Activation of proprotein convertase in the mouse habenula causes depressive-like behaviors through remodeling of extracellular matrix

Abstract

The lateral habenula (LHb) attracts a growing interest as a regulator of monoaminergic activity which were frequently reported to be defective in depression. Here we found that chronic social defeat stress (CSDS) increased production of pro-inflammatory cytokines in LHb associated with mobilization of monocytes and remodeling of extracellular matrix by increased matrix metalloproteinase (MMP) activity. RNA-seq analysis identified proprotein convertase Pcsk5 as an upstream regulator of MMP activation, with upregulation in LHb neurons of mice with susceptibility to CSDS. PCSK5 facilitated motility of microglia in vitro by converting inactive pro-MMP14 and pro-MMP2 to their active forms, highlighting its role in mobilization of microglia and monocytes in neuroinflammation. Suppression of Pcsk5 expression via small interfering RNA (siRNA) ameliorated depressive-like behaviors and pathological mobilization of monocytes in mice with susceptibility to CSDS. PCSK5-MMPs signaling pathway could be a target for development of the antidepressants targeting the inflammatory response in specific brain regions implicated in depression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CSDS triggered the inflammatory responses with microglial mobilization in the LHb.
Fig. 2: Upregulation of proprotein convertase Pcsk5 mRNA in the LHb with CSDS.
Fig. 3: CSDS caused upregulation of Pcsk5 expression in LHb neurons.
Fig. 4: PCSK5 facilitated microglial migration via activation of the MMP14-MMP2 signaling pathway.
Fig. 5: Knockdown of Pcsk5 ameliorated stress-induced depressive-like behaviors by suppressing mobilization of activated microglia in the LHb.

References

  1. 1.

    Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Weber MD, Godbout JP, Sheridan JF. Repeated social defeat, neuroinflammation, and behavior: monocytes carry the signal. Neuropsychopharmacology 2017;42:46–61.

    PubMed  Article  Google Scholar 

  3. 3.

    Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22:238–49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    O’Brien SM, Scott LV, Dinan TG. Cytokines: abnormalities in major depression and implications for pharmacological treatment. Hum Psychopharmacol. 2004;19:397–403.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Aizawa H, Cui W, Tanaka K, Okamoto H. Hyperactivation of the habenula as a link between depression and sleep disturbance. Front Hum Neurosci. 2013;7:826.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Lawson RP, Nord CL, Seymour B, Thomas DL, Dayan P, Pilling S, et al. Disrupted habenula function in major depression. Mol Psychiatry. 2017;22:202–8.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Salas R, Baldwin P, de Biasi M, Montague PR. BOLD responses to negative reward prediction errors in human habenula. Front Hum Neurosci. 2010;4:36.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D, et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 2011;470:535–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Cui W, Mizukami H, Yanagisawa M, Aida T, Nomura M, Isomura Y, et al. Glial dysfunction in the mouse habenula causes depressive-like behaviors and seep disturbance. J Neurosci. 2014;34:16273–85.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 2018;554:317–22.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry. 2010;67:e9–11.

    PubMed  Article  Google Scholar 

  12. 12.

    Proulx CD, Aronson S, Milivojevic D, Molina C, Loi A, Monk B, et al. A neural pathway controlling motivation to exert effort. Proc Natl Acad Sci USA. 2018;115:5792–7.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Krishnan V, Han M-H, Graham DL, Berton O, Renthal W, Russo SJ, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 2007;131:391–404.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Nakayama H, Abe M, Morimoto C, Iida T, Okabe S, Sakimura K, et al. Microglia permit climbing fiber elimination by promoting GABAergic inhibition in the developing cerebellum. Nat Commun. 2018;9:2830.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Golden SA, Covington HE, Berton O, Russo SJ. A standardized protocol for repeated social defeat stress in mice. Nat Protoc. 2011;6:1183–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30:923–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139–40.

    CAS  Article  Google Scholar 

  19. 19.

