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Pituitary adenylate cyclase-activating polypeptide (PACAP)
modulates dependence-induced alcohol drinking and anxiety-
like behavior in male rats
Antonio Ferragud 1, Clara Velazquez-Sanchez1, Margaret A. Minnig1, Valentina Sabino1 and Pietro Cottone1

Alcohol use disorder (AUD) is a devastating illness defined by periods of heavy drinking and withdrawal, often leading to a chronic
relapsing course. Initially, alcohol is consumed for its positive reinforcing effects, but later stages of AUD are characterized by
drinking to alleviate withdrawal-induced negative emotional states. Brain stress response systems in the extended amygdala are
recruited by excessive alcohol intake, sensitized by repeated withdrawal, and contribute to the development of addiction. In this
study, we investigated one such brain stress response system, pituitary adenylate cyclase-activating polypeptide (PACAP), and its
cognate receptor, PAC1R, in alcohol withdrawal-induced behaviors. During acute withdrawal, rats exposed to chronic intermittent
ethanol vapor (ethanol-dependent) displayed a significant increase in PACAP levels in the bed nucleus of the stria terminalis (BNST),
a brain area within the extended amygdala critically involved in both stress and withdrawal. No changes in PACAP levels were
observed in the central nucleus of the amygdala. Site-specific microinfusion of the PAC1R antagonist PACAP(6–38) into the BNST
dose-dependently blocked excessive alcohol intake in ethanol-dependent rats without affecting water intake overall or basal
ethanol intake in control, nondependent rats. Intra-BNST PACAP(6–38) also reversed ethanol withdrawal-induced anxiety-like
behavior in ethanol-dependent rats, but did not affect this measure in control rats. Our findings show that chronic intermittent
exposure to ethanol recruits the PACAP/PAC1R system of the BNST and that these neuroadaptations mediate the heightened
alcohol drinking and anxiety-like behavior observed during withdrawal, suggesting that this system represents a major brain stress
element responsible for the negative reinforcement associated with the “dark side” of alcohol addiction.
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INTRODUCTION
Alcohol use disorder (AUD) affects 76 million people worldwide
and is characterized by uncontrolled heavy drinking and a chronic
relapsing course. While alcohol is initially consumed for its positive
reinforcing effects, the later stages of AUD are characterized by
drinking to alleviate the withdrawal-induced “hyperkatifeia” or
negative emotional state, via a negative reinforcement mechan-
ism [1–4]. Disrupting the cycle of excessive drinking due to
negative affective states during withdrawal may, therefore,
represent a promising strategy in the treatment of AUD [3, 5].
Chronic alcohol exposure and withdrawal have been shown to

alter the function and plasticity of neurons of the bed nucleus of
the stria terminalis (BNST), a brain structure critically involved in
the behavioral response to sustained stress as well as in the
negative affective state associated with chronic alcohol use [6–12];
the BNST has also been shown to play a role in the sensitization of
ethanol withdrawal-induced anxiety-like behavior [13]. Specific
brain stress systems are recruited in the BNST by excessive alcohol
intake and contribute to the development of addiction via the
establishment of negative reinforcement during withdrawal
[3, 14]; these include corticotropin-releasing factor (CRF), norepi-
nephrine, and serotonin, among others [15–19].

Pituitary adenylate cyclase-activating polypeptide (PACAP) and its
cognate receptor (PAC1R) have been proposed to be key mediators
of the stress response [20–23], and are heavily expressed in the
dorsolateral BNST in both humans and rodents [24, 25]. Dense
PACAP-immunoreactive fibers are found in both the dorsolateral
BNST (oval nucleus) and in the capsular and lateral parts of the
central amygdala (CeA) subdivision, generally believed to be of
mostly nonlocal origination [26–29]. PACAP administration into
structures of the extended amygdala has been shown to induce a
stress-response and to activate CRF systems [21, 28, 30, 31]. In
addition, acute and chronic stressors increase PACAP expression
within the BNST [31, 32]. Notably, the response to previous stress
exposure, as measured physiologically and behaviorally, is also
attenuated by intra-BNST PAC1R antagonism [31, 33].
In humans, a single nucleotide polymorphism of the PACAP

encoding gene has been related to enhanced alcohol intake in a
population of European adults [34], while a specific genotype of
the PAC1R was associated with problematic alcohol use in women
[35], suggesting its potential involvement in AUD. The PACAP/
PAC1R system has been linked to the actions of drugs of abuse and
alcohol [36–38]. Other studies have shown that global PACAP
knockout mice display higher sensitivity to ethanol-induced ataxia
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[39], higher preference for ethanol, and reduced ethanol-induced
hypothermic and hypnotic effects [40, 41]. Intermittent ethanol
exposure has been shown to increase PACAP in the paraventricular
nucleus of the thalamus and acute ethanol exposure to increase
PAC1R mRNA expression in cell lines [42, 43]. Recently, the PACAP/
PAC1R system of the BNST has also been shown to regulate stress-
induced reinstatement of cocaine seeking behavior [44].
Given the literature suggesting a possible role of PACAP in

