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A potential biomarker for treatment stratification in psychosis:
evaluation of an [18F] FDOPA PET imaging approach
Mattia Veronese 1, Barbara Santangelo1,2, Sameer Jauhar 2, Enrico D’Ambrosio 2,3, Arsime Demjaha2, Hugh Salimbeni4,
Jin Huajie 5, Paul McCrone6, Federico Turkheimer1 and Oliver Howes 2,7,8

[18F]FDOPA PET imaging has shown dopaminergic function indexed as Ki
cer differs between antipsychotic treatment responders

and non-responders. However, the theragnostic potential of this biomarker to identify non-responders has yet to be evaluated. In
view of this, we aimed to evaluate this as a theragnostic test using linear and non-linear machine-learning (i.e., Bernoulli, support
vector, random forest and Gaussian processes) analyses and to develop and evaluate a simplified approach, standardised uptake
value ratio (SUVRc). Both [18F]FDOPA PET approaches had good test-rest reproducibility across striatal regions (Ki

cer ICC: 0.68–0.94,
SUVRc ICC: 0.76–0.91). Both our linear and non-linear classification models showed good predictive power to distinguish responders
from non-responders (receiver operating curve area under the curve for region-of-interest approach: Ki

cer= 0.80, SUVRc= 0.79; for
voxel-wise approach using a linear support vector machine: 0.88) and similar sensitivity for identifying treatment non-responders
with 100% specificity (Ki

cer: ~50%, SUVRc: 40–60%). Although the findings were replicated in two independent datasets, given the
total sample size (n= 84) and single setting, they warrant testing in other samples and settings. Preliminary economic analysis of
[18F]FDOPA PET to fast-track treatment-resistant patients with schizophrenia to clozapine indicated a potential healthcare cost
saving of ~£3400 (equivalent to $4232 USD) per patient. These findings indicate [18F]FDOPA PET dopamine imaging has potential
as biomarker to guide treatment choice.

Neuropsychopharmacology (2021) 46:1122–1132; https://doi.org/10.1038/s41386-020-00866-7

INTRODUCTION
Schizophrenia and related psychotic disorders are common
mental disorders and amongst the leading causes of global
disability [1–3]. Antipsychotic drugs are central to their treatment
[4, 5]. However, about one-third of patients show limited response
to first-line antipsychotic treatment, often from illness onset [6, 7].
Poor response is associated with increased health burden, higher
costs and longer hospital stays [8]. Clozapine is an alternative
treatment that is effective in people resistant to first-line
antipsychotic drugs [9]. Moreover, clozapine treatment is asso-
ciated with reduced mortality, healthcare costs and functional
outcomes [10–14]. However, clinical guidelines around the world
recommend its use is restricted to non-responders because of the
risk of side effects and the need for blood monitoring [15]. As
there is currently no way to differentiate non-responders from
responders, clinical guidelines recommend a series of empirical
treatment trials to determine if a patient is a non-responder,
before then initiating clozapine. In practice this leads to long
delays, on average over 4 years, before initiation of clozapine [16].
There is thus a clinical need for a biomarker to identify non-
responders early to guide treatment choice.

Both the role of dopamine hyperactivity in the pathoetiology of
psychosis [17–21], and findings that antipsychotic drugs act by
blocking dopamine [4, 22] indicate that molecular imaging of the
striatal dopamine innervation is a candidate biomarker for
predicting treatment response. A number of studies have shown
that striatal dopamine synthesis capacity, as measured by [18F]
FDOPA PET imaging, is elevated in schizophrenia [23], schizo-
phreniform psychoses [24] and people at clinical high risk for
psychosis (UHR) [24–26], and linked to subsequent development
of psychosis [24–26]. Moreover, dopamine synthesis capacity has
been found to distinguish patients who have responded to
standard antipsychotic drugs from non-responders [27] and both
this and synaptic dopamine levels have been shown to predict
response to antipsychotic treatment [20, 28, 29]. This evidence
suggests that [18F]FDOPA PET imaging of the striatal dopamine
innervation could be used as a neurochemical basis to stratify
patients into those likely to respond and those unlikely to respond
to first-line antipsychotic drugs. Timely stratification would
enhance patient welfare by enabling more rapid treatment
responses, while bringing a considerable economy to the
healthcare system.
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However, the theragnostic potential of this method to identify
patients who will respond to first-line treatment has yet to be
evaluated. In view of this, our first aim was to determine the
sensitivity and specificity of [18F]FDOPA PET imaging to distin-
guish treatment responders from non-responders. For a diagnostic
test to be clinically useful it also needs to be practical. One
potential limitation of the [18F]FDOPA PET imaging used in prior
studies is the long duration of the scans, about 95 min. To address
this, we aimed to evaluate a shorter, simplified protocol [18F]
FDOPA PET imaging protocol and compare its accuracy with the
full 95-min scans. Finally, we conducted a preliminary cost analysis
using [18F]FDOPA PET to identify non-responders to first-line
antipsychotic treatment.

