Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intrinsic connectivity of the prefrontal cortex and striato-limbic system respectively differentiate major depressive from generalized anxiety disorder

Abstract

Major depressive disorder (MDD) and generalized anxiety disorder (GAD) are highly prevalent and debilitating disorders. The high overlap on the symptomatic and neurobiological level led to ongoing debates about their diagnostic and neurobiological uniqueness. The present study aims to identify common and disorder-specific neuropathological mechanisms and treatment targets in MDD and GAD. To this end we combined categorical and dimensional disorder models with a fully data-driven intrinsic network-level analysis (intrinsic connectivity contrast, ICC) to resting-state fMRI data acquired in 108 individuals (n = 35 and n = 38 unmedicated patients with first-episode GAD, MDD, respectively, and n = 35 healthy controls). Convergent evidence from categorical and dimensional analyses revealed MDD-specific decreased whole-brain connectivity profiles of the medial prefrontal and dorsolateral prefrontal cortex while GAD was specifically characterized by decreased whole-brain connectivity profiles of the putamen and decreased communication of this region with the amygdala. Together, findings from the present data-driven analysis suggest that intrinsic communication of frontal regions engaged in executive functions and emotion regulation represent depression-specific neurofunctional markers and treatment targets whereas dysregulated intrinsic communication of the striato-amygdala system engaged in reinforcement-based and emotional learning processes represent GAD-specific markers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Brain areas exhibited alterations in ICC analysis.
Fig. 2: Brain regions exhibiting aberrant functional connectivity with seeds from ICC.
Fig. 3: Associations between neural indices and symptom load.
Fig. 4: Word clouds visualizing the functional characterization of the identified brain regions.

References

  1. 1.

    Hettema JM. The nosologic relationship between generalized anxiety disorder and major depression. Depression Anxiety. 2008;25:300–16.

    PubMed  Google Scholar 

  2. 2.

    Maron E, Nutt D. Biological markers of generalized anxiety disorder. Dialogues Clin Neurosci. 2017;19:147–58.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Clark LA, Watson D. Tripartite model of anxiety and depression: psychometric evidence and taxonomic implications. J Abnorm Psychol. 1991;100:316–36.

    CAS  PubMed  Google Scholar 

  4. 4.

    Rock PL, Roiser JP, Riedel WJ, Blackwell AD. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med. 2014;44:2029–40.

    CAS  PubMed  Google Scholar 

  5. 5.

    Dalgleish T, Taghavi R, Neshat-Doost H, Moradi A, Canterbury R, Yule W. Patterns of processing bias for emotional information across clinical disorders: a comparison of attention, memory, and prospective cognition in children and adolescents with depression, generalized anxiety, and posttraumatic stress disorder. J Clin Child Adolesc Psychol. 2003;32:10–21.

    PubMed  Google Scholar 

  6. 6.

    Keren H, O’Callaghan G, Vidal-Ribas P, Buzzell GA, Brotman MA, Leibenluft E, et al. Reward processing in depression: a conceptual and meta-analytic review across fMRI and EEG studies. Am J Psychiatry. 2018;175:1111–20.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Müller VI, Cieslik EC, Serbanescu I, Buzzell GA, Brotman MA, Leibenluft E, et al. Altered brain activity in unipolar depression revisited: meta-analyses of neuroimaging studies. JAMA Psychiatry. 2017;74:47–55.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Brühl AB, Delsignore A, Komossa K, Weidt S. Neuroimaging in social anxiety disorder—a meta-analytic review resulting in a new neurofunctional model Annette Beatrix Brühl. Neurosci Biobehav Rev. 2014;47:260–80.

    PubMed  Google Scholar 

  9. 9.

    Kolesar TA, Bilevicius E, Wilson AD, Kornelsen J. Systematic review and meta-analyses of neural structural and functional differences in generalized anxiety disorder and healthy controls using magnetic resonance imaging. Neuroimage Clin. 2019;24:102016.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am J Psychiatry. 2017;174:676–85.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Etkin A. A reckoning and research agenda for neuroimaging in psychiatry. Am J Psychiatry. 2019;176:507–11.

    PubMed  Google Scholar 

  12. 12.

    Xu X, Dai J, Liu C, Chen Y, Xin F, Zhou F, et al. Common and disorder-specific neurofunctional markers of dysregulated empathic reactivity in major depression and generalized anxiety disorder. Psychother Psychosom. 2020;89:114–6.

    PubMed  Google Scholar 

  13. 13.

    Etkin A, Schatzberg AF. Common abnormalities and disorder-specific compensation during implicit regulation of emotional processing in generalized anxiety and major depressive disorders. Am J Psychiatry. 2011;168:968–78.

    PubMed  Google Scholar 

  14. 14.

    Kambeitz J, Cabral C, Sacchet MD, Gotlib IH, Zahn R, Serpa MH, et al. Detecting neuroimaging biomarkers for depression: a meta-analysis of multivariate pattern recognition studies. Biol Psychiatry. 2017;82:330–8.

    PubMed  Google Scholar 

  15. 15.

