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Neuroimaging has advanced identification of brain circuitry of
suicidal thoughts and behaviors (STBs), highlighting central roles
for frontolimbic systems in STBs in adults and their altered
trajectories in the development of STBs in adolescence when
STBs often first emerge [1]. Critical next steps are to elucidate
contributions of biopsychosocial factors and generate individua-
lized prediction. Large-scale multimodal datasets combined with
innovative computational approaches are required. Recently
forged international consortia (e.g., Help Overcome and Prevent
the Emergence of Suicide, HOPES, and Enhancing Neuro Imaging
Genetics through Meta-Analysis, ENIGMA) bring new hope; their
multimodal imaging and manifold potential risk factor data in
large samples provide unprecedented opportunities. However,
the numerous and potentially interacting polygenic and expo-
some factors present complex computational challenges and
group level findings may not generalize to the individual [2].
For example, while the ventral prefrontal cortex is a brain region
in which STB-related findings have converged, imaging findings
have been in gray or white matter structure or function, and
have shown varying influences of age, sex, genetic, and
immunological factors and exposure to stressors such as child
maltreatment [1, 2]. Furthermore, the emergence of large-scale
longitudinal data through digital technologies provide unique
opportunities for modeling dynamic changes over time, but
these present additional computational challenges. Advanced
multivariate statistical approaches, such as machine-learning
and network-modeling methods, which have shown success in
predicting STBs from complex albeit non-imaging data hold
promise for addressing these challenges.
Supervised machine-learning techniques are well-suited to

analyze multimodal data difficult to theoretically conceptualize
and practically model, and can be used to make individualized
predictions. Studies using large-scale datasets have started to
identify multimodal predictors for future STBs [3]. For example,
machine-learning approaches applied to psychological risk data in
3508 young adults (18–34 years) predicted both suicide ideation
and suicide attempts at 1-year follow-up with an area under the
curve up to 0.83 [4].
Theory-driven multivariate techniques are optimal when there

are clear a priori assumptions about the underlying relationships
among factors. These include structural equation modeling
analyses as they integrate multidomain variables to examine
hypothesized causal relations amongst variables based on
existing theoretical models. For example, path modeling used

to compare four causal models on relationships between social
risk factors and self-harm in adolescence supported a cumulative
risk model in which adverse social experiences accumulate to
increase risk for self-harming behaviors [5]. Another promising
technique, network modeling, allows quantification of complex
interplays between many interacting variables and can either
be theory-driven or data-driven. Recent use of this method,
to analyze core risk factors postulated in the interpersonal
psychological and integrated motivational–volitional theories of
STBs, provided novel views on salient psychological risk factors
such as perceived burdensomeness, internal entrapment, mental
well-being and interpersonal needs and complex relationships
among them [6].
The application of such multivariate computational methods

to analyze emerging large-scale imaging and multi-risk factor
longitudinal datasets has the potential to identify targets for early
and personalized suicide risk detection and prevention strategies
[2] to reduce this preventable cause of early mortality.
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