METHODS AND MATERIALS
The most common approach to [18F]FDOPA PET imaging uses
continuous dynamic acquisition, with the scanning beginning
with the tracer injection and lasting for 90–95min, during which
the participant is required to lie still in the PET scanner. A 60-min
acquisition had also been considered; however, a correlation
analysis indicated that the 95-min acquisition is more reliable
(Supplementary Tables 1 and 2).
Compared to this dynamic [18F]FDOPA PET acquisition, the

simplified protocol consists of a brief single-frame acquisition
(10–15min) and a simplified index of FDOPA uptake (standardised
uptake value ratio (SUVRc)), defined as the ratio of the tracer
activity in the striatum to that of the cerebellum, as a proxy for
dopamine synthesis capacity using the standard dynamic
approach. This approach is similar to simplified [18F]FDOPA PET
scanning methods that have already been used to distinguish
patients with early Parkinson disease (PD) from healthy volunteers
[30, 31].
To explore the generalisability of the simplified [18F]FDOPA PET

imaging beyond the specifics of the datasets included in this
study, we also tested its sensitivity to important experimental
variables (the tracer injected dose and specific activity (SA) as well
as the length of PET scan acquisition).

Datasets
The data presented are a new analysis of two different [18F]FDOPA
PET imaging datasets that have been previously published
[28, 32]. Dataset1 [28] consists of 26 first-episode psychosis
patients, who were scanned prior to antipsychotic treatment and
three minimally treated for <2 weeks, and 14 age matched healthy
volunteers to enable normative comparisons. Following the scans,
all patients began treatment with a first-line antipsychotic
medication, selected upon consultation with their psychiatrist
and without reference to PET results. Treatment choice was made
by the patient in consultation with their psychiatrist [28].
Treatment was titrated to a therapeutic dose (based on the
Maudsley Prescribing Guidelines) and patients all received follow-
up to at least 6 months to determine response status. To be
included patients were required to show good adherence to
treatment defined as taking more than 80% of prescribed
antipsychotic doses in line with recommendations and other
studies [15, 33, 34]. To assess concordance with antipsychotic
medication, a multisource approach was used. This required
evidence of adequate adherence on at least two of the following:
antipsychotic plasma levels, pharmacy and electronic medical
dispensing records and report from the patient and an
independent source (family member/caregiver or healthcare
professional). Adequate concordance was defined as taking a
minimum of 80% of prescribed doses, in line with consensus
recommendations [34].
Treatment response was defined as >50% reduction in PANSS

total symptom severity rating from baseline to follow-up and
response sustained over at least 6 months, in line with

recommendations for response in early course of the illness
[5, 15]. Treatment non-response was defined as <50% reduction in
PANSS total symptom severity rating from baseline and no
evidence of response over at least 6 months. Of the 26 patients, 13
met criteria for treatment response and 13 met criteria for non-
response [35, 36].
Dataset2 [32] consists of 12 treatment non-responsive patients

with schizophrenia, 12 treatment-responsive patients with schizo-
phrenia and 12 age matched healthy volunteers for normative
comparisons. Treatment non-response was defined as meeting
modified Kane criteria for treatment resistance in schizophrenia
[37]. Treatment response was defined as meeting the Remission in
Schizophrenia Working Group criteria for treatment remission [38].
Full details of inclusion criteria, medication status of the patients
and clinical assessment are reported in the original references
[28, 32]. For Dataset1 and Dataset2, both treatment responders
and non-responder patients show no significant difference for
age, gender, weight, ethnicity and cigarette smoking with the
corresponding control groups.
An additional test-retest dataset (Dataset3), consisting of eight

healthy controls (mean age 23.6 ± 3.5 years, 5 male, injected dose
of ~150 MBq) scanned twice, ~2 years apart, was also used for the
reliability analysis of the proposed simplified [18F]FDOPA PET
imaging protocol. Full details on the research protocol and subject
inclusion criteria are reported in the original reference [39].
A summary of subject demographics for all the three datasets is

reported in Supplementary Table 3. All studies were approved by
the local research ethics committee. After full description of the
respective studies, all participants gave written informed consent
to participate, and consent for data to be used in further analyses.

PET imaging
The experimental protocol for the three datasets used the same
standard approach [34, 40–42], although the target injected
radioactivity was ~150 MBq for Dataset1 and Dataset3, and ~180
MBq for Dataset2. All participants received carbidopa (150 mg)
and entacapone (400 mg) orally 1 h before imaging. Both drugs
are used to increase the signal-to-noise ratio (SNR) of the tracer
uptake in brain tissue by reducing the peripheral formation of
radiolabelled dopamine and 3-O-methyl-[18F]fluorodopa, the
brain-penetrating metabolite, respectively [43–45].
The [18F]FDOPA tracer was administered by intravenous bolus

injection after acquisition of a brain CT scan for attenuation
correction. For Dataset1 and Dataset2, [18F] FDOPA PET imaging
was performed dynamically in 3-dimensional mode. Data were
acquired using a Siemens Biograph 6 HiRez PET scanner (Siemens,
Erlangen, Germany) for Dataset1, a Siemens/CTI ECAT HR+ 962
PET scanner (Siemens, Erlangen, Germany) for Dataset2 and a
Siemens/CTI ECAT/EXACT3D (Knoxville, Tennessee) for Dataset3.
The three machines have similar spatial resolution (4.5 ± 0.24, 4.8
± 0.2 and 4.5 ± 0.2 mm respectively) and comparable sensitivity
(4.2, 4.2 and 4.5 cps/kBq). In Dataset1 PET data were binned in 32
frames of increasing duration over the 95min scans (frame
intervals in seconds: 8 × 15, 3 × 60, 5 × 120, 16 × 300). Emission
data for Dataset2 were obtained as 26 frames of increasing
duration over 90min (frame intervals in seconds: 1 × 30, 4 × 60,
3 × 120, 3 × 180, 15 × 300). In Dataset3 PET data were acquired in
list mode for 95 min, re-binned into 26 frames (frame intervals in
seconds: 1 × 30, 4 × 60, 3 × 120, 3 × 180, 15 × 300).

