KJ, et al. Novel cues reinstate cocaine-seeking behavior and induce Fos protein expression as effectively as conditioned cues. Neuropsychopharmacology. 2012;37:2109–2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Deroche-Gamonet V, Piat F, Le Moal M, Piazza PV. Influence of cue-conditioning on acquisition, maintenance and relapse of cocaine intravenous self-administration. Eur J Neurosci. 2002;15:1363–1370.

    PubMed  Google Scholar 

  25. 25.

    Fuchs RA, Evans KA, Parker MC, See RE. Differential involvement of the core and shell subregions of the nucleus accumbens in conditioned cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology. 2004;176:459–465.

    CAS  PubMed  Google Scholar 

  26. 26.

    Chang Y, Du C, Han L, Lv S, Zhang J, Bian G, et al. Enhanced AMPA receptor-mediated excitatory transmission in the rodent rostromedial tegmental nucleus following lesion of the nigrostriatal pathway. Neurochem Int. 2019;122:85–93.

    CAS  PubMed  Google Scholar 

  27. 27.

    Nolan BC, Saliba M, Tanchez C, Ranaldi R. Behavioral activating effects of selective AMPA receptor antagonism in the ventral tegmental area. Pharmacology. 2010;86:336–343.

    CAS  PubMed  Google Scholar 

  28. 28.

    Corbit LH, Nie H, Janak PH. Habitual responding for alcohol depends upon both AMPA and D2 receptor signaling in the dorsolateral striatum. Front Behav Neurosci. 2014;8:301.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 7th ed. Academic Press; 2013.

  30. 30.

    Smith RJ, Vento PJ, Chao YS, Good CH, Jhou TC. Gene expression and neurochemical characterization of the rostromedial tegmental nucleus (RMTg) in rats and mice. Brain Struct Funct. 2019;224:219–238.

    CAS  PubMed  Google Scholar 

  31. 31.

    James MH, McGlinchey EM, Vattikonda A, Mahler SV, Aston-Jones G. Cued reinstatement of cocaine but not sucrose seeking is dependent on dopamine signaling in prelimbic cortex and is associated with recruitment of prelimbic neurons that project to contralateral nucleus accumbens core. Int J Neuropsychopharmacol. 2018;21:89–94.

    CAS  PubMed  Google Scholar 

  32. 32.

    Gourley SL, Taylor JR. Going and stopping: dichotomies in behavioral control by the prefrontal cortex. Nat Neurosci. 2016;19:656–664.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Peters J, Kalivas PW, Quirk GJ. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem. 2009;16:279–288.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim S-Y, et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature. 2012;492:428–432.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Fuchs RA, Eaddy JL, Su Z-I, Bell GH. Interactions of the basolateral amygdala with the dorsal hippocampus and dorsomedial prefrontal cortex regulate drug context-induced reinstatement of cocaine-seeking in rats. Eur J Neurosci. 2007;26:487–498.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Peters J, LaLumiere RT, Kalivas PW. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci. 2008;28:6046–6053.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Bossert JM, Stern AL, Theberge FRM, Marchant NJ, Wang H-L, Morales M, et al. Role of projections from ventral medial prefrontal cortex to nucleus accumbens shell in context-induced reinstatement of heroin seeking. J Neurosci. 2012;32:4982–4991.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Hart G, Bradfield LA, Fok SY, Chieng B, Balleine BW. The bilateral prefronto-striatal pathway is necessary for learning new goal-directed actions. Curr Biol. 2018;28:2218.e7.

  39. 39.

    Mahler SV, Aston-Jones GS. Fos activation of selective afferents to ventral tegmental area during cue-induced reinstatement of cocaine seeking in rats. J Neurosci. 2012;32:13309–13326.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Weiss F, Maldonado-Vlaar CS, Parsons LH, Kerr TM, Smith DL, Ben-Shahar O. Control of cocaine-seeking behavior by drug-associated stimuli in rats: effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc Natl Acad Sci USA. 2000;97:4321–4326.

    CAS  PubMed  Google Scholar 

  41. 41.

    Nomikos GG, Damsma G, Wenkstern D, Fibiger HC. In vivo characterization of locally applied dopamine uptake inhibitors by striatal microdialysis. Synapse. 1990;6:106–112.

    CAS  PubMed  Google Scholar 

  42. 42.

    You Z-B, Wang B, Zitzman D, Azari S, Wise RA. A role for conditioned ventral tegmental glutamate release in cocaine seeking. J Neurosci. 2007;27:10546–10555.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Wise RA, Wang B, You Z-B. Cocaine serves as a peripheral interoceptive conditioned stimulus for central glutamate and dopamine release. PLoS ONE. 2008;3:e2846.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Sombers LA, Beyene M, Carelli RM, Wightman RM. Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J Neurosci. 2009;29:1735–1742.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Kufahl PR, Zavala AR, Singh A, Thiel KJ, Dickey ED, Joyce JN, et al. c-Fos expression associated with reinstatement of cocaine-seeking behavior by response-contingent conditioned cues. Synapse. 2009;63:823–835.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Mahler SV, Smith RJ, Aston-Jones G. Interactions between VTA orexin and glutamate in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology. 2013;226:687–698.

    CAS  PubMed  Google Scholar 

  47. 47.

    Lecca S, Melis M, Luchicchi A, Muntoni AL, Pistis M. Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology. 2012;37:1164–1176.

    CAS  PubMed  Google Scholar 

  48. 48.

    Vento PJ, Burnham NW, Rowley CS, Jhou TC. Learning from one’s mistakes: a dual role for the rostromedial tegmental nucleus in the encoding and expression of punished reward seeking. Biol Psychiatry. 2017;81:1041–1049.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Lavezzi HN, Parsley KP, Zahm DS. Modulation of locomotor activation by the rostromedial tegmental nucleus. Neuropsychopharmacology. 2015;40:676–687.

    CAS  PubMed  Google Scholar 

  50. 50.

    Hu M, Crombag HS, Robinson TE, Becker JB. Biological basis of sex differences in the propensity to self-administer cocaine. Neuropsychopharmacology. 2004;29:81–85.

    CAS  Google Scholar 

  51. 51.

    Zhou L, Pruitt C, Shin CB, Garcia AD, Zavala AR, See RE. Fos expression induced by cocaine-conditioned cues in male and female rats. Brain Struct Funct. 2014;219:1831–1840.

    CAS  PubMed  Google Scholar 

  52. 52.

    Becker JB. Sex differences in addiction. Dialogues Clin Neurosci. 2016;18:395–402.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kokane SS, Perrotti LI. Sex differences and the role of estradiol in mesolimbic reward circuits and vulnerability to cocaine and opiate addiction. Front Behav Neurosci. 2020;14:74.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Lillian Laiks for help with conducting pilot experiments for this study. This work was supported by National Institutes of Health grant R21 DA037744 (RJS).

Author information

Affiliations

Authors

Contributions

RJS and TCJ conceived the study. RJS and AMC designed and analyzed experiments, and wrote the manuscript, with TCJ contributing revisions. AMC, HFS, and THK conducted the experiments. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Rachel J. Smith.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cruz, A.M., Spencer, H.F., Kim, T.H. et al. Prelimbic cortical projections to rostromedial tegmental nucleus play a suppressive role in cue-induced reinstatement of cocaine seeking. Neuropsychopharmacol. (2020). https://doi.org/10.1038/s41386-020-00909-z

Download citation

Further reading

Search

Quick links