Integration of brain and behavior measures for identification of data-driven groups cutting across children with ASD, ADHD, or OCD

Abstract

Autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD) and attention-deficit/hyperactivity disorder (ADHD) are clinically and biologically heterogeneous neurodevelopmental disorders (NDDs). The objective of the present study was to integrate brain imaging and behavioral measures to identify new brain-behavior subgroups cutting across these disorders. A subset of the data from the Province of Ontario Neurodevelopmental Disorder (POND) Network was used including participants with different NDDs (aged 6–16 years) that underwent cross-sectional T1-weighted and diffusion-weighted magnetic resonance imaging (MRI) scanning on the same 3T scanner, and behavioral/cognitive assessments. Similarity Network Fusion was applied to integrate cortical thickness, subcortical volume, white matter fractional anisotropy (FA), and behavioral measures in 176 children with ASD, ADHD or OCD with complete data that passed quality control. Normalized mutual information was used to determine top contributing model features. Bootstrapping, out-of-model outcome measures and supervised machine learning were each used to examine stability and evaluate the new groups. Cortical thickness in socio-emotional and attention/executive networks and inattention symptoms comprised the top ten features driving participant similarity and differences between four transdiagnostic groups. Subcortical volumes (pallidum, nucleus accumbens, thalamus) were also different among groups, although white matter FA showed limited differences. Features driving participant similarity remained stable across resampling, and the new groups showed significantly different scores on everyday adaptive functioning. Our findings open the possibility of studying new data-driven groups that represent children with NDDs more similar to each other than others within their own diagnostic group. Future work is needed to build on this early attempt through replication of the current findings in independent samples and testing longitudinally for prognostic value.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Relative participant similarities, diagnostic label break-down, and behavior scores for data-driven and NDD groups.
Fig. 2: Data-driven group differences for top contributing features across age and IQ as well as their stability across resampling.
Fig. 3: Data-driven and NDD group differences on out-of-model brain and behavior measures.

References

  1. 1.

    Szatmari P, Georgiades S, Duku E, Bennett TA, Bryson S, Fombonne E, et al. Developmental trajectories of symptom severity and adaptive functioning in an inception cohort of preschool children with autism spectrum disorder. JAMA Psychiatry. 2015;72:276–83.

    Article  PubMed  Google Scholar 

  2. 2.

    Karalunas SL, Fair D, Musser ED, Aykes K, Iyer SP, Nigg JT. Subtyping attention-deficit/hyperactivity disorder using temperament dimensions: toward biologically based nosologic criteria. JAMA Psychiatry. 2014;71:1015–24.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Di Rezze B, Duku E, Szatmari P, Volden J, Georgiades S, Zwaigenbaum L, et al. Examining trajectories of daily living skills over the preschool years for children with autism spectrum disorder. J Autism Dev Disord. 2019;49:4390–9.

    Article  PubMed  Google Scholar 

  4. 4.

    Schwartzman CM, Boisseau CL, Sibrava NJ, Mancebo MC, Eisen JL, Rasmussen SA. Symptom subtype and quality of life in obsessive-compulsive disorder. Psychiatry Res. 2017;249:307–10.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Anholt GE, Cath DC, Van Oppen P, Eikelenboom M, Smit JH, Van Megen H, et al. Autism and adhd symptoms in patients with ocd: are they associated with specific oc symptom dimensions or oc symptom severity. J Autism Dev Disord. 2010;40:580–9.

    Article  PubMed  Google Scholar 

  6. 6.

    Ashwood KL, Tye C, Azadi B, Cartwright S, Asherson P, Bolton P. Brief report: adaptive functioning in children with ASD, ADHD and ASD+ ADHD. J Autism Dev Disord. 2015;45:2235–42.

    Article  PubMed  Google Scholar 

  7. 7.

    Van Der Meer JMJ, Oerlemans AM, Van Steijn DJ, Lappenschaar MGA, De Sonneville LMJ, Buitelaar JK, et al. Are autism spectrum disorder and attention-deficit/hyperactivity disorder different manifestations of one overarching disorder? Cognitive and symptom evidence from a clinical and population-based sample. J Am Acad Child Adolesc Psychiatry. 2012. https://doi.org/10.1016/j.jaac.2012.08.024.

  8. 8.