Image analysis
[18F]FDOPA PET imaging analyses used the approach reported in
previous papers [34, 40–42]. For all datasets, motion correction
was performed first realigning frame-to-frame nonattenuated
dynamic images to a single reference frame. The transformation
parameters were then applied to the corresponding attenuated-
corrected frames. The realigned frames were finally summed
to create motion-corrected dynamic images. A tracer-specific
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template [32, 41] and atlas defining the striatum and cerebellum
(see [46]) were co-registered onto each subject’s PET image using
a combination of Statistical Parametric Mapping 8 (https://www.fil.
ion.ucl.ac.uk/spm/) and in-house Matlab-based scripts. The striatal
atlas included limbic, associative and sensorimotor subdivisions
based on the predominant origin of projections to sub-regions of
the striatum and given evidence that dopaminergic alterations are
most marked in the associative striatum in schizophrenia [47]. The
main outcome parameter was Ki

cer (min−1), calculated using the
Patlak–Gjedde graphical approach with the cerebellum as
reference region, as this region shows negligible dopamine
synthesis [48]. Ki

cer parametric images of the brain were
constructed from motion-corrected images using a wavelet-
based approach [49]. The parametric image for each participant
was then normalised into Montreal Neurological Institute standard
space using the participant’s PET summation image and the [18F]
FDOPA PET template. This analysis pipeline is completely
automated and operator independent, leading to reproducible
(ICC > 0.8 [39]) and replicable results [27, 28, 50].
The simplified index of FDOPA uptake (SUVRc) was then defined

by the ratio of the tracer activity in the striatum and its functional
subdivisions to that in the reference region, using the same atlas
as used for the dynamic scan. Consistent with the dynamic
analysis, the cerebellum was used as the reference region. To test
the sensitivity of this metric to time point after tracer injection,
SUVRc was generated for the striatum and each functional striatal
subdivision for a 10-min time frame at 60, 75 and 90min after
injection. These timepoints were chosen because the
Gjedde–Patlak plot is linear within this time window, and it is
the linear portion of the Gjedde–Patlak plot that is used to derive
Ki
cer [48].
Classification analysis was limited to the whole striatum and its

associative subdivision. Previous studies have identified the
associative striatum as the striatal region with the most marked
dopaminergic alteration in psychosis [51]. The associative striatum
was also reported to be the main locus for differentiating
responders from non-responders [32].
We investigated the impact of reducing or increasing the length

of the simplified PET scan acquisition by 5min using Dataset3. The
functional striatal atlas was co-registered with the pseudo-static
PET images obtained from taking the mean signal of the original
dynamic scans over 5, 10 and 15min, respectively starting at 75
min from the tracer injection. The co-registration was performed
using Statistical Parametric Mapping 8 (https://www.fil.ion.ucl.ac.
uk/spm/). The SNR was defined by the ratio of the mean signal in
the striatum and the standard deviation of the brain signal outside
the striatal regions [52].

Preliminary health economic analysis
We investigated the economic sustainability of the biomarker if it
was offered as screening test in a representative population of
1000 individual with first-episode psychosis.
We used the following assumptions in the calculation:

(1) Cost per scan £3000 ($3900) (https://www.xe.com/
currencyconverter/), for a static 10–15min FDOPA scan in
a clinical nuclear medicine setting inclusive of tracer
delivery. This is based on the cost of commercial delivery
of tracer plus scanning time and all other imaging centre
costs as provided by current providers, although for national
health system it can be cheaper [53].

(2) In total, 33% of patients do not respond to conventional
antipsychotics [54].

(3) Potential annual healthcare savings of ~ £24,000/year based
on the healthcare costs of a patient with active psychosis of
£39,141/year and the healthcare costs of a patient with no
active psychotic symptoms of £15,086 [55–58].

(4) Cost of treating patients with clozapine (costs of medication,
the monitoring service and management of neutropenia
occurring in 3% of patients) for all the patients classified by
the biomarker as non-responders [59, 60].

(5) A mean delay to clozapine of 4 years in current clinical
practice [61].

(6) In total, 50% of patients with treatment-resistant schizophre-
nia achieve clinical response with clozapine treatment [62].

Based on these assumptions we calculated the potential annual
savings of identifying a patient who is a non-responder to first-line
antipsychotic treatment and starting them on clozapine within a
month from the diagnosis and the minimal statistical performance
of the biomarker to be cost effective in clinical use.

