Intergenerational trauma is associated with expression alterations in glucocorticoid- and immune-related genes

Abstract

Offspring of trauma survivors are more likely to develop PTSD, mood, and anxiety disorders and demonstrate endocrine and molecular alterations compared to controls. This study reports the association between parental Holocaust exposure and genome-wide gene expression in peripheral blood mononuclear cells (PBMC) from 77 Holocaust survivor offspring and 15 comparison subjects. Forty-two differentially expressed genes (DEGs) were identified in association with parental Holocaust exposure (FDR-adjusted p < 0.05); most of these genes were downregulated and co-expressed in a gene network related to immune cell functions. When both parental Holocaust exposure and maternal age at Holocaust exposure shared DEGs, fold changes were in the opposite direction. Similarly, fold changes of shared DEGs associated with maternal PTSD and paternal PTSD were in opposite directions, while fold changes of shared DEGs associated with both maternal and paternal Holocaust exposure or associated with both maternal and paternal age at Holocaust exposure were in the same direction. Moreover, the DEGs associated with parental Holocaust exposure were enriched for glucocorticoid-regulated genes and immune pathways with some of these genes mediating the effects of parental Holocaust exposure on C-reactive protein. The top gene across all analyses was MMP8, encoding the matrix metalloproteinase 8, which is a regulator of innate immunity. To conclude, this study identified a set of glucocorticoid and immune-related genes in association with parental Holocaust exposure with differential effects based on parental exposure-related factors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Differential gene expression associated with parental Holocaust exposure.
Fig. 2: Significant relationships between additional differential gene expression analyses.
Fig. 3: Gene set enrichment analysis.
Fig. 4: Mediation analysis and tope-genes.

References

  1. 1.

    Yehuda R, Lehrner A. Intergenerational transmission of trauma effects: putative role of epigenetic mechanisms. World Psychiatry. 2018;17:243–57.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Yahyavi ST, Zarghami M, Marwah U. A review on the evidence of transgenerational transmission of posttraumatic stress disorder vulnerability. Braz J Psychiatry. 2014;36:89–94.

    PubMed  Article  Google Scholar 

  3. 3.

    Field NP, Muong S, Sochanvimean V. Parental styles in the intergenerational transmission of trauma stemming from the Khmer Rouge regime in Cambodia. Am J Orthopsychiatry. 2013;83:483–94.

    PubMed  Article  Google Scholar 

  4. 4.

    Roth M, Neuner F, Elbert T. Transgenerational consequences of PTSD: risk factors for the mental health of children whose mothers have been exposed to the Rwandan genocide. Int J Ment Health Syst. 2014;8:12.

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Shmotkin D, Shrira A, Goldberg S, Palgi Y. Resilience and vulnerability among aging holocaust survivors and their families: an intergenerational overview. J Intergeneration Relationsh. 2011;9:7–21.

    Article  Google Scholar 

  6. 6.

    Yehuda R, Bierer LM, Schmeidler J, Aferiat DH, Breslau I, Dolan S. Low cortisol and risk for PTSD in adult offspring of holocaust survivors. Am J Psychiatry. 2000;157:1252–9.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Lehrner A, Bierer LM, Passarelli V, Pratchett LC, Flory JD, Bader HN, et al. Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors. Psychoneuroendocrinology. 2014;40:213–20.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Bierer LM, Bader HN, Daskalakis NP, Lehrner AL, Makotkine I, Seckl JR, et al. Elevation of 11beta-hydroxysteroid dehydrogenase type 2 activity in Holocaust survivor offspring: evidence for an intergenerational effect of maternal trauma exposure. Psychoneuroendocrinology. 2014;48:1–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Daskalakis NP, Lehrner A, Yehuda R. Endocrine aspects of post-traumatic stress disorder and implications for diagnosis and treatment. Endocrinol Metab Clin North Am. 2013;42:503–13.

    Article  Google Scholar 

  10. 10.