    Oathes DJ, Patenaude B, Schatzberg AF, Etkin A. Neurobiological signatures of anxiety and depression in resting-state functional magnetic resonance imaging. Biol Psychiatry. 2015;77:385–93.

    PubMed  Google Scholar 

  16. 16.

    Pannekoek JN, van der Werff SJA, van Tol MJ, Veltman DJ, Aleman A, Zitman FG, et al. Investigating distinct and common abnormalities of resting-state functional connectivity in depression, anxiety, and their comorbid states. Eur Neuropsychopharmacol. 2015;25:1933–42.

    CAS  PubMed  Google Scholar 

  17. 17.

    Yamada T, Hashimoto RI, Yahata N, Ichikawa N, Yoshihara Y, Okamoto Y, et al. Resting-state functional connectivity-based biomarkers and functional mri-based neurofeedback for psychiatric disorders: a challenge for developing theranostic biomarkers. Int J Neuropsychopharmacol. 2017;20:769–81.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Yao S, Becker B, Geng Y, Zhao Z, Xu X, Zhao W, et al. Voluntary control of anterior insula and its functional connections is feedback-independent and increases pain empathy. Neuroimage. 2016;130:230–40.

    PubMed  Google Scholar 

  19. 19.

    Sagliano L, Atripaldi D, De Vita D, D’Olimpio F, Trojano L. Non-invasive brain stimulation in generalized anxiety disorder: a systematic review. Prog Neuropsychopharmacol Biol Psychiatry. 2019;93:31–8.

    PubMed  Google Scholar 

  20. 20.

    Sonmez AI, Doruk D, Nandakumar AL, Almorsy A, Vande Voort JL, Kung S, et al. Accelerated TMS for depression: a systematic review and meta-analysis. Psychiatry Res. 2019;273:770–81.

  21. 21.

    Philip NS, Barredo J, Aiken E, Carpenter LL. Neuroimaging mechanisms of therapeutic transcranial magnetic stimulation for major depressive disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:211–22.

    PubMed  Google Scholar 

  22. 22.

    Fox MD, Buckner RL, Liu H, Chakravarty MM, Lozano AM, Pascual-Leone A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci USA. 2014;111:E4367–75.

    CAS  PubMed  Google Scholar 

  23. 23.

    Martuzzi R, Ramani R, Qiu M, Shen X, Papademetris X, Constable RT. A whole-brain voxel based measure of intrinsic connectivity contrast reveals local changes in tissue connectivity with anesthetic without a priori assumptions on thresholds or regions of interest. Neuroimage. 2011;58:1044–50.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Scheinost D, Benjamin J, Lacadie CM, Vohr B, Schneider KC, Ment LR, et al. The intrinsic connectivity distribution: a novel contrast measure reflecting voxel level functional connectivity. NeuroImage. 2012;62:1510–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Walpola I, Nest T, Roseman L, Erritzoe D, Feilding A, Nutt DJ, et al. Altered insula connectivity under MDMA. Neuropsychopharmacology. 2017;42:2152–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Luppi AI, Craig MM, Pappas I, Finoia P, Williams GB, Allanson J, et al. Consciousness-specific dynamic interactions of brain integration and functional diversity. Nat Commun. 2019;10:4616.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Zhou F, Zimmermann K, Xin F, Scheele D, Dau W, Banger M, et al. Shifted balance of dorsal versus ventral striatal communication with frontal reward and regulatory regions in cannabis-dependent males. Hum Brain Mapp. 2018;39:5062–73.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    O’Brien RM. A caution regarding rules of thumb for variance inflation factors. Qual Quant. 2007;41:673–90.

    Google Scholar 

  29. 29.

    Mumford JA, Poline JB, Poldrack RA. Orthogonalization of regressors in fMRI models. PLoS ONE. 2015;10:e0126255.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Pruim RH, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage. 2015;112:267–77.

    PubMed  Google Scholar 

  31. 31.

    Sarkheil P, Ibrahim CN, Schneider F, Mathiak K, Klasen M. Aberrant functional connectivity profiles of brain regions associated with salince and reward processing in female patients with borderline personality disorder. Brain Imaging Behav. 2020;14:485–95.

    PubMed  Google Scholar 

  32. 32.

    Luking KR, Repovs G, Belden AC, Gaffrey MS, Botteron KN, Luby JL, et al. Functional connectivity of the amygdala in early-childhood-onset depression. J Am Acad Child Adolesc Psychiatry. 2011;50:1027–41.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Lim JH, Oh IK, Han C, Huh YJ, Jung IK, Patkar AA, et al. Sensitivity of cognitive tests in four cognitive domains in discriminating MDD patients from healthy controls: a meta-analysis. Int Psychogeriatr. 2013;25:1543–57.

    PubMed  Google Scholar 

  34. 34.

    Bijsterbosch JD, Ansari TL, Smith S, Gauld O, Zika O, Boessenkool S, et al. Stratification of MDD and GAD patients by resting state brain connectivity predicts cognitive bias. Neuroimage Clin. 2018;19:425–33.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Eichhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage. 2005;25:1325–35.

    Google Scholar 

  36. 36.