Statistical analysis
Statistical analyses were performed using Prism, version 7 (https://
www.graphpad.com/scientific-software/prism/), and SPSS, version
24 (https://www.ibm.com/analytics/spss-statistics-software). Nor-
mality of distribution was assessed using Shapiro–Wilkes test. Test-
retest reliability of SUVRc was calculated using the intraclass
correlation coefficient (ICC) [63]. This model estimates the
correlation between individual [18F]FDOPA SUVRc values between
scan sessions using a two-way ANOVA with random subject
effects and fixed session effects. This model was chosen over a
one-way random model because SUVRc values were ordered into
two sessions (test and retest scan), and the two-way random
model additionally accounts for systematic sources of variance
associated with session effects [64]. Test-retest reproducibility was
calculated as the percentage test-retest difference (VAR absolute
value):

VAR ¼ 2 ´ Retest� Testj j=ðTestþ RetestÞ ´ 100:
The agreement between SUVRc values and Ki

cer values
determined using a full scan was studied with a correlation
analysis. In this analysis, Ki

cer and SUVRc of all participants of
Dataset1 and Dataset2 were correlated within each functional
striatal ROI by computing Pearson’s product moment correlations
for normally distributed data and Spearman’s rank correlation
coefficients for non-normally distributed data. Secondly, we
computed the responder vs. non-responder Cohen’s d effect size
to identify the degree of group difference in dopamine synthesis
capacity as returned by SUVRc in comparison to Ki

cer.
To investigate the statistical power of SUVRc to identify non-

responder patients from the entire patient pool, an analysis of
receiver operating characteristics (ROC) curves was performed.
Dataset1 and Dataset2 were analysed separately and the SUVRc
metrics computed at different timepoints were compared with
Ki
cer performances. The ROC area under the curve (AUC) was used

as the performance index. As an additional performance metric,
we extracted the biomarker sensitivity when the classification
threshold was set at 100% specificity, corresponding to the
fraction of non-responders correctly identified without any
mislabelling of the responder group as non-responders. The
classification threshold was set at this high level of specificity to
avoid treatment with clozapine in someone who would respond
to an alternative antipsychotic, given the monitoring and potential
side effect burden associated with clozapine [65].

Machine-learning approaches applied to voxel-level data
The primary analyses of the discriminative power used Ki

cer values
from the atlas-based region-of-interests for the whole striatum
and its functional subdivisions, which represents an average value
of all voxels within the region-of-interest. However, it is possible
that other characteristics of the data, such as Ki

cer values in
individual voxels and/or non-linear relationships within the data,
are important in discriminating between responders and non-
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responders; i.e., there might be sub-anatomical areas in the
striatum that have better predictive power for the treatment
response.
In view of this, we also investigated the potential of using

machine-learning models to predict the non-responder status
using the voxel-based PET data across the striatum to improve the
discriminatory power compared to using mean striatal values from
the region-of-interest analyses. We used the 2847 voxels from the
striatum segmentation mask, with no additional pre-processing,
and applied a leave-one-out cross validation approach to train and
evaluate the classifiers.
We evaluated a variety of linear and non-linear models, using

leave-one-out cross validation to estimate the generalisation of
performance. The predictor, xi, is the voxel-level dopamine
synthesis values (flattened to a vector representation) and the
target, yi, is the responder status, with 1 for non-responder and −1
for responders. We considered two linear models with loss
functions of the form:

XN

i¼1

lðyi; fiÞ � α Wk k2 with fi ¼ Wxi þ b;

where N is the number of the subjects, α is a regularisation
parameter (fixed to 1, as good trade-off between data fitting and
regularisation [66]), W is a vector of weights to be learned and b is
a bias parameter to be learned.
The first was a Bernoulli observations model with a logistic link

function [67]. The second was a linear Support Vector Machine
[68], which uses a high loss to maximise the margin between
classes. We also evaluated two non-linear models. First, we used a
Random Forests approach [69], which avoids overfitting by
averaging base classifiers in an ensemble technique known as
bootstrap aggregating. The base classifiers are decision trees,
which are de-correlated through data subsampling and feature
subsampling. Second, we evaluated a Gaussian processes
approaches [66], which uses kernelized Bayesian linear models,
with the Squared Exponential kernel and Bernoulli loss with probit
link function, fit using variational inference. All models were
implemented in sklearn [70], except the Gaussian process, which
was implemented in gpflow [71].

Supplementary analyses: sensitivity to experimental variables
To explore the generalisability of SUVRc beyond the specifics of
the datasets included in this study, we tested its sensitivity to the
tracer injected dose and SA by using Spearman’s correlation
analysis.