    Lionel AC, Crosbie J, Barbosa N, Goodale T, Thiruvahindrapuram B, Rickaby J, et al. Rare Copy Number Variation Discovery and Cross-Disorder Comparisons Identify Risk Genes for ADHD. Sci Transl Med. 2010;40:580–9.

  9. 9.

    Constantino JN, Charman T. Diagnosis of autism spectrum disorder: reconciling the syndrome, its diverse origins, and variation in expression. Lancet Neurol. 2016;15:279–91.

    Article  PubMed  Google Scholar 

  10. 10.

    Feczko E, Miranda-Dominguez O, Marr M, Graham AM, Nigg JT, Fair DA. The heterogeneity problem: approaches to identify psychiatric subtypes. Trends Cogn Sci. 2019;23:584–601.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Lombardo MV, Lai M-C, Baron-Cohen S Big data approaches to decomposing heterogeneity across the autism spectrum. Mol Psychiatry. 2019;24:1435–50.

  12. 12.

    Ameis SH, Lerch JP, Taylor MJ, Lee W, Viviano JD, Pipitone J, et al. A diffusion tensor imaging study in children with ADHD, Autism Spectrum Disorder, OCD, and Matched Controls: distinct and non-distinct white matter disruption and dimensional brain-behavior relationships. Am J Psychiatry. 2016;173:1213–22.

  13. 13.

    Dajani DR, Burrows CA, Odriozola P, Baez A, Beth M, Mostofsky SH, et al. NeuroImage: clinical Investigating functional brain network integrity using a traditional and novel categorical scheme for neurodevelopmental disorders. NeuroImage Clin. 2019;21:101678.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Di Martino A, Zuo X-N, Kelly C, Grzadzinski R, Mennes M, Schvarcz A, et al. Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol Psychiatry. 2013;74:623–32.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Chantiluke K, Christakou A, Murphy CM, Giampietro V, Daly EM, Ecker C, et al. Disorder-specific functional abnormalities during temporal discounting in youth with Attention Deficit Hyperactivity Disorder (ADHD), Autism and comorbid ADHD and Autism. Psychiatry Res. 2014;223:113–20.

    Article  PubMed  Google Scholar 

  16. 16.

    Boedhoe PSW, van Rooij D, Hoogman M, Twisk JWR, Schmaal L, Abe Y, et al. Subcortical brain volume, regional cortical thickness and cortical surface area across attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD). bioRxiv. 2019. p. 673012. https://doi.org/10.1101/673012.

  17. 17.

    Baribeau DA, Dupuis A, Paton TA, Hammill C, Scherer SW, Schachar RJ, et al. Structural neuroimaging correlates of social deficits are similar in autism spectrum disorder and attention-deficit/hyperactivity disorder: analysis from the POND Network. Transl Psychiatry. 2019;9:72.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Aoki Y, Yoncheva YN, Chen B, Nath T, Sharp D, Lazar M, et al. Association of white matter structure with autism spectrum disorder and attention-deficit/hyperactivity disorder. JAMA Psychiatry. 2017;74:1120–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Feczko E, Balba NM, Miranda-Dominguez O, Cordova M, Karalunas SL, Irwin L, et al. Subtyping cognitive profiles in autism spectrum disorder using a functional random forest algorithm. Neuroimage. 2018;172:674–88.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Stefanik L, Erdman L, Ameis SH, Foussias G, Mulsant BH, Behdinan T, et al. Brain-behavior participant similarity networks among youth and emerging adults with schizophrenia spectrum, autism spectrum, or bipolar disorder and matched controls. Neuropsychopharmacology. 2017;43:1180.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Hawco C, Buchanan RW, Calarco N, Mulsant BH, Viviano JD, Dickie EW, et al. Separable and replicable neural strategies during social brain function in people with and without severe mental illness. Am J Psychiatry. 2019;176:521–30.

    Article  PubMed  Google Scholar 

  22. 22.

    Kushki A, Anagnostou E, Hammill C, Duez P, Brian J, Iaboni A, et al. Examining overlap and homogeneity in ASD, ADHD, and OCD: a data-driven, diagnosis-agnostic approach. Transl Psychiatry. 2019;9:318.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11:333.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule—generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30:205–23.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Ickowicz A, Schachar RJ, Sugarman R, Chen SX, Millette C, Cook L. The parent interview for child symptoms: a situation-specific clinical research interview for attention-deficit hyperactivity and related disorders. Can J Psychiatry. 2006;51:325–8.