human AUD, the observation that PAC1R antagonists have
anxiolytic-like properties, and the fact that PACAP and PAC1Rs
are highly expressed in the BNST, we investigated whether the
PACAP/PAC1R system of the BNST plays a role in the increased
alcohol intake and anxiety-like behavior associated with ethanol
dependence. Our hypothesis was that the PACAP/PAC1R system
of the BNST represents a major brain stress element responsible
for the negative reinforcement associated with alcohol withdrawal
and the “dark side” of addiction. We first assessed PACAP
immunoreactivity in the BNST during acute ethanol withdrawal
in rats exposed to chronic intermittent ethanol (CIE) vapor, a well-
established model of ethanol dependence. We then utilized site-
specific microinfusions of the PAC1R antagonist PACAP(6–38) in
the BNST to test the functional relevance of the molecular
changes in withdrawal-induced alcohol intake and anxiety-like
behavior. Our data suggest that the recruitment of the PACAP/
PAC1R system is involved in the transition from limited ethanol
use to ethanol dependence and in the associated negative
emotional state.

MATERIAL AND METHODS
Subjects
Male Wistar rats (total n= 41) weighing 225–250 g upon arrival
(Charles River, Wilmington, MA, USA) were housed in an AAALAC-
approved vivarium on a 12-h light–dark cycle (lights off at 11:00
am), with water and regular rodent corn-based chow (Harlan
Teklad Diet 7012) available ad libitum. Experiments were
conducted during the rats’ dark cycle. Procedures adhered to
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and the Principles of Laboratory Animal Care
and were approved by Boston University Medical Campus
Institutional Animal Care and Use Committee.

Drugs
Ethanol solution (10% w/v) was prepared using 95% ethyl-alcohol
and tap water. PACAP(6–38) was purchased from the American
Peptide Company (Sunnyvale, CA). The peptide was dissolved in
sterile isotonic saline in the presence of 0.1% bovine serum
albumin (Sigma Aldrich, St. Louis, MI). PACAP(6–38) doses were
chosen based on previous reports [45–47] and were administered
30min before the tests.

Apparatus for operant oral ethanol self-administration
The test chambers used for operant oral self-administration (Med
Associates, Inc., St. Albans, VT) were located in sound-attenuating,
ventilated cubicles (66 × 56 × 36 cm). Syringe pumps (Med Associ-
ates, St. Albans, VT) dispensed ethanol or water into two stainless
steel drinking cups mounted 2 cm above the grid floor in the
middle of one side panel. Two retractable levers were located 3.2
cm to either side of the drinking cups. Fluid delivery and operant
responses were controlled by microcomputers.

Self-administration procedure
Rats (n= 20) were subjected first to 1–3 overnight sessions (16 h)
of two-choice operant access to 10% w/v ethanol and water with
chow available ad libitum. Thereafter, they were trained in ethanol
operant intake using daily 30-min sessions under a fixed ratio
schedule (FR1) as previously described [48]. Right lever responses
resulted in the delivery of 0.1 ml of ethanol, while left lever

responses delivered 0.1 ml of water. After baseline stabilization, as
defined by <20% variability across 3 consecutive sessions, rats
were divided into two groups, matched for body weight and
ethanol intake. One group received chronic, intermittent exposure
to ethanol vapor (ethanol-dependent group), while the other
group was exposed to room air (nondependent group or
Controls).

Ethanol vapor exposure procedure
Wistar rats were housed within sealed, clear plastic chambers (La
Jolla Alcohol Research, Inc, CA) into which ethanol vapor was
intermittently introduced to induce dependence, as described
previously [49]. A timer connected to the chambers turned the
ethanol vapor on (8:00 p.m.) and off (10:00 a.m.), for a total of 14 h
of daily ethanol exposure. Tail blood (50 µl) was sampled at vapor
offset for baseline alcohol levels (BALs) determination twice
during the first week and weekly thereafter. After centrifugation,
plasma was assayed for alcohol content using an oxygen-rate
alcohol analyzer (Analox Instruments, Lunenburg, MA). BALs at
plateau were 149.4 ± 12.6 mg/dl. This paradigm has been shown
to induce physical dependence and increase operant ethanol self-
administration during withdrawal [50, 51]. Control rats were kept
under similar conditions but under room air. After 6 weeks of
ethanol vapor exposure, rats resumed operant ethanol self-
administration sessions twice weekly, beginning 8–10 h after the
vapor offset. The first few 30-min sessions allow subjects to
experience the negative reinforcing effects of ethanol during
withdrawal. Once ethanol responding was stable (<20% variability,
see Fig. 2, sessions 1–8), the rats underwent surgery for BNST-
cannula implantation. Vapor (or air) exposure continued through-
out the operant self-administration sessions, such that the rats
were constantly in an “acute” withdrawal state when tested.