RESULTS
Static vs. dynamic FDOPA
For both datasets, the standard dynamic measure of dopamine
synthesis capacity (Ki

cer) was significantly correlated with the
simplified index of FDOPA uptake (SUVRc) in whole striatum
(Spearman’s rho from 0.60 to 0.89, all p values < 0.001). The
correlation between striatal SUVRc and Ki

cer at 75min after
injection was the highest (Spearman’s rho from 0.79 to 0.89), while
it was lowest for SUVRc calculated at 90 min (Spearman’s rho from
0.75 to 0.85). Significant correlations were also observed when
considering only the patient groups (both responders and non-
responders) in both datasets, with Spearman’s rho ranging from
0.74 to 0.87 at 60 min, from 0.74 to 0.82 at 75 min and from 0.60 to
0.83 at 90 min after tracer injection. Full details of the correlation
analysis results are reported in Supplementary Tables 4 and 5 and
Supplementary Fig. 1. Mean values of Ki

cer and SUVRc of Dataset1
and Dataset2 are reported in Figs. 1 and 2.
For Dataset1 (in which one of the three minimally treated

patients was a responder) we observed significant differences in
SUVRc between responders and non-responders with small to

very large Cohen’s d effect sizes (mean ± SD: 0.77 ± 0.37), with the
maximum obtained for the associative striatal subdivision at 75
min from tracer injection (Cohen’s d: 1.32) and the minimum
obtained for the sensorimotor striatal subdivision at 90 min from
tracer injection (Cohen’s d: 0.17). For Dataset2, we also observed
significant differences in SUVRc between responders and non-
responders, with moderate to very large Cohen’s d effect sizes
(mean ± SD: 0.69 ± 0.08). As for Dataset1, the highest values were
obtained for the striatum and the associative striatal subdivision at
75min from tracer injection (both with Cohen’s d effect sizes of
0.79), while the smallest difference was obtained for the
sensorimotor striatal subdivision at 60 min from tracer injection
(Cohen’s d: 0.57). Overall the whole striatum and its associative
striatal subdivision were the areas where the effect sizes for the
differences between responders and non-responders were the
highest (Cohen’s d values in the striatum: from 0.62 to 1.09;
Cohen’s d values in the associative striatum: from 0.64 to 1.32).
Scan timing did have an impact on effect size for SUVRc. The

lowest values were obtained at 90 min from tracer injection
(mean ± SD: 0.55 ± 0.22) while the highest ones were obtained at
75min from tracer injection (mean ± SD: 0.81 ± 0.24) in both
datasets. Full details of the Cohen’s d effect size are reported in
Supplementary Table 6.

Test-retest analysis
Mean percent test-retest differences and reliability for SUVRc
values in the striatum and in the functional striatal subdivisions
are presented in Supplementary Table 7. Overall, the reproduci-
bility of SUVRc was excellent (%VAR < 4), regardless of the time
after injection and the striatal area in which it was measured. We
also observed good test-retest reliability values in all the
functional striatal subdivisions (ICC: 0.76–0.91).

Sensitivity to experimental variables
There was no correlation between SUVRc and either injected dose
(p= 0.89) or SA (p= 0.97) (Supplementary Fig. 2). In contrast,
there was a significant effect of scan duration on SUVRc maps
(Supplementary Fig. 3): the signal-to–noise ratio increased as the
acquisition length was extended (mean ± SD: for 5 min acquisition
0.76 ± 0.0.48; for 10 min acquisition 0.87 ± 0.49; for 15 min
acquisition 0.88 ± 0.55).

Classification of treatment response: region-of-interest analyses
The ROC curves for SUVRc from 75min after tracer injection and
Ki
cer values in the whole striatum and in its associative striatal

subdivision are shown in Fig. 3, while the ROC curves for SUVRc
from 60 and 90min after tracer injection are reported in
Supplementary Fig. 4. AUC estimates and the sensitivity at 100%
specificity are reported in Table 1.
For Dataset1 we observed ROC AUC estimates varying from 0.66

to 0.80 (mean ± SD: 0.74 ± 0.05). For Dataset2 the AUC estimates
varied from 0.74 to 0.87 (mean ± SD: 0.84 ± 0.03). The best
estimates were observed at 75min after tracer injection (mean
± SD: 0.82 ± 0.04) for both the striatum and the associative striatal
subdivision.
For Dataset1 the Ki

cer sensitivity to identify non-responders at
100% specificity varied from 46 to 61% (mean ± SD: 53.5 ± 10.6),
whereas the SUVRc sensitivity varied from 23 to 46% (mean ± SD:
32.2 ± 9.0). For Dataset2 we observed Ki

cer sensitivity at 100%
specificity of 50% and SUVRc sensitivity varying from 36 to 79%
(mean ± SD: 60.8 ± 17.9).

Classification of treatment response: machine-learning voxel-
based analyses
We also investigated the potential of using machine-learning
approaches applied to striatal voxel-wise data to distinguish
responders from non-responders. For both the linear and non-
linear methods the AUC estimates are given in Table 2. A
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consistent pattern was a higher score in Dataset2 than Dataset1.
For Dataset1 none of the models surpassed the ROI classifier as
measured by ROC AUC (mean ± SD AUC for linear SVM= 0.71 ±
0.001, for SVM with radial basis function= 0.45 ± 0.025, for
Random Forest= 0.70 ± 0.008, Linear= 0.74, for Kernel K-nearest
with 2 neighbours Knn(2)= 0.63, for Kernel K-nearest with 3
neighbours Knn(3)= 0.68, and for Gaussian process approach=
0.64). For Dataset2 the linear model and linear Support Vector
Machine model provided superior classification than the ROI
classifier as measured by ROC AUC (mean ± SD AUC for linear SVM
= 0.88 ± 0.001, for SVM with radial basis function= 0.80 ± 0.007,
for Random Forest= 0.83 ± 0.006, Linear= 0.89, for Kernel K-
nearest with 2 neighbours Knn(2)= 0.75, for Kernel K-nearest with
3 neighbours Knn(3)= 0.79, and for Gaussian process approach=
0.83). We also included results from combining both datasets to a
single one and obtained the following results in term of ROC AUC:
linear SVM= 0.89 ± 0.001, SVM with radial basis function= 0.80 ±
0.001, Random Forest= 0.76 ± 0.004, Linear= 0.87, Kernel K-
nearest with 2 neighbours Knn(2)= 0.74, Kernel K-nearest with 3
neighbours Knn(3)= 0.74, Gaussian process= 0.81.

