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Real-time mobile monitoring of bipolar disorder: a review of
evidence and future directions
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Rapidly accumulating data from mobile assessments are facilitating our ability to track patterns of emotions, behaviors, biologic
rhythms, and their contextual influences in real time. These approaches have been widely applied to study the core features, traits,
changes in states, and the impact of treatments in bipolar disorder (BD). This paper reviews recent evidence on the application of
both passive and active mobile technologies to gain insight into the role of the circadian system and patterns of sleep and motor
activity in people with BD. Findings of more than two dozen studies converge in demonstrating a broad range of sleep
disturbances, particularly longer duration and variability of sleep patterns, lower average and greater variability of motor activity,
and a shift to later peak activity and sleep midpoint, indicative of greater evening orientation among people with BD. The strong
associations across the domains tapped by real-time monitoring suggest that future research should shift focus on sleep, physical/
motor activity, or circadian patterns to identify common biologic pathways that influence their interrelations. The development of
novel data-driven functional analytic tools has enabled the derivation of individualized multilevel dynamic representations of
rhythms of multiple homeostatic regulatory systems. These multimodal tools can inform clinical research through identifying
heterogeneity of the manifestations of BD and provide more objective indices of treatment response in real-world settings.
Collaborative efforts with common protocols for the application of multimodal sensor technology will facilitate our ability to gain
deeper insight into mechanisms and multisystem dynamics, as well as environmental, physiologic, and genetic correlates of BD.

Neuropsychopharmacology (2021) 46:197–208; https://doi.org/10.1038/s41386-020-00830-5

INTRODUCTION
The potential of digital technologies for deepening understanding
of the etiology, risk factors, and course of mental disorders, as well
as informing their intervention and prevention, is becoming
increasingly apparent. Researchers are now seeking to quantify
the lived experience of those with mental health conditions
through capturing real-time information from a myriad of sensors
on smartphones and connected devices, making digital health one
of the fastest-growing areas of both research and commercial
development. These technologies are particularly valuable in
supplementing traditional clinical assessments that are inherently
retrospective in nature. They may also inform real-time manifesta-
tions and interrelations among domains of relevance to mental
health and enhance the delivery of evidence-based treatments that
may help to close the growing gap in access to mental health care.
The application of mobile assessment tools has enriched our

understanding of mental disorders that may fluctuate rapidly over
time, in particular bipolar disorder (BD). Tracking of mood
symptoms on a daily basis has a long history that predates the
digital tools that are now commonplace in psychiatric research.
Prospective daily ratings of the symptoms of BD were pioneered
by life charting tools developed by Post et al. [1, 2], who tracked
changes in symptoms and states in hundreds of patients over
periods of a year or longer. The widespread availability of mobile
tools has dramatically enhanced the feasibility of these earlier

paper and pencil methods that were both time-consuming and
analytically challenging.
This paper summarizes evidence on the application of mobile

technologies to gain insight into the role of the circadian system
and patterns of sleep and motor activity in people with BD. The
aims are to (1) provide background on both passive and active
mobile assessments in BD; (2) review the evidence for the roles of
sleep, motor activity, and circadian rhythms based on actigraphy
in BD and update earlier reviews of this body of research; (3)
summarize evidence from studies of active monitoring of BD using
ecological momentary assessment (EMA); (4) describe the
methodologic and analytic challenges to the administration and
interpretation of mobile technologies in BD; and (5) propose
recommendations for the future application of mobile tracking to
study mood disorders and related conditions.

BACKGROUND: MOBILE ASSESSMENTS
Mobile assessments fall into two broad categories that can
characterize the frequency and variability of specific daily
experiences: (1) passive or objective monitoring that automatically
collects data on physical states such as motor activity, heart rate,
temperature, and other physiological variables, and behavioral
data that capture physical location, patterns of smartphone
usage and speech patterns; and (2) active monitoring through
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smartphones and other devices that require intentional recording
of subjective experiences and states such as through EMA.