Intracranial surgery, microinfusion procedure, and cannula
placement
Intracranial surgeries. The surgical procedures were performed as
previously described [52, 53]. Briefly, stainless steel, guide
cannulas (24 gauge, Plastics One, Roanoke, VA, USA) were lowered
bilaterally 2.0 mm above the BNST (AP −0.3, ML ±3.6, DV −4.9, tilt
angle of 18°). Four stainless steel jeweler’s screws were fastened to
the rat’s skull around the cannula. Dental restorative filled resin
(Henry Schein, Melville, NY, USA) and acrylic cement were applied,
forming a pedestal firmly anchoring the cannula. A stainless steel
dummy stylet (Plastics One) maintained patency of the cannula.
Following a recovery period, rats were again exposed to the
alcohol vapor chambers and alcohol self-administration sessions
resumed.

Microinfusion procedure. For intracranial microinfusions, the
dummy stylet was removed from the guide cannula, and replaced
with a 31-gauge stainless steel injector projecting 2mm beyond
the tip of the guide cannula, which was connected via PE-20
tubing to a Hamilton microsyringe (Hamilton, Reno, NV). Bilateral
microinfusions were performed at a rate of 0.5 μl/2 min and
injectors were left in place for 1 additional minute to prevent
backflow. While this procedure has been extensively validated to
target small brain areas, we do not exclude that the drug may
have diffused to other BNST subdivisions within the dorsal BNST.

Cannula placement. At the conclusion of the experiment,
subjects were anaesthetized (isoflurane, 2–3% in oxygen) and
microinfused with India Ink (0.5 µl/side) to verify cannula
placement. Brains were quickly removed, flash-frozen, and stored
at −80 C. In these brains, there was no evidence of nonspecific
brain damage (gliosis, cavitation) around the cannula tip, except
for the inevitable cannula track. Coronal sections (40 µm) were
obtained using a cryostat, and placements were verified under a
microscope (see Supplementary Fig. 1).
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Ethanol self-administration tests
After surgery, once stable performance was again reached in
ethanol self-administration performance (<20% variation), rats
received PACAP(6–38) (0, 0.1, 0.3, 1.0, and 3.0 µg/rat) microinjec-
tions intra-BNST 30min prior to the test session, using a within-
subject Latin-square design. The rats were allowed to return to
baseline ethanol intake levels between test days.

Light–dark conflict test
One week after completion of the self-administration tests, the
same set of rats (n= 20) was tested in a light–dark conflict test.
The test was performed using a light/dark rectangular box
(50 × 100 × 35 cm) in which the aversive, bright compartment
was illuminated by a 60-lux light. The dark compartment
(50 × 30 × 35 cm) had an opaque cover and ~0 lux of light. The
light and dark compartments were connected by an open
doorway, which allowed subjects to move freely between the
two compartments. On the test day, rats were allowed to
habituate in an ante-room 2 h prior to testing. PACAP(6–38) (0,
3.0 µg/rat) or vehicle were administered 30min before the
light–dark test and order of testing counterbalanced across the
four groups. The test started by placing the rat in the center of the
dark compartment and closing the cover; test lasted 10min. The
box was cleaned with a water-dampened cloth after each subject.
Rat behavior was videotaped using a camera and later scored by a
rater, who was blind to treatments. The percentage of time spent
in the light and dark compartment was calculated for each animal,
in addition to the latency to first exit the dark compartment.

PACAP and PAC1R Immunohistochemistry
Perfusions. A separate cohort of rats (n= 21) was exposed to
either alcohol vapor or room air for 8 consecutive weeks as
described above. Eight to ten hours after vapor offset, rats were
anesthetized with isoflurane and transcardially perfused with
phosphate-buffered saline (PBS) followed by 4% paraformalde-
hyde (PFA). Brains were collected, placed in 4% PFA overnight, and
then stored in 30% sucrose in PBS solution at 4 °C until saturation.
Brains were cut into 30 μm coronal sections using a cryostat and
stored in a cryoprotectant solution at −20 °C until processed for
immunohistochemistry (IHC).

