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A robust and reproducible connectome fingerprint of ketamine
is highly associated with the connectomic signature of
antidepressants
Chadi G. Abdallah 1,2,3,4, Kyung-Heup Ahn1,2, Lynnette A. Averill1,2, Samaneh Nemati1,2, Christopher L. Averill 1,2, Samar Fouda1,2,
Mohini Ranganathan1,2, Peter T. Morgan2, Deepak C. D’Souza 1,2, Daniel H. Mathalon5, John H. Krystal1,2 and Naomi R. Driesen1,2

Over the past decade, various N-methyl-D-aspartate modulators have failed in clinical trials, underscoring the challenges of
developing novel rapid-acting antidepressants based solely on the receptor or regional targets of ketamine. Thus, identifying the
effect of ketamine on the brain circuitry and networks is becoming increasingly critical. In this longitudinal functional magnetic
resonance imaging study of data from 265 participants, we used a validated predictive model approach that allows the full
assessment of brain functional connectivity, without the need for seed selection or connectivity summaries. First, we identified a
connectome fingerprint (CFP) in healthy participants (Cohort A, n= 25) during intravenous infusion of a subanesthetic dose of
ketamine, compared to normal saline. We then demonstrated the robustness and reproducibility of the discovered ketamine CFP in
two separate healthy samples (Cohort B, n= 22; Cohort C, n= 18). Finally, we investigated the ketamine CFP connectivity at 1-week
post treatment in major depressive disorder patients randomized to 8 weeks of sertraline or placebo (Cohort D, n= 200). We found
a significant, robust, and reproducible ketamine CFP, consistent with reduced connectivity within the primary cortices and within
the executive network, but increased connectivity between the executive network and the rest of the brain. Compared to placebo,
the ketamine CFP connectivity changes at 1 week predicted response to sertraline at 8 weeks. In each of Cohorts A–C, ketamine
significantly increased connectivity in a previously identified antidepressant CFP. Investigating the brain connectivity networks, we
successfully identified a robust and reproducible ketamine biomarker that is related to the mechanisms of antidepressants.
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INTRODUCTION
Major depressive disorder (MDD) remains among the most disabling
illnesses, with increased risk of suicide and high treatment
resistance. Moreover, most standard MDD treatments are slow
acting, requiring weeks to months to achieve full therapeutic effects.
The discovery of the rapid-acting antidepressant (RAAD) effects of
ketamine has generated excitement and optimism in the field [1–3].
Over the past two decades, there has been a longstanding desire to
identify novel antidepressants that preserve the RAAD effects of
ketamine, without its side effects and abuse liability [4]. Molecular
and cellular hypotheses related to the mechanism of ketamine
efficacy suggest a number of novel directions to pursue in RAAD
drug development [5]. However, broadening the perspective to
include ketamine’s impact on brain functional connectivity networks
may enrich the effort to identify novel treatment mechanisms.
In particular, a network view of ketamine’s effects may help us to
better understand the underlying mechanisms, supplementing
current knowledge of ketamine’s neurochemical properties and
regional brain targets.
Profiling the connectivity of all the brain’s networks, a process

termed functional connectome fingerprinting has been success-
fully applied to predict behavior (e.g., [6]) and recently identified

a unique connectome fingerprint (CFP) that predates and
predicts response to antidepressants [7]. In the current study,
we employed this predictive model approach to identify robust
and reproducible functional connectivity signatures of ketamine.
This approach is a combination of the network-restricted
strength (NRS) methods and the connectome-based predictive
modeling [8, 9]. The connectome-based predictive model is a
series of analytic steps that selects and summarizes features,
builds and applies models, and finally assesses their predictive
significance [9]. Importantly, this predictive model retains the
ability to back-translate findings to the original feature space,
a unique advantage that is often lacking in many machine
learning approaches [6, 9]. In the NRS approach, we use whole-
brain parcellation along with the Akiki–Abdallah (AA) hierarch-
ical connectivity atlas [7, 10] to significantly reduce the number
of edges, while retaining the upstream canonical intrinsic
network affiliations to the central executive (CE), default mode
(DM), ventral salience (VS), dorsal salience (DS), subcortical (SC),
sensorimotor (SM), and visual (VI) networks [11]. The main goal
of this network-restricted strength predictive model (NRS-PM) is
not to assess the strength of predictions, but rather to identify
functional connectivity signature that is associated, significantly
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and consistently, with the outcome of interest (e.g., ketamine
effects) [11]. This approach has many strengths, including: (1)
the predictive model design may enhance reproducibility by
providing protection against overfitting, which is an issue with
traditional interpretive analyses; (2) the multivariate pattern
analysis allows the full assessment of the connectome, without
the inherent increase of Type I error due to univariate multiple
comparisons or the need to limit the analysis to a few seeds; and
(3) the results are, by design, network based that both informs
the neurobiological models and facilitates the integration of
findings.
In biomarker development, it is essential that the putative