Passive assessments: actigraphy
The use of passive mobile assessments has grown exponentially in
the mental health field because of the increasing recognition of
the role of sleep and physical activity in the etiology or
exacerbation of specific disorders. Actigraphy, which quantifies
motor activity using a wrist-worn device that contains an
accelerometer measuring movement/acceleration, has been used
for more than two decades as an objective measure of sleep that
offers an alternative to the cumbersome and expensive methods
of polysomnography. It is the most widely used passive measure
to study traits and disorders of sleep and motor activity,
particularly for BD and attention-deficit hyperactivity disorder
(ADHD) [3–5]. The validity of actigraphy as an index of sleep has
been systematically studied [6]. According to the guidelines of
professional sleep societies [7, 8], valid estimation of sleep by
actigraphy also requires sleep diaries that facilitate the defining of
sleep onset, offset, midpoint, and other measures derived from
actigraphy.
Actigraphy-based differences in patterns of sleep and/or motor

activity have been particularly prominent in studies of mood
disorders [9, 10], but such differences have also been evident in
samples of people with psychosis [3, 11, 12], substance use
disorders [13], and ADHD [14]. While actigraphy has been most
widely used to study sleep patterns in people with BD, there has
been a growing focus on patterns of motor activity that also are a
central feature of BD [9].
There are now several large population-based studies that have

included actigraphy, including the UK Biobank [15, 16], the
National Health and Nutrition Examination Study in the US [17]
and the adolescent brain cognitive development (ABCD) [18].
There has also been a rapid growth of other passive measures
employed to track multiple domains in people with BD, such as
speech patterns [19, 20]. Smartphones and many wearable sensors
are able to collect user data, such as location via GPS and voice
data from conversations and social metrics, via call and text logs
[21, 22]. These trackers are being increasingly combined to
provide a comprehensive assessment of the regulation of multiple
systems simultaneously [23–25]. However, recent systematic
reviews of mobile apps for BD have concluded that, to date, few
of the apps follow practice guidelines or established methodolo-
gic standards for either symptom tracking, prediction, or manage-
ment of these conditions [26, 27].

Active assessments: ecological momentary sampling (EMA)
One important limitation in the interpretation of data acquired
through passive monitoring is the lack of contextual information
on variables that may influence the sleep, activity, or mood
changes inferred from speech, texting, GPS location, or other
interactive influences with mobile devices. Although many studies
do include subjective symptom ratings with passive monitoring,
most of this work is based on retrospective reporting of symptoms
across the week or month. Gaining insight into the directional
associations between events and psychological states and their
association with sleep and physical activity can be enhanced
through concomitant administration of tools that simultaneously
capture subjective descriptions of symptoms of mood, cognition,
and other subjective experience, which remain the core compo-
nent of psychiatric disorders [28].
The most common technique used to collect such real-time

data on daily fluctuations in emotions and other psychological
states is EMA, which uses mobile devices such as smartphones to
assess a range of physical and mental experiences at different
moments throughout the day. The reliability and validity of EMA
have been demonstrated for numerous mental conditions,
including major depression, BD, suicidal ideation, anxiety

disorders, schizophrenia, and drug or alcohol use disorders [29–
34], as well as for diverse medical conditions [35–38]. EMA reports
of physical activity are more highly correlated with actigraphy
data than traditional self-reports [33, 34, 39] while providing
descriptive and qualitative data concerning the types of activities
performed that are unavailable through actigraphy. The juxtaposi-
tion of data from actigraphy and EMA provide high-resolution
characterizations of the complex interactions implicated in both
physical and mental health disorders and, importantly, provide
lacking information concerning the environmental or social
contexts of symptom expression. There are now numerous studies
that combine actigraphy and EMA with other passive measures
including wearable sensors of light, temperature, galvanic skin
response and heart rate to provide multimodal tracking of
physical and environmental conditions experienced by the
individual in the natural contexts of daily life.