    Gawlak M, Górkiewicz T, Gorlewicz A, Konopacki FA, Kaczmarek L, Wilczynski GM. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses. Neuroscience 2009;158:167–76.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Morioka N, Abdin MJ, Kitayama T, Morita K, Nakata Y, Dohi T. P2X7 receptor stimulation in primary cultures of rat spinal microglia induces downregulation of the activity for glutamate transport. Glia 2008;56:528–38.

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Enokido Y, Tamura T, Ito H, Arumughan A, Komuro A, Shiwaku H, et al. Mutant huntingtin impairs Ku70-mediated DNA repair. J Cell Biol. 2010;189:425–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Wohleb ES, Powell ND, Godbout JP, Sheridan JF. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci. 2013;33:13820–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Nie X, Kitaoka S, Tanaka K, Segi-Nishida E, Imoto Y, Ogawa A, et al. The innate immune receptors TLR2/4 mediate repeated social defeat stress-induced social avoidance through prefrontal microglial activation. Neuron 2018;99:464–79.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Yang J, Anholts J, Kolbe U, Stegehuis-Kamp JA, Claas FHJ, Eikmans M. Calcium-binding proteins S100A8 and S100A9: investigation of their immune regulatory effect in myeloid cells. Int J Mol Sci. 2018;19:1833.

    PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010;10:712–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Bar-Or A, Nuttall RK, Duddy M, Alter A, Kim HJ, Ifergan I, et al. Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain 2003;126:2738–49.

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Benekareddy M, Mehrotra P, Kulkarni VA, Ramakrishnan P, Dias BG, Vaidya VA. Antidepressant treatments regulate matrix metalloproteinases-2 and -9 (MMP-2/MMP-9) and tissue inhibitors of the metalloproteinases (TIMPs 1-4) in the adult rat hippocampus. Synapse 2008;62:590–600.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36:1481–507.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Lively S, Schlichter LC. The microglial activation state regulates migration and roles of matrix-dissolving enzymes for invasion. J Neuroinflammation. 2013;10:75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Huntley GW. Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci. 2012;13:743–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Amo R, Aizawa H, Takahoko M, Kobayashi M, Takahashi R, Aoki T, et al. Identification of the zebrafish ventral habenula as a homolog of the mammalian lateral habenula. J Neurosci. 2010;30:1566–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Quina LA, Wang S, Ng L, Turner EE. Brn3a and Nurr1 mediate a gene regulatory pathway for habenula development. J Neurosci. 2009;29:14309–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Aizawa H, Kobayashi M, Tanaka S, Fukai T, Okamoto H. Molecular characterization of the subnuclei in rat habenula. J Comp Neurol. 2012;520:4051–66.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Misawa H, Nakata K, Matsuura J, Nagao M, Okuda T, Haga T. Distribution of the high-affinity choline transporter in the central nervous system of the rat. Neuroscience 2001;105:87–98.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov. 2012;11:367–83.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Remacle AG, Rozanov DV, Fugere M, Day R, Strongin AY. Furin regulates the intracellular activation and the uptake rate of cell surface-associated MT1-MMP. Oncogene 2006;25:5648–55.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Klein-Szanto AJ, Bassi DE. Proprotein convertase inhibition: paralyzing the cell’s master switches. Biochem Pharm. 2017;140:8–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Mu D, Cambier S, Fjellbirkeland L, Baron JL, Munger JS, Kawakatsu H, et al. The integrin ανβ8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-β1. J Cell Biol. 2002;157:493–507.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia 2002;39:279–91.