    Murrough JW, Abdallah CG, Anticevic A, Collins KA, Geha P, Averill LA, et al. Reduced global functional connectivity of the medial prefrontal cortex in major depressive disorder. Hum Brain Mapp. 2016;37:3214–23.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wang L, Dai Z, Peng H, Tan L, Ding Y, He Z, et al. Overlapping and segregated resting-state functional connectivity in patients with major depressive disorder with and without childhood neglect. Hum Brain Mapp. 2014;35:1154–66.

    PubMed  Google Scholar 

  38. 38.

    Scheinost D, Holmes SE, DellaGioia N, Schleifer C, Matuskey D, Abdallah C, et al. Multimodal investigation of network level effects using intrinsic functional connectivity, anatomical covariance, and structure-to-function correlations in unmedicated major depressive disorder. Neuropsychopharmacology. 2018;43:1119–27.

    PubMed  Google Scholar 

  39. 39.

    Bzdok D, Langner R, Schilbach L, Engemann DA, Laird AR, Fox PT, et al. Segregation of the human medial prefrontal cortex in social cognition. Front Hum Neurosci. 2013;7:1–17.

    Google Scholar 

  40. 40.

    Schilbach L, Eickhoff SB, Rotarska-Jagiela A, Fink GR, Vogeley K. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious Cogn. 2008;17:457–67.

    PubMed  Google Scholar 

  41. 41.

    Peng W, Chen Z, Yin L, Jia Z, Gong Q. Essential brain structural alterations in major depressive disorder: A voxel-wise meta-analysis on first episode, medication-naive patients. J Affect Disord. 2016;199:114–23.

    PubMed  Google Scholar 

  42. 42.

    Farb NA, Anderson AK, Bloch RT, Segal ZV. Mood linked responses in medial prefrontal cortex predict relapse in patients with recurrent unipolar depression. Biol Psychiatry. 2011;70:366–72.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry. 2007;164:1476–88.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Koenigs M, Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res. 2009;201:239–43.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Etkin A, Büchel C, Gross JJ. The neural bases of emotion regulation. Nat Rev Neurosci. 2015;16:693–700.

    CAS  PubMed  Google Scholar 

  46. 46.

    McClintock SM, Reti IM, Carpenter LL, McDonald WM, Dubin M, Taylor SF, et al. Consensus recommendations for the clinical application of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression. J Clin Psychiatry. 2018;79:35–48.

    Google Scholar 

  47. 47.

    Teng C, Otero M, Geraci M, Blair RJ, Pine DS, Grillon C, et al. Abnormal decision-making in generalized anxiety disorder: Aversion of risk or stimulus-reinforcement impairment? Psychiatry Res. 2016;237:351–6.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Benson BE, Bethesda ND, Nelson EE. Role of contingency in striatal response to incentive in adolescents with anxiety. Cogn Affect Behav Neurosci. 2015;15:155–68.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    DeVido J, Jones M, Geraci M, Hollon N, Blair RJ, Pine DS, et al. Stimulus-reinforcement-based decision making and anxiety: impairment in generalized anxiety disorder (GAD) but not in generalized social phobia (GSP). Psychol Med. 2009;39:1153–61.

    CAS  PubMed  Google Scholar 

  50. 50.

    Fadok JP, Markovic M, Tovote P, Lüthi A. New perspectives on central amygdala function. Curr Opin Neurobiol. 2018;49:141–7.

    CAS  PubMed  Google Scholar 

  51. 51.

    Michely J, Rigoli F, Rutledge RB, Hauser TU, Dolan RJ. Distinct processing of aversive experience in amygdala subregions. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:291–300.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Blair KS, Blair RJR. A Cognitive neuroscience approach to generalized anxiety disorder and social phobia. Emot Rev. 2012;4:133–8.

    Google Scholar 

  53. 53.

    Kievit RA, Frankenhuis WE, Waldorp LJ, Borshoom D. Simpson’s paradox in psychological science: a practical guide. Front Psychol. 2013;4:513.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Dickie EW, Armony JL. Amygdala responses to unattended fearful faces: interaction between sex and trait anxiety. Psychiatry Res. 2008;162:51–7.

    PubMed  Google Scholar 

  55. 55.

    Chuang J, Hagan C, Murray GK, Graham JME, Ooi C, Tait R, et al. Adolescent major depressive disorder: neuroimaging evidence of sex difference during an affective Go/No-Go task. Front Psychiatry. 2017;8:119.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

XX, BB, and KMK designed the experiment. XX prepared the study protocols and procedures. BZ, JD, ZZ, YH, and JW performed the clinical assessments. XX, YC, CL, and FX acquired data. XX, FZ, XZ, EAS, LL, BB, and SY analyzed the data. XX, BB, KMK, DV, and EAS interpreted the data and drafted the paper. All authors commented on and gave final approval to the final version of the paper.

Corresponding authors

Correspondence to Bo Zhou or Benjamin Becker.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Dai, J., Chen, Y. et al. Intrinsic connectivity of the prefrontal cortex and striato-limbic system respectively differentiate major depressive from generalized anxiety disorder. Neuropsychopharmacol. 46, 791–798 (2021). https://doi.org/10.1038/s41386-020-00868-5

Download citation

Search

Quick links