Immunohistochemistry (IHC). Every 6th section (180 μm apart;
bregma) of the rat BNST region (range: +0.12 to −0.48 mm from
bregma) and the CeA region (range: −1.80 to −2.92mm from
bregma) were collected systematically and processed for IHC.
After rinsing, free-floating sections were incubated in 0.3%
hydrogen peroxide TBS solution to quench endogenous perox-
idases, followed by additional rinsing and a blocking step (either
10% or 5% normal goat serum for PACAP and PAC1R, respectively,
in 0.3% Triton X100). Sections were then incubated in either an
anti-PACAP (1:4,000, T-4473, Bachem, Torrance, CA; RRID:
AB_519166) [26, 54–61] or an anti-PAC1R primary antibody
(1:250, sc-30018, Santa Cruz Biotechnology, Dallas, TX; RRID:
AB_2305215) [62–64] in blocking solution for 24 h at 4 °C. Sections
were then rinsed and incubated in a biotinylated anti-rabbit
secondary antibody (1:500, Vector Labs, Burlingame, CA) in
blocking solution for 2 h at room temperature. Sections were
washed and then incubated in an avidin–biotin horseradish
peroxidase solution (Vector Labs, Burlingame, CA) and immunor-
eactivity was visualized using a diaminobenzidine substrate kit
(Vector Labs, Burlingame, CA) according to the manufacturer’s
instructions. Slides were dehydrated using graded alcohol
concentrations and then cover-slipped.

PACAP density measurement. To assess PACAP-immunoreactivity,
bright-field objective pictures of sections containing either the
lateral-dorsal subdivision or oval nucleus of the BNST (STLD) (0.00
to −0.24mm from bregma) and the capsular and lateral

subdivisions of the CeA (CeC-CeL) along the entire bregma range
(see “Results” section for justification) were captured at ×10
magnification under a preset exposure and gain with an Olympus
BX-51 microscope (Center Valley, PA, USA) equipped with a Rotiga
2000R live video camera (QImaging, Surrey, BC, Canada) and a
three-axis MAC6000 XYZ motorized stage (Ludl Electronics,
Hawthorne, NY). Densitometry analysis was then performed using
the ImageJ software (NIH), where images were converted to 8-bit
and adjusted using the auto threshold Triangle algorithm. Internal
capsule and corpus callosum were used as control areas for
nonspecific DAB background for BNST and CeA, respectively. Once
converted, mean density of immunohistochemical signal was
obtained by subtracting the optical density of the nonspecific DAB
background from the region of interest, as previously described
[31]. Experimenters were blind to treatment groups. Three
subjects were excluded in the CeA because of poor staining/
tissue quality.

Quantification of PAC1R-positive cell bodies. PAC1R-positive cells
were quantified using an unbiased stereology approach as
previously described [65]. Briefly, the medial-anterior subdivision
(STMA), the lateral-posterior subdivision (STLP), and the lateral-
dorsal subdivision or oval nucleus (STLD) of the BNST were
outlined virtually on the digitized image of each section using the
optical fractionator workflow module of Stereo Investigator
software (MicroBrightField,Williston, VT). One hemisphere was
randomly chosen for each section; the contours of the areas of
interest were drawn at ×10 using an Olympus PlanApo N ×2
objective with numerical aperture 0.08 and counted using an
Olympus UPlanFL N ×40 objective with numerical aperture 0.75. A
guard zone of 2 mm and a dissector height of 20 mm were used.
Experimenters were blind to treatment groups. Two subjects were
excluded because of poor staining/tissue quality.

Statistical analysis
Data from the IHC studies were analyzed using Student’s t test.
Data from self-administration training was analyzed with a mixed
design ANOVA, with Group as a between-subjects and Day as a
within-subject factor. Data from the alcohol and water intake
studies were analyzed using a two-way mixed design ANOVA with
Group as a between-subjects factor and Dose as a within-subject
factor. Data from the light–dark anxiety test were analyzed using a
two-way ANOVA with Group and Drug Treatment as between-
subjects factors. Pairwise post-hoc comparisons were made using
the Student Newman–Keuls test or a Student’s t test when
comparing two groups only. Significance was set at p < 0.05. The
software/graphic packages used were Statistica 7.0, and
SigmaPlot 11.0.