marker is: (1) robust, having a large effect size so it is evident even
in relatively small samples; (2) reproducible, being stable within a
population and generalizing to new observations; and (3) relevant,
associated with the clinical outcome of interest such as predicting
group differences or changes in clinical status or being
responsible for these changes [12]. In this study, our primary
aim was to evaluate the robustness and reproducibility of the
effects of ketamine on human cortical functional connectivity
(here termed, “ketamine CFP”) across three samples of healthy
participants (Cohorts A–C; n= 18–25). We previously found that
the connectivity of a CFP identified during sertraline treatment
predicted response to ketamine compared to active control in
depressed patients [11]. Hence, as a secondary aim, we here
investigated whether the connectivity of the ketamine CFP will
predict sertraline antidepressant response in a randomized trial of
patients with MDD (Cohort D; n= 200).
We hypothesized that the NRS-PM in Cohort A would identify

a significant CFP of the effects of ketamine, and that this CFP
would be robust and reproducible in Cohorts B and C. We also
investigated, in Cohort D, whether the ketamine CFP connectivity
predicts the antidepressant response in MDD patients treated with
sertraline, compared to placebo. Finally, to assess the brain
localization of ketamine’s signature, we analyzed changes in
connectivity strength of all nodes, termed the nodal fingerprint
(NFP) [11].

METHODS
Participants and procedures
The data (n= 265) used in this study were collected as part of four
independent trials [13–16]. Functional connectivity analyses were
not performed previously in data collected in the primary sample
(Cohort A). Therefore, the ketamine connectivity signatures were
identified in Cohort A [14], while Cohorts B–D were used to assess
robustness, reproducibility, and clinical relevance [13, 15, 16].
All studies were approved by Institutional Review Boards, and all
participants signed informed consents.
Full details of the Trials A–D were reported previously [13–16]

and are summarized in the Supplementary information. Of
relevance to the current report, Cohort A (n= 25; mean age ±
SEM= 30 ± 1.9 years; 19 men), Cohort B (n= 22; mean age ± SEM
= 29 ± 1.5 years; 14 men), and Cohort C (n= 18; mean age ± SEM
= 28 ± 0.9 years; 18 men) included healthy subjects who received
brain functional magnetic resonance imaging (fMRI), during
administration of intravenous normal saline then ketamine as an
intravenous bolus (0.23 mg/kg) followed by an intravenous
infusion of 0.58 mg/kg throughout the scan. Participants were
excluded if they had an unstable medical illness, a psychiatric
disorder, or an MR contraindication. Cohort D (n= 200; mean age
± SEM= 38 ± 0.9 years; 67 men) included unmedicated nonpsy-
chotic patients with MDD who were randomized to a 8-week
course of up to 200mg daily sertraline or to placebo (Table S1).
Participants received fMRI scans at baseline and at Week 1 of
treatment [11, 16]. Depression severity was rated on the 17-item
Hamilton Depression Rating Scale at baseline and at Week 8 after
treatment.