    Article  PubMed  Google Scholar 

  27. 27.

    Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, et al. Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36:980–8.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Scahill L, Riddle MA, McSwiggin-Hardin M, Ort SI, King RA, Goodman WK, et al. Children’s Yale-Brown Obsessive Compulsive Scale: reliability and validity. J Am Acad Child Adolesc Psychiatry. 1997;36:844–52.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Achenbach TM, Edelbrock CS, Others. Manual for the child behavior checklist and revised child behavior profile. 1983. https://pdfs.semanticscholar.org/e06f/18f950ee20811acd25b9671c14a80b681e3c.pdf.

  30. 30.

    Park LS, Burton CL, Dupuis A, Shan J, Storch EA, Crosbie J, et al. The Toronto obsessive-compulsive scale: psychometrics of a dimensional measure of obsessive-compulsive traits. J Am Acad Child Adolesc Psychiatry. 2016;55:310. e4

    Article  PubMed  Google Scholar 

  31. 31.

    Berument SK, Rutter M, Lord C, Pickles A, Bailey A. Autism screening questionnaire: diagnostic validity. Br J Psychiatry. 1999;175:444–51.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Bodfish JW, Symons FJ, Parker DE, Lewis MH. Varieties of repetitive behavior in autism: comparisons to mental retardation. J Autism Dev Disord. 2000;30:237–43.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Swanson J, Schuck S, Mann M, Carlson C, Hartman K, Sergeant J, et al. Categorical and dimensional definitions and evaluations of symptoms of ADHD: the SNAP and SWAN rating scales. Irvine: University of California; 2006.

  34. 34.

    Harrison PL, Oakland T. (eds) Adaptive Behavior Assessment System-II. In Practical Resources for the Mental Health Professional. Academic Press, 2008. https://doi.org/10.1016/B978-012373586-7.00031-X.

  35. 35.

    Baribeau DA, Doyle-Thomas KAR, Dupuis A, Iaboni A, Crosbie J, McGinn H, et al. Examining and comparing social perception abilities across childhood-onset neurodevelopmental disorders. J Am Acad Child Adolesc Psychiatry. 2015;54:479–86. e1

    Article  PubMed  Google Scholar 

  36. 36.

    Fischl B. FreeSurfer. Neuroimage 2012;62:774–81.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006;31:1487–505.

    Article  PubMed  Google Scholar 

  38. 38.

    Johns Hopkins University. School of Medicine, Jean S. The Johns Hopkins Atlas of Human Functional Anatomy. Johns Hopkins University Press; 1997.

  39. 39.

    Steinley D, Brusco MJ, Hubert L. The variance of the adjusted Rand index. Psychol Methods. 2016;21:261–72.

    Article  PubMed  Google Scholar 

  40. 40.

    Sussman D, Leung RC, Chakravarty MM, Lerch JP, Taylor MJ. Developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy. Brain Behav. 2016;6:e00457.

  41. 41.

    Oyefiade AA, Ameis S, Lerch JP, Rockel C, Szulc KU, Scantlebury N, et al. Development of short-range white matter in healthy children and adolescents. Hum Brain Mapp. 2018;39:204–17.

    Article  PubMed  Google Scholar 

  42. 42.

    Shaw P, Greenstein D, Sharp W, Clasen L, Giedd J, Rapoport J, et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2006;63:540–9.

    Article  PubMed  Google Scholar 

  43. 43.

    Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D, et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci. 2007;104:19649–54.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, Busatto GF, et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: Results from the ENIGMA ASD working group. Am J Psychiatry. 2018;175:359–69.

    Article  PubMed  Google Scholar 

  45. 45.

    Zhu Y, Jiang X, Ji W. The mechanism of cortico-striato-thalamo-cortical neurocircuitry in response inhibition and emotional responding in attention deficit hyperactivity disorder with comorbid disruptive behavior disorder. Neurosci Bull. 2018;34:566–72.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Kuo H-Y, Liu F-C. Synaptic wiring of corticostriatal circuits in basal ganglia: insights into the pathogenesis of neuropsychiatric disorders. eNeuro. 2019;6. https://doi.org/10.1523/ENEURO.0076-19.2019.