Illustrative health economic model
By averaging the classification performance of the SUVRc from
linear and non-linear analyses (both datasets) we estimated it is
capable of identifying nearly one half of the (33% of) patients
destined to prove unresponsive to first-line treatment.

By combining this estimate with our model cost assumptions
(see “Methods”), and assuming a specificity of 95% (i.e., 5%
misclassification of responders), we obtained a total saving of
£3400/patient. With these assumptions, the breakeven sensitivity
of the classification test is 26% (Supplementary Fig. 5). While
sensitivity modulates the potential savings of the biomarker,
specificity has a strong effect on costs (Supplementary Fig. 6). By
reducing the specificity of the test to 80%, the breakeven
sensitivity will increase to 34.2%, and, at a sensitivity of 50%,
there will be a saving per patient of ~£2000. Note that with both
specificity and sensitivity at 50% (chance level), the biomarker
would stop being economically favourable (Supplementary
Table 8).

DISCUSSION
Our first main finding is that a dynamic [18F]FDOPA PET scan is
able to identify 40–60% of treatment non-responsive patients with
a specificity of 100%. Our second main finding is that a simplified
10min [18F]FDOPA PET imaging scan acquisition shows good test-
retest reliability (ICC= 0.76–0.91), good agreement with the
dynamic [18F]FDOPA PET, and is able to identify 40–60% of
treatment non-responsive patients with a specificity of 100%.
Based on this, our economic modelling indicates the use of the
simplified [18F]FDOPA PET imaging to guide early use of clozapine
has a potential cost saving of £3.4 million per 1000 patients

Fig. 1 Gold standard index of dopamine synthesis capacity (Ki
cer using 95min acquisition) and the simplified index of FDOPA uptake

(SUVRc with a 15min static acquisition 75min after tracer injection) in striatum and its subdivisions. These values are from each group
(controls, responders and non-responders) of Dataset1.
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relative to current practice. However, our illustrative health
economic analysis considered only direct health service costs; if
social costs were included (e.g., criminal justice service costs), the
potential cost savings is likely to be greater [72]. These findings
extend previous molecular imaging studies reporting presynaptic
striatal dopamine measures are associated with treatment
response [20, 25, 27, 28, 32] by showing the clinical potential of
these approaches if used in clinical practice.
In absolute terms the machine-learning analyses showed similar

performance to the ROI analyses, although the linear and support
vector machine classifiers were marginally superior to the ROI
classifier for the medicated patient dataset (Dataset2). Recent
meta-analyses of machine-learning methods have shown no or
limited improvements over logistic regression in a medical context
[73]. Our findings are generally consistent with these findings but
extend them by showing that a logistic regression model shows
no appreciable improvement in classification relative to the simple
averaging approach. In our case the small size of the datasets
compared with the high dimensionality of the features is likely to
cause machine-learning and other data-driven methods to fail to
capture reliable signal without further assumptions [74]. Further
work to validate decision algorithms should be repeated
considering larger samples following the guidelines of Steyerberg
[75] and the PRoGRESS group [76].
The test-retest reproducibility and reliability of the simplified

index of FDOPA uptake are in line with the ICC (0.68–0.94) and %
VAR (0.7) values for Ki

cer in the striatal subdivisions reported in
Egerton et al. using a full dynamic acquisition [39]. These values

indicate that the simplified imaging approach does not sacrifice
reliability or increase variability compared to the standard,
dynamic method.
[18F]FDOPA PET imaging is not the first method that has been

proposed for early identification of treatment response in
psychosis. Peripheral biomarkers (e.g., insulin levels, metabolite
levels in blood and urine) have been shown to be linked to
treatment response in psychosis [77, 78], but have not been
consistent among studies [79]. Moreover, these findings were not
validated using a cohort of responders and non-responders [78].
Mondelli et al. showed that lower cortical awakening response
and increased levels of inflammatory markers are associated with
poor treatment response in first-episode psychosis patients [80].
However, this study does not report any classification analysis and
it has not been replicated to date. In the domain of neuroimaging,
structural techniques have shown that differences in gyrification,
cortical thickness and asymmetry are associated with subsequent
response to antipsychotic treatments [81, 82]. Reduced white
matter integrity has also been linked to non-response to
treatment in patients with first-episode psychosis [83], and
functional connectivity of the ventral tegmental area has been
associated with treatment response [84]. Elevated anterior
cingulate cortex glutamate levels have also been reported to be
associated with treatment resistance compared to treatment-
responsive schizophrenia patients [85]. However, none of these
studies reported a validation analysis of the predictive power of
the proposed measure, AUC values nor sensitivity/specificity
classification. Moreover, these studies include one dataset only.