Neuroimaging acquisition and processing
In the ketamine studies, fMRI scans were acquired during
intravenous infusions of normal saline and then during ketamine,
while subjects performed eight spatial working memory runs
(voxel size= 3.1 × 3.1 × 5mm3; TR= 1500ms, 166 frames; Cohort
A/B) or three visual oddball runs (voxel size= 3.4 × 3.4 × 4.5 mm3;
TR= 2000ms, 210 frames; Cohort C) [13–15]. In consideration of
reports of time effects [17], functional connectivity measures were
computed on the early runs (i.e., ~12min) during each intravenous
infusion of ketamine and of normal saline. In the MDD study,
fMRI scans were acquired at rest (3.2 × 3.2 × 3.1 mm3; TR=
2000ms; ~12min; baseline and Week 1 sessions) [7, 11, 18]. All
studies included high-resolution structural MRI. Brain scans from
all studies underwent the same surface-based preprocessing,
using a pipeline adapted from the Human Connectome Project
(https://github.com/Washington-University/HCPpipelines) [19], as
reported elsewhere [7, 11, 20–22]. Briefly, the preprocessing
pipeline included FreeSurfer parcellation of structural scans, slice
timing correction, motion correction, intensity normalization, brain
masking, and registration of fMRI images to structural MRI and
standard template. Then, the cortical gray matter ribbon voxels
and each subcortical parcel were projected to a standard
Connectivity Informatics Technology Initiative (CIFTI) 2 mm
grayordinate space (i.e., gray matter area in CIFTI). ICA-FIX was
run to identify and remove artifacts [23, 24], followed by mean
grayordinate time series regression (MGTR) [25].

Connectome and nodal predictive models
Full details of the NRS methods were previously reported [8, 11].
Briefly, the A424 atlas is used to segment the whole-brain gray
matter into 424 nodes, and to compute average time series within
each node [11, 26–28]. The AA hierarchical connectivity at 50
modules (AA-50; Fig. S1), 24 modules (AA-24; Fig. S2), and 7 modules
(AA-7) was used to determine the network affiliation of the A424
nodes (https://github.com/emergelab). The full connectome is the
Fisher-z transformation of the pairwise correlation coefficients. NRS
connectome is the pairwise average connectivity of all modules at
AA-50 and AA-24 [11]. Nodal strength (nS) is the average
connectivity of a node to all other nodes. Nodal internal NRS
(niNRS) is the average connectivity between each node and all other
nodes within the same canonical connectivity network (i.e., AA-7).
Nodal external NRS (neNRS) is the average connectivity between
each node and all other nodes outside its canonical connectivity
network [11]. The predictive models used were adapted from the
connectome-based predictive model approach [9], as previously
detailed [11]. The modeling includes feature selection in training
subsamples, followed by fitting a linear predictive model, then
applying the model to the test subsample [9]. As previously
established, we used 1000 iterations of tenfold cross-validation (CV)
to ensure the stability of the models and to determine the statistical
significance; that is by comparing true and random predictions [11].

Statistical analyses
Descriptive statistics were calculated prior to statistical analysis.
Data distributions were checked using normal probability plots.
The statistical significance threshold was set at 0.05 (two-tailed
tests). MATLAB (version R2018a; Mathworks Inc.) and the Statistical
Package for the Social Sciences (version 24; IBM) software
were used for the analyses. False discovery rate (FDR; q < 0.05)
was used to correct for multiple comparisons. FDR was applied
on all secondary outcomes within a research question. Applying
FDR across research questions did not affect the results.
The improvement-by-treatment interaction was computed as
the percent improvement in depression score multiplied by the
treatment contrast (i.e., 1 for study drug and –1 for placebo
control) [11]. NRS-PM at AA-50 is considered the primary CFP
analysis, with two secondary CFPs at AA-24 and full connectome.
The goal of the secondary CFPs is to inspect the upstream

A robust and reproducible connectome fingerprint of ketamine is highly. . .
CG Abdallah et al.

479

Neuropsychopharmacology (2021) 46:478 – 485

https://github.com/Washington-University/HCPpipelines
https://github.com/emergelab


modules (i.e., AA-24) and to test the model without applying
the AA network restrictions (i.e., A424—the full connectome) [11].
Similarly, nS predictive model is considered the primary NFP
analysis, with niNRS and neNRS as secondary analyses to
interrogate the shifts within and between networks, which are
not captured by nS [11]. Connectivity per fingerprint was
computed by multiplying the connectivity features (e.g., NRS at
AA-50) by the corresponding weighted fingerprint masks (e.g., the
antidepressant CFP from [11]). Thus, the CFP connectivity is
the sum of weighted estimates per subject per CFP. To facilitate
the comparison across samples, the CFP connectivity values were
standardized (z scored) within each cohort. Paired t-tests were
used to examine the effects of ketamine on the connectivity of
fingerprints. Pearson correlations were used to examine the
association among connectivity of fingerprints and between
ketamine fingerprints and depression improvement following
sertraline, compared to placebo. The similarity between ketamine
and depression CFP was quantified by computing the direct
correlations between their weighted edges. The study atlases,
codes, and predictive models will be made publicly available at
https://github.com/emergelab.