RESULTS
Chronic intermittent exposure to ethanol vapors increases PACAP
levels in the BNST, but not the CeA
As shown in Fig. 1A–D, ethanol-dependent rats showed higher
levels of PACAP immunoreactivity in the dorsal BNST, compared to
control, nondependent rats, during acute withdrawal (t(19)=
−2.12, p < 0.05). Indeed, chronic ethanol vapor exposure resulted
in a 26% increase in relative PACAP immunoreactivity in the BNST
8–10 h after vapor offset. Across the anterior–posterior axis of the
BNST, the majority of PACAP immunoreactivity was found in the
dorsal part of the lateral subdivision or oval nucleus (STLD), with
faint staining present in the lateral juxtacapsular (STLJ) and intra-
amygdaloid subdivisions (STIA) [66]. The IHC staining pattern
suggests that PACAP immunoreactivity was limited to incoming
fibers, with very few local cell bodies labeled. No increase in PACAP
immunoreactivity was observed in the CeA of ethanol-dependent
rats compared to controls (Fig. 1E–H, (t(16)= 0.24, n.s.)). Across the
anterior–posterior axis of the CeA, PACAP immunoreactivity was
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limited to the capsular (CeC) and lateral (CeL) subdivisions, where
PACAP staining was again suggestive of fibers. Due to the
restriction of PACAP immunoreactivity to the nuclei mentioned
for the CeA and BNST, densitometry was performed exclusively in
these subdivisions (BNST: STLD; CeA: CeC and CeL).

Chronic intermittent exposure to ethanol vapors does not affect
the number of PAC1R-positive cells in the BNST
No difference in the number of PAC1R-positive cells was found in
the dorsal portion of the BNST between ethanol-dependent and

control rats, during acute withdrawal (t(17)= 0.38, n.s.) (Fig. 2).
PAC1R immunoreactivity was found to be similarly present in the
STMA, STLP, and STLD subdivisions, and it was not affected by CIE
in any specific subdivision (STLD: t(17)= 0.53, n.s.; STLP: t(17)=
0.08, n.s.; STMA: t(17)= 0.39, n.s.) (Fig. 2C, D).

Chronic intermittent exposure to ethanol vapors enhances self-
administration of alcohol
Rats were divided into either a CIE vapor (Ethanol-dependent) or a
Control group (controls), matched according to weight and last
three baseline sessions of self-administration training prior to
vapor chambers (Fig. 3, baseline sessions). Following chronic
ethanol vapor exposure, ethanol-dependent rats self-administered
significantly more alcohol in the eight sessions prior to the start of
the pharmacological testing (Fig. 3A, B) (Group: F(1,19)= 44.39, p
< 0.001, Group × Session: F(7,133)= 1.17, n.s.).
Conversely, ethanol-dependent rats did not differ from controls

in the amount of water self-administered during the eight sessions
(Fig. 3C, D) (Group: F(1,19)= 0.35, n.s., Group × Session: F(7,133)=
0.63, n.s.).

Intra-BNST PAC1R antagonist PACAP(6–38) blocks excessive
drinking in ethanol-dependent rats
Ethanol-dependent rats continued responding excessively for
ethanol compared to control, nondependent rats (Group: F
(1,18)= 11.14, p < 0.01). The intra-BNST administration of the
PAC1R antagonist PACAP(6–38) selectively and dose-
dependently blocked excessive ethanol self-administration in
ethanol-dependent rats, but not in control, nondependent rats,
as reflected by a significant interaction of Group × Dose
(Group × Dose: F(4,72)= 6.29, p < 0.001; Dose: F(4,72)= 2.65, p
< 0.05), as shown in Fig. 4A, B. Post-hoc analysis revealed a
significant effect of the 0.3, 1, and 3 µg doses compared to
vehicle condition, with a 40% reduction at the highest dose. At
the highest dose, PACAP(6–38) fully blocked the excessive
ethanol intake of ethanol-dependent rats as compared to their
control, nondependent counterpart (p= 0.67). As shown in
Fig. 4C, D, responding for water was unaffected by PACAP(6–38)
at any of the doses tested, in either group (Group × Dose: F
(4,72)= 0.95, n.s.; Dose: F(4,72)= 1.20, n.s.). All cannula place-
ments were verified to be within the BNST on both sides of the
brain (Supplementary Fig. 1).

Intra-BNST PACAP(6–38) blocks ethanol withdrawal-induced
anxiety in ethanol-dependent rats
Rats exposed to chronic, intermittent ethanol vapor showed
enhanced anxiety-like behavior during the light/dark conflict test
(Group: F(1,14)= 6.51, p < 0.05). In fact, as shown in Fig. 5A,
ethanol-dependent rats showed a 40% reduction of time spent in
the aversive light compartment compared to controls under
Vehicle conditions. The 3 µg dose of PACAP(6–38) selectively
blocked the vapor exposure-induced anxiety-like behavior in
ethanol-dependent rats but not in controls (Group × Dose: F(1,14)
= 7.97, p= 0.013). Latency to first exit the dark compartment, as
shown in Fig. 5B, indicated a trend to be increased by vapor
exposure to be normalized by the antagonist which, however, did
not reach statistical significance (Group: F(1,14)= 2.64, p= 0.13;
Group × Dose: F(1,14)= 2.22, p= 0.16). Number of transitions
between the two compartments was not affected (Group: F
(1,14)= 1.56, n.s.; Group × Dose: F(1,14)= 0.26, n.s.) (data not
shown).