BACKGROUND: SLEEP AND CIRCADIAN RHYTHMS IN BIPOLAR
DISORDER
Almost all living organisms have evolved a biological timekeeping
system that allows them to anticipate changes in the environ-
ment. Information from the environment, called zeitgebers (time-
givers), is transmitted to these systems via input pathways that
then entrain (or synchronize) the circadian clock that anticipates
the 24-h day/night cycle. In humans, this system is housed in
the suprachiasmatic nucleus (SCN) in the hypothalamus, with the
most important zeitgeber being light, which is transmitted to
the SCN via retinal input pathways. The SCN coordinates hormonal
and synaptic output pathways to peripheral clocks throughout the
rest of the body, similar to the conductor of an orchestra. Directly
or indirectly, this system of master and peripheral clocks is
responsible for timing a variety of biological functions in the
human body, including sleep, physical activity, body temperature,
hormone release, digestive function, and gene expression.
When working in harmony, the circadian system promotes

healthy synchrony with the environment. However, disruptions at
any of the levels (input, integration, output) can lead to a
desynchrony internally and/or externally. Perhaps the most
common example is jet lag, where crossing large longitudinal
distances in short periods of time may disrupt the internal
circadian system that is not accustomed to the external
environment leads to sleep disruptions, among other effects.
Circadian systems differ across the age span, by sex and
developmental stage in youth [40, 41], and there is now increasing
focus on circadian control of several physiologic systems [42].
Newborns traditionally do not establish a stable circadian rhythm
for several months, whereas teens undergo a stereotypical delay
in their circadian system during puberty, and circadian signals
tend to weaken in later life. There are also significant inter-
individual differences in the period of endogenous circadian
rhythms and their ability to entrain to the environment.
The current gold standard for inferring circadian phase involves

assessing hormone release, specifically, the hormone melatonin.
Melatonin is released from the pineal gland in response to signals
from the SCN and can be measured through saliva, blood, or in
some cases, urine samples. Traditionally, melatonin levels begin to
rise around sunset and peak in the middle of the night. However,
melatonin levels can be acutely suppressed by the introduction of
light, including artificial light, and thus must be measured using a
constant routine. Other measures, such as gene expression and
heart rate variability, are also under investigation for inferring
circadian phase.

Biological markers of circadian function in bipolar disorder
Nearly 40 years ago, Lewy et al. [43] reported that untreated
bipolar patients experiencing manic or depressed phases had a
greater melatonin suppression to light at night than healthy
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controls. Similar results in untreated euthymic bipolar patients [44]
led them to propose that sensitivity to light may be a marker for
BD. The link between light and BD gained further support when it
was reported that lithium, a standard treatment for bipolar
disorder, diminished the light-induced suppression of melatonin
in treated bipolar patients [45, 46]. While the specific mechanism
of action of lithium is still not well understood, it does alter retinal
sensitivity to light [47] and may act directly on neurons in the SCN
to lengthen their circadian period [48]. Given the important role of
light in regulating the human circadian system, the well-
established circadian disruptions in BD [49, 50] (see below), and
the manipulation of light as a potential treatment for BD
[43, 44, 46, 49, 51], it is likely that alterations in the reception
and/or transmission of light may be a fundamental contributor to
symptom expression in this disorder. In fact, our recent findings of
an association between environmental light and both sleep and
mood and anxiety disorders in a nationally representative sample
of US adolescents highlight the influence of environmental
contextual factors on the core domains that are dysregulated in
BD [52].
Results concerning differences in the circadian release of