Fig. 2 Gold standard index of dopamine synthesis capacity (Ki
cer using 95min acquisition) and the simplified index of FDOPA uptake

(SUVRc with a 15min static acquisition 75min after tracer injection) in striatum and its subdivisions. These values are from each group
(controls, responders and non-responders) of Dataset2. For consistency, dataset 2 was reprocessed with the same analysis pipeline used for
dataset 1, which may explain differences between data points shown here and the original publication [32].
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Thus, our study extends these previous peripheral biomarker and
neuroimaging studies by including these analyses and considering
two independent datasets.
A recent study provided evidence that individual differences in

striatal functional connectivity predict response to antipsychotic
treatment in acutely psychotic patients (AUC: 0.78, sensitivity: 80%
and specificity: 75%) [86]. Our potential biomarker showed
predictive power that was higher than this (AUC of 0.89). However,
as they did not report sensitivity at 100% specificity or cost
analyses, it is not clear how it performs on these metrics. It would
be useful to directly compare both approaches in a future study.

Strengths and limitations
Strengths of our work include the use of an in vivo measure of the
pathophysiology of psychosis relevant to the mechanism of action
of antipsychotic treatments, and that we were able to test the [18F]

FDOPA PET imaging approach in two independent datasets and
test reliability of the simplified protocol in a third dataset.
However, by the very nature of the cohorts recruited (first-episode
psychosis, people with established illness) the criteria for
treatment response were different in the two datasets, as outlined
in “Methods”. This is reflected in the difference in sensitivity, 39%
vs. 79%. It has also been shown that demographics and
environmental factors, such as age, gender, smoking, ethnicity
and childhood trauma, may influence dopamine synthesis
capacity [87, 88]. The relative contribution of state and trait
related factors to dopamine alterations in psychosis remains to be
determined [89]. Nevertheless, the pathological mechanisms
underlying the disorder should not be confused with the capacity
of the biomarker to predict a clinical response to treatment. An
ideal biomarker should return accurate results irrespective of the
history of the patients to which it is applied [90]. Moreover, whilst

Table 1. Receiver Operating Characteristic (ROC) curves and sensitivity analyses for the classification of patients into antipsychotic responders and
non-responders using the simplified index of FDOPA uptake (SUVRc) and the gold standard (Ki

cer) index of dopamine synthesis capacity in the
striatum and associative striatal subdivision for Dataset1 and Dataset2.

AUC ROC Sensitivity at 100% specificity cut-off

Whole striatum Associative Whole striatum Associative

Dataset1 Dataset2 Dataset1 Dataset2 Dataset1 (%) Dataset2 (%) Dataset1 (%) Dataset2 (%)

SUVRc 60min 0.70* 0.86* 0.74* 0.83* 31 79 31 64

SUVRc 75min 0.77* 0.87* 0.80* 0.85* 39 79 46 64

SUVRc 90min 0.66NS 0.81* 0.74* 0.81* 23 43 23 36

Ki
cer 0.83* 0.74* 0.87* 0.75* 46 50 61 50

The p value tests the null hypothesis that the area under the curve really equals 0.50 (chance).
AUC area under the curve.
*p < 0.05; NS p > 0.05.

Fig. 3 Receiver Operating Characteristic (ROC) curves for the classification of patients into responders and non-responder groups using
[18F]FDOPA PET imaging analysed using the simplified index of FDOPA uptake (SUVRc) or the standard dynamic measure of dopamine
synthesis capacity (Ki

cer) in the whole striatum and associative striatal subdivision. This analysis shows the results from Dataset1 (a) and
Dataset2 (b).
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our sample sizes are large for PET imaging studies (N= 84
individuals pooled together from 3 different studies), it is
important to recognise that the samples are relatively modest,
and our findings will require testing in other samples and settings
to determine their generalisability, and if clinical-demographic
factors influence results, before they can be translated into routine
clinical practice. Assuming a ROC AUC= 0.7, a marginal error of
10%, a conservative frequency of non-responding patients of 20%
and a drop-out rate of 10%, a power calculation in easyROC
(v1.3.1) [91] indicates it would take 84 first-episode patients to test
the biomarker accuracy to predict treatment response in a
prospective study with power= 0.80, and α= 0.05.
Of particular interest might be the use of PET-MR scanners to

obtain hybrid samples that could provide additional information
to include in the presented machine-learning tool. This could be
particularly relevant for those MRI modalities that provided
complementary information on the dopamine system, like
neuromelanin-MRI [92] or dopamine enriched functional con-
nectivity [93, 94]. Finally, we calculated SUVRc retrospectively from
a 10-min time frame of a dynamic PET scan and this warrants
testing in a prospective study. The AUC in the receiver operating
curve analyses were between 0.66 and 0.87 and statistically higher
than chance performance.
Performance of this simplified FDOPA PET is dependent on the

experimental design, including the co-administration of carbidopa
and entacapone. These are recommended to enhance the specific
brain FDOPA signal [27] by reducing metabolite production [95],
but future studies would be useful to determine the importance of
this for classification accuracy. All the datasets were collected by
the same research group and used the same experimental design,
imaging acquisition and analysis pipeline. Future studies should
include multi-centre acquisitions to investigate the generalisability
of the biomarker across settings.
In our preliminary economic analysis, we set specificity at 95%