RESULTS
Ketamine connectome fingerprint (CFP)
The primary analysis, at AA-50, identified a CFP that is significantly
associated with ketamine infusion, compared to normal saline (r=

0.66, CV= 10, iterations= 1000, p < 0.001). Secondary analyses also
identified significant CFPs at AA-24 (r= 0.60, CV= 10, iterations=
1000, p < 0.001, q < 0.05) and at the full connectome (r= 0.65, CV=
10, iterations= 1000, p < 0.001, q < 0.05). As shown in Fig. 1,
ketamine infusion was associated with reduced connectivity within
the primary cortices (SM and VI) and within the CE–SC modules, but
increased connectivity between the CE–SC and the rest of the brain.
For the DM and VS modules, there is a shift from connectivity with
primary cortices during saline (i.e., negative predictive edges) toward
increased connectivity with the CE–SC modules during ketamine
infusion (i.e., positive predictive edges) (Fig. 1).
Due to the large number of predictive edges, visualizing the full

connectome often yields undiscernible CFP [11]. However,
inspecting the nodes with highest degree (i.e., top 2.5% of each
of positive and negative predictive edges) revealed a pattern of
connectivity signature comparable to the AA-50 CFP (Fig. 1c). The
sum of edges of the full connectome model depicts the nodal
degree of connectivity changes during ketamine, compared to
normal saline. Note that only edges that were statistically
significant in the model were depicted in the figures and included
in the sum of edges.

Ketamine nodal fingerprint (NFP)
The primary analysis, based on nS, identified an NFP that is
significantly associated with ketamine infusion, compared to
normal saline (r= 0.60, CV= 10, iterations= 1000, p < 0.001).
Secondary analyses also identified significant NFPs based on

Fig. 1 Ketamine connectome fingerprint (CFP). a–d Predictive models applied in healthy subjects receiving a subanesthetic dose of
ketamine identified a unique CFP consistent with reduced connectivity in edges within the central-executive–subcortical regions and within
primary cortices (i.e., negative predictive edges), along with increased connectivity between the central-executive–subcortical regions and the
rest of the brain (i.e., positive predictive edges). The circular graphs are labeled based on the Akiki–Abdallah (AA) whole-brain architecture at
50 modules (AA-50; primary CFP), 24 modules (AA-24), and the full connectome with 424 nodes (A424). Modules and nodes are colored
according to their affiliation to the seven canonical connectivity networks: central executive (CE), default mode (DM), ventral salience (VS),
dorsal salience (DS), subcortical (SC), sensorimotor (SM), and visual (VI). Edges are colored based on the initiating module using a counter-
clockwise path starting at 12 o’clock. Internal edges (i.e., within module) are depicted as outer circles around the corresponding module.
Thickness of edges reflects their corresponding weight in the predictive model. The module abbreviations of AA-24 and AA-50, along with
further details about the affiliation of each node are available at https://github.com/emergelab/hierarchical-brain-networks/blob/master/
brainmaps/AA-AAc_main_maps.csv. Only edges of significant predictive models following correction are shown (all p ≤ 0.001). For the full
connectome, it is not possible to visually discern the underlying signature considering the large number of edges retained. Therefore, as in
previous studies, the circular graph is thresholded using nodal strength within the full connectome fingerprint as cutoff to retain the highest
top 2.5% negative predictive edges and top 2.5% positive predictive edges. Panel d shows the nodal degree of the full connectome
fingerprint edges without a threshold. The color bar unit is arbitrary, reflecting the sum of weighted edges. All predictive models will be made
publicly available at https://github.com/emergelab.

A robust and reproducible connectome fingerprint of ketamine is highly. . .
CG Abdallah et al.

480

Neuropsychopharmacology (2021) 46:478 – 485

https://github.com/emergelab
https://github.com/emergelab/hierarchical-brain-networks/blob/master/brainmaps/AA-AAc_main_maps.csv
https://github.com/emergelab/hierarchical-brain-networks/blob/master/brainmaps/AA-AAc_main_maps.csv
https://github.com/emergelab


niNRS (r= 0.61, CV= 10, iterations= 1000, p < 0.001, q < 0.05) and
neNRS (r= 0.65, CV= 10, iterations= 1000, p < 0.001, q < 0.05). As
shown in Fig. 2, ketamine infusion was associated with significant
reduction in nS in the primary cortices and the hippocampus, but
increased nS in the CE–SC regions. Inspection of the niNRS/neNRS
results revealed a shift within the CE–SC networks, with reduced
internal but increased external connectivity during ketamine
infusion (Fig. 2c, d).