    Yehuda R, Daskalakis NP, Bierer LM, Bader HN, Klengel T, Holsboer F, et al. Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biol Psychiatry. 2016;80:372–80.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Bierer LM, Bader HN, Daskalakis NP, Lehrner A, Provencal N, Wiechmann T, et al. Intergenerational effects of maternal holocaust exposure on FKBP5 methylation. Am J Psychiatry. 2020;177:744–53.

    PubMed  Article  Google Scholar 

  12. 12.

    Yehuda R, Daskalakis NP, Lehrner A, Desarnaud F, Bader HN, Makotkine I, et al. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring. Am J Psychiatry. 2014;171:872–80.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Spitzer RL, Williams JBW, Gibbon M. Structured clinical interview for DSM-IV (SCID). New York State Psychiatric Institute Biometrics Research. 1995.

  14. 14.

    Beck AT. A systematic investigation of depression. Compr Psychiatry. 1961;2:163–70.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Spielberger CD. The state-trait anxiety inventory (S T A I): test manual for Form X. Consulting Psychologists Press: Palo Alto; 1968.

  16. 16.

    Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T, et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse Negl. 2003;27:169–90.

    PubMed  Article  Google Scholar 

  17. 17.

    Yehuda R, Labinsky E, Tischler L, Brand SR, Lavin Y, Blair W, et al. Are adult offspring reliable informants about parental PTSD? A validation study. Ann NY Acad Sci. 2006;1071:484–7.

    PubMed  Article  Google Scholar 

  18. 18.

    Lin SM, Du P, Huber W, Kibbe WA. Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res. 2008;36:e11.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Mecham BH, Nelson PS, Storey JD. Supervised normalization of microarrays. Bioinformatics. 2010;26:1308–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Arloth J, Bader DM, Roh S, Altmann A. Re-annotator: annotation pipeline for microarray probe sequences. PLoS One. 2015;10:e0139516.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, Salomon DR, et al. Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinformatics. 2011;12:322.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Staedtler F, Hartmann N, Letzkus M, Bongiovanni S, Scherer A, Marc P, et al. Robust and tissue-independent gender-specific transcript biomarkers. Biomarkers. 2013;18:436–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Smyth GK. Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and Bioconductor. Springer; 2005. p. 397–420.

  24. 24.

    Steegenga WT, Boekschoten MV, Lute C, Hooiveld GJ, de Groot PJ, Morris TJ, et al. Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs. Age. 2014;36:9648.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, Relman DA, et al. Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci USA. 2003;100:1896–901.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Wehrwein EA, Joyner MJ. Regulation of blood pressure by the arterial baroreflex and autonomic nervous system. Handb Clin Neurol. 2013;117:89–102.

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav Immun. 2007;21:736–45.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Ciobanu LG, Sachdev PS, Trollor JN, Reppermund S, Thalamuthu A, Mather KA, et al. Differential gene expression in brain and peripheral tissues in depression across the life span: a review of replicated findings. Neurosci Biobehav Rev. 2016;71:281–93.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Corkum CP, Ings DP, Burgess C, Karwowska S, Kroll W, Michalak TI. Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT) and standard density gradient. BMC Immunol. 2015;16:48.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98:5116–21.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Plaisier SB, Taschereau R, Wong JA, Graeber TG. Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res. 2010;38:e169.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.

    PubMed  Article  Google Scholar 

  33. 33.

    Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.

    Article  CAS  Google Scholar 

  34. 34.

    Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLoS Comput Biol. 2011;7:e1001057.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Korotkevich G, Sukhov V, Sergushichev A. Fast gene set enrichment analysis. bioRxiv. 2019:060012.

  37. 37.

    Arloth J, Bogdan R, Weber P, Frishman G, Menke A, Wagner KV, et al. Genetic differences in the immediate transcriptome response to stress predict risk-related brain function and psychiatric disorders. Neuron. 2015;86:1189–202.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Breen MS, Bierer LM, Daskalakis NP, Bader HN, Makotkine I, Chattopadhyay M, et al. Differential transcriptional response following glucocorticoid activation in cultured blood immune cells: a novel approach to PTSD biomarker development. Transl Psychiatry. 2019;9:201.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Kramer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30:523–30.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Daskalakis NP, Cohen H, Cai G, Buxbaum JD, Yehuda R. Expression profiling associates blood and brain glucocorticoid receptor signaling with trauma-related individual differences in both sexes. Proc Natl Acad Sci USA. 2014;111:13529–34.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. Mediation: R package for causal mediation analysis. 2014.

