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Computational phenotyping and longitudinal dynamics
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Computational approaches have the potential to transform mental
health research and care. Biophysical modeling of brain mechanisms
can inform how neural activity produces behavior. Computational
phenotyping can dissect behavior into its components, helping
identify their neural bases. Finally, data-driven approaches can lead
us to novel diagnostic systems and biomarkers, as well as better
individual-level predictors that can guide care with precision.
There is early, suggestive evidence of the promise of such

approaches. The B-SNIP study [1] used a data-driven approach to
stratify a transdiagnostic sample of 3000 individuals with
psychosis into three biotypes with differences in cognitive and
social processing, sensorimotor reactivity, and psychosis symp-
toms. Similarly, a clustering analysis of functional connectivity
patterns in ~1000 subjects with depression revealed four biotypes
that differ by symptomatology and treatment responses [2]. These
studies, based on cross-sectional snapshots of primarily neuro-
biological data, represent important first steps toward harnessing
computational approaches.
To improve upon these efforts, we argue for supporting

approaches that integrate additional data types, such as app
and sensor-based data. Data inputs should also be refined to
align better to the underlying functional structure of behavior.
This is where computational phenotyping enters into the
equation. Formalizing behavioral constructs with mathematical
rigor, computational phenotyping seeks to make hypotheses
regarding behavior and test those hypotheses through precise,
quantitative predictions. A classic computational phenotype
study describes the rules underlying probabilistic reward-based
learning, which has been adapted to describe and predict

subjective mood [3]. This approach that has led to the
demonstration of a robust functional neuroimaging correlate
of depression in a recent meta-analysis [4], and inspired a recent
clinical trial demonstrating that antagonizing κ-opioid-receptor
improves reward-circuit dysfunction as a step along the pathway
to developing novel antidepressants [5].
An additional dimension that would enrich these datasets is

time. Psychiatric phenotypes are not static, but rather reflect
dynamic biological and psychological processes. Datasets need
to be not only multimodal but also longitudinal, with sufficient
temporal precision to sample this dynamism. Dynamic data
visualizations [6] can enable analysis of such datasets to
augment discovery and clinical decision-making. Consider the
example shown in Fig. 1, which uses a simulated dataset to
model the evolution over time of behavioral phenotypes in a
sample comprising three different biotypes. Initially, behavioral
data from the three biotypes overlap. Over time, however,
phenotypic measurements in the three biotypes evolve differ-
ently, particularly in response to an intervention.
To maximize the return on our data investments, we must

ensure that the phenotypes we measure, and the tools with
which we analyze these data, reflect the underlying neurobio-
logical processes and temporal trajectories inherent in the
illnesses we seek to understand. Importantly, a longitudinal,
deep phenotype approach would leverage individual and group
dynamics to predict and inform individual-level treatment-
response. This change could allow us to reimagine the design of
translational studies and augment our clinical decisions with
real-world, just-in-time clinical evidence.
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Fig. 1 Still visualization portraying the post-intervention tem-
poral trajectories of three hypothetical biotypes (synthetic data
in green, blue, and red) along three Research Domain Criteria
(RDoC) neurobehavioral dimensions (a brain-based measure,
cognitive control, and social processes task scores). Compare this
still visualization with its dynamic version at https://github.com/
mferr133/Animate_RDoC/blob/master/Animate_RDoC.gif (see R
code used to generate the figure at https://github.com/mferr133/
Animate_RDoC/blob/master/Animate_RDoC.R). The visualization
displays how a psychiatric intervention may move patient biotypes
from a mental health sub-space of low-function (bottom-left
region of each graph) to a mental health sub-space of high-
function (top-right region each graph). The x-axis is adjusted to
keep data centered while accounting for the intervention-induced
expansion across that dimensional scale (Social Processes), as well
as, to show the effect of an “outlier” on the model fitting—at the
beginning of the simulation. Individual trajectories are represented
in the dynamic version by the moving dots with possibility of
adding individualized labels (e.g., You). Each time step in the
temporal trajectory is represented as a vector with a direction and
an amplitude (acceleration) for each subject. Solid lines of different
colors represent the just-in-time, non-linear model fits for the three
biotypes. Loess, short for Local Regression is the non-parametric
approach that was used as model to fit multiple regressions in a
local neighborhood. The diameter of each dot represents a brain
measure, specifically a PRO-Mental Health Biomarker Quantification
(PROMHBQ) score (e.g., a brain oscillation or the strength of the
connectivity between two brain regions associated with positive
mental health outcomes). Scores have been scaled from 0 (lowest-
function) to 1 (highest-function) to compare the simulated data
with a theoretical population matched for age, gender, and
ethnicity. Top panel: pre-intervention baseline; center panel: 50 days
post-intervention; bottom panel: 100 days post-intervention.
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