Generalizability of the ketamine fingerprints
We next investigated whether the above fingerprints identified in
Cohort A, hereafter termed ketamine CFP/NFP, would generalize
to new samples performing similar (Cohort B) or differing (Cohort
C) tasks during infusion. Compared to normal saline, ketamine
significantly increased the ketamine CFP connectivity at AA-50,
AA-24, and full connectome in both Cohorts B and C (all p ≤ 0.001,
q < 0.05; Fig. 3a). Ketamine also increased ketamine NFP strength
of niNRS and neNRS in both Cohorts B and C (all p ≤ 0.01, q < 0.05;
Fig. 3a). However, ketamine NFP of nS was significantly increased
in Cohort C (p= 0.001, q < 0.05), but not Cohort B (p= 0.17;
Fig. 3a).
Considering the excellent generalizability of the ketamine CFP,

we further assessed the robustness and reproducibility of the NRS-
PM in Cohorts B and C. As shown in Fig. S3, NRS-PM analyses
identified significant CFPs in both Cohorts B and C, which were
qualitatively and quantitatively comparable to the ketamine CFP
established in Cohort A (see Supplementary information).

Relevance to antidepressants treatment
To assess the relevance of the ketamine signatures to the effect of
antidepressants, we first investigated the association between the
connectivity of these fingerprints and the percent improvement in
depression scores following treatment with sertraline, compared
to placebo in Cohort D. We found a significant positive correlation
between percent improvement in depression scores at Week 8

and increased connectivity at Week 1 in each of the ketamine
CFPs at AA-50 (r= 0.30, df= 199, p < 0.001, q < 0.05), AA-24 (r=
0.27, df= 199, p < 0.001, q < 0.05), and the full connectome (r=
0.29, df= 199, p < 0.001, q < 0.05), and the ketamine NFPs of nS
(r= 0.21, df= 199, p= 0.003, q < 0.05), niNRS (r= 0.21, df= 199,
p= 0.003, q < 0.05) and neNRS (r= 0.26, df= 199, p < 0.001,
q < 0.05).
Next, we investigated the effects of ketamine on the antide-

pressant fingerprints previously identified by Nemati et al. [11]
(Fig. S4). As shown in Fig. 3b, we found that in each of Cohorts A–C,
ketamine significantly increased connectivity in the antidepressant
CFPs and NFPs. Note that the data were not combined across
cohorts in order to assess both the robustness (i.e., significance in
small samples) and the reproducibility of the fingerprints across
samples.
Finally, we investigated the association between the ketamine

and antidepressant fingerprints. Investigating the total connectiv-
ity across healthy and depressed subjects, we found positive
correlations between ketamine and antidepressant CFPs connec-
tivity (r= 0.95, df= 264, p < 0.001, q < 0.05; Fig. 3c), as well as
between ketamine and antidepressant NFPs connectivity (r= 0.89,
df= 264, p < 0.001, q < 0.05; Fig. 3d). Moreover, independent of
individual connectivity, the ketamine and antidepressant CFPs
weighted edges were found to be significantly correlated (r=
0.42, p= 1.0 × 10−104).

DISCUSSION
The study successfully identified a robust and reproducible
biomarker of ketamine’s effect on brain networks (i.e., ketamine
CFP). Secondary measures of CFPs were also significant (Figs. 1
and S5). Both primary (AA-50) and secondary (AA-24 and full
connectome) CFPs were generalized to two separate samples
(Cohorts B and C). While the study identified a significant
ketamine NFP, this biosignature generalized to Cohort C, but not