  42. 42.

    Sobel ME. Asymptotic confidence intervals for indirect effects in structural equation models. Sociol Methodol. 1982;13:290–312.

    Article  Google Scholar 

  43. 43.

    Mascha EJ, Dalton JE, Kurz A, Saager L. Statistical grand rounds: understanding the mechanism: mediation analysis in randomized and nonrandomized studies. Anesth Analg. 2013;117:980–94.

    PubMed  Article  Google Scholar 

  44. 44.

    Bliese P. Multilevel modeling in R (2.5).

  45. 45.

    Houtepen LC, Vinkers CH, Carrillo-Roa T, Hiemstra M, van Lier PA, Meeus W, et al. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans. Nat Commun. 2016;7:10967.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev. 2017;38:3–45.

    PubMed  Article  Google Scholar 

  47. 47.

    Chan JC, Nugent BM, Bale TL. Parental advisory: maternal and paternal stress can impact offspring neurodevelopment. Biol Psychiatry. 2018;83:886–94.

    PubMed  Article  Google Scholar 

  48. 48.

    Bowers ME, Yehuda R. Intergenerational transmission of stress in humans. Neuropsychopharmacology. 2016;41:232–44.

    PubMed  Article  Google Scholar 

  49. 49.

    Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun. 2014;5:5592.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Peter CJ, Fischer LK, Kundakovic M, Garg P, Jakovcevski M, Dincer A, et al. DNA methylation signatures of early childhood malnutrition associated with impairments in attention and cognition. Biol Psychiatry. 2016;80:765–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Daskalakis NP, Yehuda R. Site-specific methylation changes in the glucocorticoid receptor exon 1F promoter in relation to life adversity: systematic review of contributing factors. Front Neurosci. 2014;8:369.

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Jablonska-Trypuc A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016;31(sup1):177–83.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Gajendrareddy PK, Engeland CG, Junges R, Horan MP, Rojas IG, Marucha PT. MMP-8 overexpression and persistence of neutrophils relate to stress-impaired healing and poor collagen architecture in mice. Brain Behav Immun. 2013;28:44–8.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Loffek S, Schilling O, Franzke CW. Series “matrix metalloproteinases in lung health and disease”: biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38:191–208.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci. 2013;33:9003–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Tobi EW, Slieker RC, Luijk R, Dekkers KF, Stein AD, Xu KM, et al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci Adv. 2018;4:eaao4364.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    Monk C, Spicer J, Champagne FA. Linking prenatal maternal adversity to developmental outcomes in infants: the role of epigenetic pathways. Dev Psychopathol. 2012;24:1361–76.

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Morgan CP, Bale TL. Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J Neurosci. 2011;31:11748–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Schwaiger M, Grinberg M, Moser D, Zang JC, Heinrichs M, Hengstler JG, et al. Altered stress-induced regulation of genes in monocytes in adults with a history of childhood adversity. Neuropsychopharmacology. 2016;41:2530–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

NPD, EBB, and RY designed the study. HB coordinated the clinical aspects of the study. AL, LMB, and RY supervised clinical aspects of the study. NPD, PW, and IM performed the wet lab experiments. NPD, EBB and RY supervised the wet lab experiments. NPD designed data analyses. NPD and CX performed primary data analyses. NPD, CX, and CC preformed secondary data analyses. NPD wrote the original draft of the manuscript. All authors reviewed and edited all the manuscript versions.

Corresponding authors

Correspondence to Nikolaos P. Daskalakis or Rachel Yehuda.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daskalakis, N.P., Xu, C., Bader, H.N. et al. Intergenerational trauma is associated with expression alterations in glucocorticoid- and immune-related genes. Neuropsychopharmacol. (2020). https://doi.org/10.1038/s41386-020-00900-8

Download citation

Search