DISCUSSION
The main findings of this series of studies were as follows: (i)
chronic intermittent exposure to alcohol vapor increases PACAP,
but not PAC1R, expression in the BNST, but not the CeA, of rats
during acute withdrawal, compared to control, nondependent

Fig. 1 Effect of chronic intermittent exposure to ethanol vapors
on PACAP immunoreactivity in the BNST and in the CeA 8–10 h
after vapor offset. Effect of chronic intermittent exposure to
ethanol vapors on PACAP immunoreactivity in the BNST (A–D) and
in the CeA (E–H) 8–10 h after vapor offset. Ethanol-dependent rats
showed an enhanced expression of PACAP immunoreactivity in
BNST (A), but not CeA (E), compared to control, nondependent rats.
Drawing of coronal rat brain slices representing the area analyzed in
BNST (B) and CeA (F). Representative pictures of PACAP immunor-
eactivity in the BNST (C–D) and CeA (G–H) in control nondependent
and in ethanol-dependent rats, respectively. STMA BNST medial-
anterior, STLP BNST lateral-posterior, STLD BNST lateral-dorsal, STLJ
BNST lateral-justacapsular, CeM CeA medial, CeL CeA lateral, CeC
CeA capsular. Scale bars represent 250 μm. Control and ethanol-
dependent rats are depicted in orange and green, respectively. Data
represent Mean ± SEM (n= 10–11/group for BNST, n= 7–11/group
for CeA). #p < 0.05 vs. Controls.
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rats; (ii) antagonism of PAC1R via the administration of PACAP
(6–38) directly into the BNST dose-dependently and selectively
decreases excessive alcohol drinking only in ethanol-dependent
rats; (iii) antagonism of PAC1R in the BNST blocks withdrawal-
induced anxiety in ethanol-dependent rats.

Chronic ethanol exposure increases PACAP levels in the BNST but
not the CeA
Our IHC data revealed an increased expression of PACAP positive
fibers within the dorsal aspect of the lateral BNST (STLD) of
ethanol-dependent rats during acute withdrawal from ethanol
vapors, compared to control, nondependent rats. Our results in an
ethanol-dependence model are consistent with previous studies
which have shown increased PACAP expression in the BNST
following chronic cocaine administration [44], as well as chronic
variable stress [67], therefore suggesting that PACAP is recruited
specifically in the BNST following chronic exposure to either stress
or cycles of drug and alcohol exposure. Interestingly, acute
withdrawal from chronic alcohol exposure did not affect PACAP
levels in the CeA, a brain region also part of the extended
amygdala, suggesting a selective recruitment of this system in the
BNST. We also show that the number of PAC1R-positive cells in the
BNST of ethanol-dependent rats did not differ from that of
control rats.

BNST PACAP modulates dependence-induced alcohol drinking
and anxiety-like behavior
The administration of the PAC1R antagonist PACAP(6–38) into the
BNST dose-dependently decreased excessive self-administration
of alcohol in acutely withdrawn ethanol-dependent Wistar rats.
Notably, microinfusions of PACAP(6–38) into the BNST did not
affect ethanol self-administration of nondependent rats or
concurrent water self-administration in either group, suggesting
selectivity of action and ruling out the alternative explanation that

the drug may have induced malaise or general suppressive effects
on performance. Interestingly, a trend for the highest dose of
PACAP(6–38) to increase self-administration in nondependent rats
was observed, consistent with the anxiolytic profile of the drug
and with previous results obtained from the manipulation of other
anxiety-modulating systems like CRF [51, 68, 69] and in agreement
with sometimes opposing effects of PACAP under normal vs.
pathological circumstances (for review, see [37]).
We then investigated whether this decreased ethanol intake

observed in ethanol-dependent rats was accompanied by an
anxiolytic effect of the PAC1R antagonist in the same model. We
assessed this using a light–dark conflict test, a validated animal
model based on the natural aversion of rodents for bright and
open compartments, which is useful to predict anxiolytic-like
responses [70]. While control, nondependent rats showed very low
levels of anxiety following administration of vehicle or PACAP
(6–38) into the BNST, spending close to 40% of the time in the
open and illuminated area of the field, the ethanol-dependent rats
showed instead a robust withdrawal-induced anxiety-like pheno-
type that resulted in only ~15% of the time spent in the light
compartment under vehicle conditions. This reduction was
completely abolished by administration of PACAP(6–38) into the
BNST. In contrast, PACAP(6–38) did not exert an anxiolytic effect
on control rats. These results are in agreement with previous
studies. Indeed, microinfusion of PACAP into the BNST induces a
stress-like response, characterized by hypothalamic pituitary
adrenal axis activation and increases in anxiety-like behavior
[21, 28, 30, 54, 67]. A recent study observed a lack of decrease in
the startle response following PACAP(6–38) administration in the
BNST, but found that the antagonist attenuated the startle
response following foot shock stress [31], suggesting that a
previous stressor is required to see an effect of PAC1R antagonism.
Our findings are also consistent with the previous observation that
PACAP(6–38) administration in the BNST blocks chronic stress-