and found substantial cost savings. A prospective study is now
needed to determine if the biomarker can achieve 95% specificity
in routine clinical practice. Nevertheless, our further analyses show
that the biomarker has the potential to be cost effective with
specificity and sensitivity values as low as 0.6. This is in line with
the findings of a recent modelling study of a test to identify
patients for clozapine [59], which showed that a stratified test with
60% sensitivity and specificity is still cost effective compared to no
test for people with first-episode psychosis who failed a first-line
antipsychotic. Whilst we accounted for the cost of managing
neutropenia, we did not factor in the costs of other side effects.
However, in contrast with the risk of neutropenia, the comparative
risks of other side effects of clozapine and first-line antipsychotics
are relatively similar [65, 96, 97], suggesting that there is unlikely
to be a large cost differential. Notwithstanding this, a limitation of
our economic analysis is that the costs of side effects have only
been partially considered.

Implications of our findings
Our results have two main implications. The first is that in the two
examined sampled we were able to identify 50% of non-

responders without overlap with responders; these results need
to be replicated in future studies. This could enable early use of
clozapine, which is associated with improved outcomes [98].
Studies have reported that early intervention for psychosis via
theragnostic biomarkers could lead also to long-term economic
benefit [72, 99–101]. Hospitalisation costs are the main compo-
nent of the higher total healthcare costs associated with
treatment-resistant schizophrenia [102], with approximately half
of these costs attributable to hospital admissions [8]. Health
economic evidence suggests that the use of clozapine has the
potential to improve the use of health and social service resources
in treatment-resistant schizophrenia [103], through shorter
inpatient admissions [11, 104], lower rates of relapse and reduced
rehospitalization [105–108]. A cost-benefit model study within the
Veterans Health Administration in the USA compared costs with
clozapine use and non-use in treatment-resistant schizophrenia. It
identified that, if 20% of treatment-resistant cases started
clozapine, this would be associated with an average annual
reduction in health costs of $22,444 per patient treated with
clozapine [109].
Our preliminary economic analysis indicates that screening test

with [18F]FDOPA PET would lead to an average healthcare saving
of £3400 per patient with schizophrenia. However, these potential
benefits need to be tested in a prospective study and assume that
all non-responders identified go on to clozapine. Another
consideration for translation is the practicalities of [18F]FDOPA
PET scanning. Practicability of PET in first-episode psychosis was
demonstrated both in research samples [34, 40–42], suggesting
that 10-min [18F]FDOPA PET scan could be potentially well
tolerated, but this needs evaluating in clinical settings. In support
of [18F]FDOPA PET practicability in a clinical environment the key
evidence is:

(1) FDOPA is already approved by the European Medicines
Agency as a diagnostic agent (EMA/729548/2018), meaning
its manufacture is standardised, facilitating introduction to
health services.

(2) FDOPA imaging is already approved by the FDA for the
diagnosis of Parkinson’s Disease (2019, ID: 4504654). As
such, the extension to another indication would be relatively
straightforward.

(3) FDOPA has a sufficiently long half-life to enable it to be
produced in a distribution centre, and then delivered to
hospitals. This is well established for clinical oncology PET
imaging with other tracers like FDG.

If this approach is to be implemented, parameter values and
operating procedures would need to be established for a range of
scanners and sites. The former could be done using normative
data from healthy volunteers or brain phantoms scanned across
different centres and scanners. The second implication is that [18F]
FDOPA PET imaging could be used to identify non-responders for
inclusion in trials of novel treatments for non-response. This could
be used to enrich trials for patients who might respond to a novel
therapy.

Table 2. AUC results for machine-learning methods, averaged over 100 random seeds (1 standard error).

SVM linear (mean ± SD) SVM rbf (mean ± SD) Random Forest (mean ± SD) Linear Knn (2n) Knn (3n) GP

Dataset1 0.71 ± 0.001 0.45 ± 0.025 0.70 ± 0.008 0.74 0.63 0.68 0.64

Dataset2 0.88 ± 0.001 0.80 ± 0.007 0.83 ± 0.006 0.89 0.75 0.79 0.83

Both datasets 0.89 ± 0.001 0.80 ± 0.001 0.76 ± 0.004 0.87 0.74 0.74 0.81

SVM Support Vector Machine, SVM rbf Support Vector Machine with radial basis function, Kernels. Knn (2n) K-nearest with 2 neighbours, Knn (3n) K-nearest with
3 neighbours, GP Gaussian Process.
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CONCLUSIONS
Our study showed that a short [18F]FDOPA PET imaging protocol
provides reliable and reproducible measures of dopamine
synthesis and that it and the full dynamic [18F]FDOPA PET
imaging protocol can be used to distinguish patients with
schizophrenia who are unlikely to respond to first-line antipsy-
chotic treatments from those who will respond at first episode.
The classification accuracy of the proposed simplified imaging
method is comparable to that from a dynamic [18F]FDOPA PET
scan. These results support the development of the short [18F]
FDOPA scan as a pathophysiologically relevant biomarker to guide
therapy choice for patients with psychosis.
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