  47. 47.

    Fettes P, Schulze L, Downar J. Cortico-Striatal-Thalamic loop circuits of the orbitofrontal cortex: promising therapeutic targets in psychiatric illness. Front Syst Neurosci. 2017;11:25.

  48. 48.

    Hoogman M, Bralten J, Hibar DP, Mennes M, Zwiers MP, Schweren LSJ, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry. 2017;4:310–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Boedhoe PSW, Schmaal L, Abe Y, Ameis SH, Arnold PD, Batistuzzo MC, et al. Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta- and mega-analysis. Am J Psychiatry. 2017;174:60–9.

    Article  PubMed  Google Scholar 

  50. 50.

    Bethlehem RAI, Romero-Garcia R, Mak E, Bullmore ET, Baron-Cohen S, Bethlehem RAI. Structural covariance networks in children with autism or ADHD. Cereb Cortex. 2017;27:4267–76.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Lai M-C, Lerch JP, Floris DL, Ruigrok ANV, Pohl A, Lombardo MV, et al. Imaging sex/gender and autism in the brain: etiological implications. J Neurosci Res. 2017;95:380–97.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Scofield JE, Johnson JD, Wood PK, Geary DC. Latent resting-state network dynamics in boys and girls with attention-deficit/hyperactivity disorder. PLoS One. 2019;14:e0218891.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Hawco C, Voineskos AN, Radhu N, Rotenberg D, Ameis S, Backhouse FA, et al. Age and gender interactions in white matter of schizophrenia and obsessive compulsive disorder compared to non-psychiatric controls: commonalities across disorders. Brain Imaging Behav. 2017;11:1836–48.

    Article  PubMed  Google Scholar 

  54. 54.

    Werling DM. The role of sex-differential biology in risk for autism spectrum disorder. Biol Sex Differ. 2016;7:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Taylor MJ, Lichtenstein P, Larsson H, Anckarsäter H, Greven CU, Ronald A. Is there a female protective effect against attention-deficit/hyperactivity disorder? Evidence from two representative twin samples. J Am Acad Child Adolesc Psychiatry. 2016;55:504–12. e2.

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Brem S, Grünblatt E, Drechsler R, Riederer P, Walitza S. The neurobiological link between OCD and ADHD. Atten Defic Hyperact Disord. 2014;6:175–202.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the following individuals for research support and data collection: Tara Goodale, M.Sc., Reva Schachter, M.Sc., Mithula Sriskandarajah, B.Sc., Marlena Colasanto, M.Sc., Jennifer Gomez, M.A., and Laura Park, M.Sc, from The Hospital for Sick Children; Susan Day Fragiadakis, M.A., Naomi Peleg, M.Sc., and Leanne Ristic, B.A., from Holland Bloorview Kids Rehabilitation Hospital; Richa Mehta, B.A., Christina Sommerdyk, M.Sc., from the Lawson Health Research Institute; Carolyn Russell, B.Sc., Alessia Greco, M.A., Mike Chalupka, B.A., B.Sc., Christina Chrysler, B.A., Irene O’Connor, M.Ed. Psych., from McMaster Children’s Hospital. We thank Margot J. Taylor for her review of a draft version of the manuscript. We thank Jason P. Lerch and Evdokia Anagnostou for their input into the analyses undertaken and manuscript preparation. We thank Hajer Nakua for her work on imaging quality control.

Author information

Affiliations

Authors

Contributions

Conceptualization: SHA, ANV, GRJ; Methodology: GRJ, EWD, AG, LE, CH, NF, LS; Formal Analysis: GRJ, CH, NF; Resources: SHA, ANV; Drafting the manuscript: GRJ, SHA, ANV; Manuscript revisions and finalization: GRJ, ANV, CH, LS, NJF, EWD, M-CL, PS, RS, JC, PDA, AG, LE, SHA; Visualizations: GRJ; Supervision: SHA, ANV.

Corresponding author

Correspondence to Stephanie H. Ameis.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jacobs, G.R., Voineskos, A.N., Hawco, C. et al. Integration of brain and behavior measures for identification of data-driven groups cutting across children with ASD, ADHD, or OCD. Neuropsychopharmacol. (2020). https://doi.org/10.1038/s41386-020-00902-6

Download citation

Search