Fig. 2 Effect of chronic intermittent exposure to ethanol vapors on PAC1R-positive cell bodies in the BNST 8–10 h after vapor offset. No
difference was found between groups (A). Drawing of a coronal rat brain slice representing the area analyzed (B). Representative pictures of
PACAP immunohistochemistry in control, nondependent and in ethanol-dependent rats (C–D). STMA BNSTmedial-anterior, STLP BNST lateral-
posterior, STLD BNST lateral-dorsal, STLJ BNST lateral-justacapsular. Scale bars represent 250 μm. Control and ethanol-dependent rats are
depicted in orange and green, respectively. Data represent Mean ± SEM (n= 9–10/group).
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induced anxiety-like behavior, while not affecting this behavior in
unstressed rats [33].

BNST PACAP and the “dark side” of alcohol addiction
Our findings, novel in the context of alcohol, are consistent with
the notion that the PACAP/PAC1R system may represent an anti-
reward, between-system recruited in the “dark side” of addiction

[3, 37, 38, 71, 72]. An important study has recently found that
intra-BNST PACAP(6–38) suppresses stress-induced reinstatement
of cocaine seeking behavior during withdrawal, while the PAC1R
agonist maxadilan facilitates reinstatement after extinction [44].
Along with our data, this suggests that the PACAP/PAC1R system
in the BNST might be one of the systems suitable to manipulation
to treat negative affective states during alcohol withdrawal,
thereby potentially interrupting the addictive cycle [5]. PACAP
(6–38) antagonism tests on self-administration and anxiety-like

Fig. 3 Effect of chronic intermittent exposure to ethanol vapors
on operant ethanol and water self-administration. Effect of
chronic intermittent exposure to ethanol vapors on operant ethanol
(A–B) and water (C–D) self-administration. Rats were matched for
body weight and self-administration of ethanol in the last three
sessions before vapor exposure (Baseline (BL) 1, 2, 3). Following
6 weeks of CIE, ethanol-dependent rats showed increased respond-
ing for ethanol (A: g/kg; B: lever presses), but not water (C: ml/kg; D:
lever presses), compared to Controls. Control and ethanol-
dependent rats are depicted in orange and green, respectively.
Data represent Mean ± SEM (n= 9–12/group). #p < 0.05, ##p < 0.01,
###p < 0.001 vs. Controls.

Fig. 4 Effects of intra-BNST PACAP(6–38) administration on
operant ethanol and water self-administration in control and
ethanol-dependent rats 8–10 h after ethanol vapor offset. Effects
of intra-BNST PACAP(6–38) administration on operant ethanol (A–B)
and water (C–D) self-administration in control, nondependent (left)
and in ethanol-dependent rats (right) 8–10 h after ethanol vapor
offset. Intra-BNST PACAP(6–38) administration did not affect ethanol
self-administration in control, nondependent rats, while it signifi-
cantly reduced the vapor-induced increase in ethanol self-
administration in ethanol-dependent rats (A: g/kg; B: lever presses).
The drug treatment did not affect concurrent responding for water
(C: ml/kg; D: lever presses). Control and ethanol-dependent rats are
depicted in orange and green, respectively. Data represent Mean ±
SEM (n= 9–12/group). *p < 0.05, ***p < 0.001 vs. Vehicle, #p < 0.05,
###p < 0.001 vs. Controls.
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behavior, as well as the immunohistochemical experiment, were
performed at 8–10 h of withdrawal from intermittent vapor
exposure. This acute withdrawal time point reflects when blood
alcohol levels had dropped to zero and rats willingly self-
administered ethanol at high amounts and display heightened
anxiety-like behavior, as shown previously [49, 73–75].
Several other stress-related peptides, including CRF, are