Fig. 2 Ketamine nodal fingerprint (NFP). a The nodal affiliation based on the Akiki–Abdallah (AA) hierarchical atlas at seven canonical
intrinsic connectivity networks (i.e., AA-7): default mode (DM), central executive (CE), subcortical (SC), ventral salience (VS), dorsal salience (DS),
sensorimotor (SM), and visual (VI). The AA-7 affiliation was used to compute nodal external network-restricted strength (neNRS) and nodal
internal NRS (niNRS). Nodal predictive results using nodal strength (nS; primary NFP; (b)), neNRS (c), or niNRS (d) as input features in healthy
subjects receiving a subanesthetic dose of ketamine. The nS findings (b) associated ketamine infusion with increased global connectivity in
the central-executive–subcortical regions (red-yellow), but reduced connectivity in the primary cortices and the hippocampus (blue). The
neNRS (c) and niNRS (d) findings demonstrate a connectivity shift during ketamine infusion with reduced internal within network connectivity
and increased connectivity between the central-executive–subcortical modules and the remaining brain networks. Only nodes of significant
predictive models following correction are shown (all p ≤ 0.001). The color bar unit is arbitrary, reflecting the sum of weighted nodes. All
predictive models will be made publicly available at https://github.com/emergelab.
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B, raising concerns about the reproducibility of the nS biomarker.
Nonetheless, it is important to note that as an average of all
connections, nS is network agnostic and is not able to capture the
dynamic shift within and between networks. As shown in Fig. 1,
the ketamine CFP is characterized by both reduction in internal
and increase in external connectivity. For these network shifts,
niNRS and neNRS are more suitable measures. As such, these
secondary NFPs were highly robust and reproducible across all
cohorts.
A major secondary finding is that the identified ketamine CFP

appears to be directly relevant to the treatment of depression, as
evident by the positive correlation between the increase of
ketamine CFP connectivity and treatment response following
antidepressant treatment compared to placebo in Cohort D.
Moreover, ketamine was found to significantly increase antide-
pressant CFP connectivity in each of Cohorts A–C. Furthermore,
there is high association between the ketamine and antidepres-
sant CFPs in both healthy and depressed populations. These
results are consistent with a previous report showing that,
compared to an active control, the ketamine-induced changes in
the antidepressant CFP connectivity during infusion predict
treatment response at 24 h in MDD patients [11]. Importantly,
the mechanisms of action of ketamine and monoaminergic
antidepressants are believed to converge at the level of synaptic
connectivity [4, 29]. Both modalities are thought to affect
neurotrophic factors leading to changes in synaptic plasticity
and ultimately brain circuitry and network reconfiguration, which
subsequently results in antidepressive changes [30]. It remains to

be seen in future studies whether the connectivity of ketamine
and antidepressant CFPs would also predict response to other
treatment modalities, such as electroconvulsive therapy and
transcranial magnetic stimulation.
Qualitatively, the ketamine CFP may indicate a pattern of

increased top-down control, showing a shift from internal
connectivity within SM–VI and within CE–SC modules toward
external connectivity between executive regions and primary
cortices. In the DM and VS modules, there is also a shift from
interference with primary cortices toward increased connection
with the CE–SC modules (Fig. 1). This dynamic internal to external
connectivity shift is also demonstrated quantitatively with the
distribution of niNRS and neNRS NFPs. As evident in Fig. 2, nodes
within the CE network have shown both reduction in niNRS and
increase in neNRS, which may have contributed to the dampened
effects on nodal nS. The latter is a combination of internal and
external connections (i.e., niNRS and neNRS).
The pattern of ketamine-induced enhanced executive connectiv-

ity is reminiscent of findings with the antidepressant CFP [11]. It is
also consistent with a model that associates depression with
disconnection between the executive regions and the rest of the
brain, combined with increased interference from the DM and VS
modules, showing higher connections to primary cortices. In this
model, ketamine and other antidepressants will exert their
therapeutic effects by reversing this pathology. Of relevance,
numerous MDD studies have shown reduced nS (also known as
functional connectivity strength or global brain connectivity) within
the prefrontal cortex (PFC) [13, 31–36], which might reflect the