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Stawowy P, Fleck E. Proprotein convertases furin and PC5: Targeting atherosclerosis and restenosis at multiple levels. J Mol Med. 2005;83:865–75.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, et al. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci USA. 2009;106:12530–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Ghorpade A, Persidskaia R, Suryadevara R, Che M, Liu XJ, Persidsky Y, et al. Mononuclear phagocyte differentiation, activation, and viral infection regulate matrix metalloproteinase expression: implications for human immunodeficiency virus type 1-associated dementia. J Virol. 2001;75:6572–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Woo M-S, Park J-S, Choi I-Y, Kim W-K, Kim H-S. Inhibition of MMP-3 or -9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia. J Neurochem. 2008;106:770–80.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Liu S, Kimoto T, Fujita Y, Maeda T, Liu J, Tanabe-Fujimura C, et al. ATP increases the migration of microglia across the brain endothelial cell monolayer. Biosci Rep. 2016;36:e00318.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Kwon KJ, Shin CY, Choi MS, Ko KH, Ko HM, Cho KS, et al. ATP induced microglial cell migration through non-transcriptional activation of matrix metalloproteinase-9. Arch Pharm Res. 2010;33:257–65.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Kim S, Cho SH, Kim KY, Shin KY, Kim HS, Park CH, et al. α-Synuclein induces migration of BV-2 microglial cells by up-regulation of CD44 and MT1-MMP. J Neurochem. 2009;109:1483–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Karlstetter M, Lippe E, Walczak Y, Moehle C, Aslanidis A, Mirza M, et al. Curcumin is a potent modulator of microglial gene expression and migration. J Neuroinflammation. 2011;8:125.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Matsuda T, Sun D, Baba A, Yuan H, Ferrazzano P, Cengiz P, et al. Stimulation of Na+/H+ exchanger isoform 1 promotes microglial migration. PLoS ONE. 2013;8:e74201.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Yang Y, Wang H, Hu J, Hu H. Lateral habenula in the pathophysiology of depression. Curr Opin Neurobiol. 2018;48:90–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 2018;554:323–7.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Mizoguchi H, Yamada K, Nabeshima T. Matrix metalloproteinases contribute to neuronal dysfunction in animal models of drug dependence, Alzheimer’s disease, and epilepsy. Biochem Res Int. 2011;2011:1–10.

    Article  CAS  Google Scholar 

  52. 52.

    Verslegers M, Lemmens K, Van Hove I, Moons L. Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Prog Neurobiol. 2013;105:60–78.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Shibasaki C, Takebayashi M, Itagaki K, Abe H, Kajitani N, Okada-Tsuchioka M, et al. Altered serum levels of matrix metalloproteinase-2, -9 in response to electroconvulsive therapy for mood disorders. Int J Neuropsychopharmacol. 2016;19:pyw019.

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Shibasaki C, Itagaki K, Abe H, Kajitani N, Okada-Tsuchioka M, Takebayashi M. Possible association between serum matrix metalloproteinase-9 (MMP-9) levels and relapse in depressed patients following electroconvulsive therapy (ECT). Int J Neuropsychopharmacol. 2018;21:236–41.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Artenstein AW, Opal SM. Proprotein convertases in health and disease. New Engl J Med. 2011;365:2507–18.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Cain BM, Vishnuvardhan D, Wang W, Foulon T, Cadel S, Cohen P, et al. Production, purification, and characterization of recombinant prohormone convertase 5 from baculovirus-infected insect cells. Protein Expr Purif. 2002;24:227–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Bassi DE, Fu J, De Cicco RL, Klein-Szanto AJP. Proprotein convertases: ‘Master switches’ in the regulation of tumor growth and progression. Mol Carcinog. 2005;44:151–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Tombácz D, Maróti Z, Kalmár T, Csabai Z, Balázs Z, Takahashi S, et al. High-coverage whole-exome sequencing identifies candidate genes for suicide in victims with major depressive disorder. Sci Rep. 2017;7:7106.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Deepa Kamath Kasaragod for critical reading of the manuscript and Ms. Yuka Ishimaru, Ms. Sawako Ogata, Ms. Fumie Nishimura, Ms. Saori Okamura, and Natural Science Center for Basic Research and Development of Hiroshima University for the technical assistance. This research was supported by the Program of the Network-type Joint Usage/Research Center for Radiation Disaster Medical Science.

Author information

Affiliations

Authors

Contributions

HI and HA designed the study and wrote the manuscript. HI and KN performed experiments and analyzed data. KS and MA contributed new analytic tools. SY provided intellectual inputs.

Corresponding author

Correspondence to Hidenori Aizawa.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ito, H., Nozaki, K., Sakimura, K. et al. Activation of proprotein convertase in the mouse habenula causes depressive-like behaviors through remodeling of extracellular matrix. Neuropsychopharmacol. (2020). https://doi.org/10.1038/s41386-020-00843-0

Download citation

Search