expressed in the BNST, and contribute to the excessive alcohol
intake and the emergence of negative affective states during
withdrawal [1, 24, 76]. Indeed, systemic CRF1 receptor antagonists
decrease ethanol self-administration in dependent, but not in
control rats [51, 68, 75]. During alcohol withdrawal, extracellular
CRF increases in the BNST [77, 78]. Microinjections of CRF into the
BNST have been shown to sensitize ethanol withdrawal-induced
anxiety-like behavior, while BNST CRF1 receptor antagonist
administration alone, or prior to stress, to block this sensitization
[13]. Additionally, in the same rat model used in this study,
optogenetic inhibition of incoming CRF+ fibers in the BNST
reduces excessive ethanol consumption in ethanol-dependent rats
during acute withdrawal [79]. Notably, PACAP has been proposed
as an upstream regulator of CRF activation [80, 81], and the
behavioral effects of PACAP administration can be blocked by CRF
receptor antagonism [21, 45]. Therefore, a deeper understanding

of the precise molecular interaction between the PACAP/PAC1R
system and CRF in the BNST warrants further investigation, as well
as the cellular mechanisms underlying the enhancement of
ethanol self-administration by enhanced PACAP activity.
Based on our data, we hypothesize that the increase in PACAP

levels in the BNST during withdrawal from chronic alcohol
contributes to the maintenance of excessive ethanol self-
administration and the insurgence of anxiety-like behavior
through local PAC1R activation. It has previously been reported
that PACAP is expressed on incoming axon terminals in the BNST
[82]. These PACAP inputs to the dorsolateral subdivision of the
BNST might originate from PACAP cell body populations in the
paraventricular nucleus of the hypothalamus, parabrachial
nucleus, CeA, medial prefrontal cortex, and/or dorsal vagal
complex [28, 29, 83, 84], areas known to project to the BNST
[82, 85]. Our immunohistochemical study quantified fiber staining
through densitometry and, because fibers here are very abundant,
cell bodies positive for the peptide, if present, were not
detectable, suggesting an upstream source of PACAP to the
BNST. Future experiments will be needed to address which
upstream PACAP containing nucleus is responsible for the
observed effects. On the other hand, since low to moderate
levels of PACAP mRNA have also been detected in punches
containing the BNST of rats [44, 67], it is also possible that the
BNST population affected by alcohol may be local.

Potential limitations of the study
PACAP can exert its effects through PAC1R, VPAC1R, and VPAC2R,
though PAC1R binds PACAP with high affinity compared to VPAC
receptors [86]. PAC1R is highly expressed in the BNST [87, 88],
while VPAC1R and VPAC2R receptors show little expression
[89, 90]. In addition, the literature on both stress and cocaine
has consistently shown a role for BNST PAC1R, but not for VPAC
receptors [31–33, 44]. Therefore, even though the antagonist
PACAP(6–38) is not completely selective for PAC1R over VPAC2R,
we believe the effects we observed are PAC1R-mediated.
However, further testing with newer, small-molecule, PAC1R-
selective antagonists, or alternative tools for specifically blocking
PAC1R activity should be explored.
We did not observe any reliable effect on the latency to exit in

the light–dark conflict test, but only trends in both main and
interaction effects. While we can confidently exclude that the
main variable of the test (% time spent in the light compartment)
is sufficiently powered, as we were able to detect both main and
interaction effects, it is possible that the test was not sufficiently
powered for the latency, which typically tends to show higher
variability.
These experiments were performed in male rats only, which is a

limitation of the current study. Future studies to expand upon this
work should, therefore, include investigations into sex differences.
The BNST, in general, has a plethora of sexually dimorphic
behavioral effects [24]; In addition, the PACAP/PAC1R system has
sex-specific roles in the context of stress-related behaviors [91],
and sex differences in nicotine place preference and withdrawal-
precipitated anxiety- and depressive-like behavior have been
reported in PACAP knockout mice [92], which highlights the need
for future work on the role of PACAP in sexually dimorphic
responses in addiction.

CONCLUSIONS
Our results show that CIE exposure induces neuroadaptations in
the PACAP/PAC1R system of the BNST which mediate the
heightened alcohol drinking and anxiety-like behavior observed
during withdrawal. This system may, therefore, represent a
promising target in the domain of restoration of reward home-
ostasis for the development of novel treatments for AUD.

Fig. 5 Effects of intra-BNST PACAP(6–38) administration on
anxiety-like behavior in the light/dark conflict test 8–10 h after
ethanol vapor offset. Ethanol-dependent rats showed a marked
reduction of the % time spent in the aversive light compartment,
compared to controls, and this decrease was completely reversed by
intra-BNST administration of PACAP(6–38) (A). Latency to first exit
the dark compartment was not significantly affected by the
treatments (B). Control and ethanol-dependent rats are depicted
in orange and green, respectively. Data represent Mean ± SEM
(n= 4–5/group). *p < 0.05, vs. Vehicle, ##p < 0.01 vs. Controls.
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