Fig. 3 Reproducibility and clinical relevance of the ketamine connectome (CFPs) and nodal fingerprints (NFPs). a The ketamine functional
connectivity fingerprints identified in Cohort A were examined in Cohorts B and C. Ketamine significantly increased all connectivity
fingerprints during infusion, except the nodal strength (nS) NFP in Cohort B. These findings demonstrate the robustness and reproducibility of
the ketamine CFP. b In three cohorts of healthy participants, ketamine significantly increased connectivity of previously established
antidepressant fingerprints. These findings demonstrate the clinical relevance of the ketamine CFP and its generalizability to antidepressants
with differing initial neurochemical targets. c, d Across healthy and depressed subjects, there are high associations between the total
connectivity of ketamine and antidepressant fingerprints. AA Akiki–Abdallah hierarchical connectivity atlas, AA-50 CFP using AA at 50
modules, AA-24 CFP using AA at 24 modules, FC full connectome using 424 nodes (i.e., A424), neNRS NFP using nodal external network-
restricted strength, niNRS NFP using nodal internal NRS. * is used for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001, **** for p ≤ 0.0001, ****** for p ≤
0.000001. z is computed as the standardized sum of weighted estimates of connectivity per subject per fingerprint.
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hypothesized executive disconnection in depression. Importantly, it
was repeatedly shown that ketamine reverses this nS prefrontal
dysconnectivity during infusion and at 24 h post treatment of
depressed patients [13, 22, 31] (but not at 48 h [33]). Other studies
have also associated executive and DM alterations with depression
pathology and treatment [37–40].
The current results may relate to previous ketamine studies of

functional connectivity [15, 41–45]. However, a limitation of the
current method is that the modules are not directly comparable to
previous seeds and networks. Furthermore, the ketamine CFP was
derived from task data collected during ketamine infusion and
may differ from that observed under rest. Task-related connectiv-
ity typically reflects task cognitive operations and often differs
from resting connectivity [46]. It has been shown that seed-based
connectivity in the executive control network under ketamine
differs between task and resting state [15]. Task data may have
been especially useful, in the current investigation, because the
oddball and the spatial working memory task increase demands
upon the PFC. Since depressed individuals have prominent
prefrontal disruption [34], task data may highlight connectivity
similarities between individuals on ketamine and depressed
individuals. Furthermore, as previously validated, we used ICA-
FIX+MGTR in the current study to reduce artifacts and to
facilitate interpretation across studies (see Supplementary infor-
mation). Therefore, the current findings should be interpreted and
replicated within this context.
Despite these limitations, the ketamine CFP clearly shows that

ketamine-induced connectivity changes combine increases and
reductions in a network informed fashion. A leading model of
the mechanisms of ketamine is that chronic stress pathology
(CSP) and depression are associated with reduced synaptic
connectivity (i.e., reduced synaptic density and strength) and
that ketamine rapidly increases synaptic connectivity leading to
robust and sustained antidepressant effects [47, 48]. In the PFC,
and perhaps in the hippocampus, this CSP model has strong
preclinical evidence and broad supportive human data [49].
However, what is often less highlighted in the literature is that
CSP is also associated with increased synaptic connectivity in the
nucleus accumbens and other brain regions [30, 50]. Conversely,
ketamine effects are associated with reduced synaptic connec-
tivity in the nucleus accumbens [50, 51]. Together, these data
suggest that both increases and reductions in synaptic con-
nectivity are required to successfully induce antidepressant
effects. Considering that the ketamine-induced synaptic plasti-
city is activity dependent [52], we hypothesize that during
ketamine infusion, a glutamate surge [53] within the CE synaptic
connections gives rise to unique network shifts consistent with
the functional connectivity changes captured by the ketamine
CFP. This transient pattern of altered synaptic neurotransmission
is ultimately translated into changes of synaptic density and
strength, which leads to rapid and sustained normalization of
functional networks and to RAADs effects. This network-
dependent model may provide partial explanation for the failure
of other N-methyl-D-aspartate modulators [54]. For example,
rapastinel has shown significant increase in PFC synaptic
connectivity but failed in clinical trials [55]. Similarly, it may
provide insight into why local injection of rapamycin into the PFC
[56], but not its systemic administration [57, 58], block the
ketamine RAAD effects. In this network-dependent model, it is
hypothesized that interventions that affect synaptic connectivity
regionally, without inducing the full spectrum of ketamine CFP
changes, are unlikely to induce robust antidepressant effects.
Conversely, interventions that locally affect synaptic connectivity
(e.g., rapamycin in PFC), which subsequently disrupt the
ketamine CFP changes, may result in blockade of ketamine’s
RAAD effects. However, it is critical to underscore the speculative
nature of this network-dependent model and the need for
confirmatory causal evidence in future studies.
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