melatonin in people with BD are inconsistent. Whereas one study
found an advance in the peak phase of melatonin production in
patients experiencing mania [50], other studies have found
delayed phases of secretion in patients experiencing depression
[50, 53] or euthymia [54]. Other research has shown global
decreases in melatonin levels in patients with BPI regardless of
stage [55]. Heterogeneity in study designs and in the assessment
of melatonin may be partially responsible for discrepancies in
previous results. It is also important to delineate the compared
phase (when melatonin secretion begins or peaks) from amplitude
(how much melatonin is secreted throughout a night). Finally,
there is evidence that light-induced nighttime suppression of
melatonin is greater in people with BD compared to controls [56],
but that pharmacological treatment may reduce that suppression
[46]. For this reason, adjustment for treatment status is important
in evaluating the role of association between melatonin and BD.
There are circadian patterns of release of other biological

measures such as cortisol, which peak in the morning. People with
BD have been shown to have flatter diurnal curves and greater
fluctuations in the daytime secretion of cortisol than controls [57].
Body temperature, which is under partial circadian control, also
has an altered rhythm during depressive but not manic episodes
[58]. There is also desynchronization of diurnal body temperature
from heart rate among people with BD vs. controls [59]. Taken
together, these results suggest dysregulation of circadian rhythms
of multiple homeostatic regulatory systems in BD. However,
potential explanations that may include a weak rhythm in the
SCN, impairment in output signals to downstream SCN targets,
alterations in peripheral clocks, or other mechanisms have not
been well-established.

FINDINGS FROM MOBILE ASSESSMENTS OF BD
There are now over two dozen controlled studies that have
employed actigraphy to track circadian rhythms and sleep in more
than 1000 people with BD, as summarized in several comprehen-
sive reviews and meta-analyses [3, 9, 10, 60, 61]. The large number
of variables extracted from actigraphy tap the features of three
core domains: sleep, motor activity, and circadian variables. Below,
we summarize findings of each of these domains from controlled
studies and meta-analyses of actigraphy in people with BD, and
our update of recent studies that were not included in earlier
reviews of actigraphy and BD [62–65].

Sleep
Sleep has been one of the most widely studied features of people
with this condition [66]. Changes in sleep duration are one of the

key features of BD, but the direction of these changes is
dependent on episode type. Reduced sleep need is a stereotypical
characteristic of mania, and sleep deprivation can in fact trigger
manic episodes [5]. There also appears to be a change in sleep
architecture, as measured using EEG recordings, during manic
episodes with a decrease in REM latency and an increase in REM
density [67]. REM sleep is tightly controlled by the circadian
system and thus, disruptions in REM directly indicate a dis-
turbance in the circadian system during mania. Sleep disturbances
are also stereotypical of depressive episodes with reductions in
sleep efficiency, alterations in total sleep time, and slow-wave
sleep (SWS), delays in sleep onset, and reduced time to first REM
episode [68]. Sleep early in the night is typically predominated by
SWS, which is tightly associated with the homeostatic drive. It is
possible that during depressive episodes, sleep pressure builds
more slowly, delaying the need to initiate sleep and reducing the
time between sleep onset and first REM episode due to the
reductions in SWS early in the night.
Changes in sleep duration have also been shown to predict

changes in disease state. In one study which used self-report sleep
diaries, nearly half of patients showed a change in mood on the
same day or the day following a change in sleep duration with
increases in sleep preceding depressive shifts and decreases
preceding manic shifts [4]. Evidence from case studies has
suggested that restriction of light–dark cycles (14 h light, 10 h
dark) can stabilize mood cycles [69]; however, that schedule is not
practical for many individuals. Finally, a meta-analysis of all
relevant published data (regardless of the method of measuring
sleep) by Ritter et al. suggests that sleep disturbances may
precede the onset of BD by several years, beginning in puberty
[70].
Aggregate findings of these studies converge in showing

significantly increased sleep time, sleep latency, wake after sleep
onset, and decreased sleep efficiency in samples of people with
BD compared to controls. Two recent reviews have summarized
the characteristics and results of more than 20 controlled studies
of actigraphy-derived sleep parameters in BD. A meta- analysis by
Tazawa et al. [61] showed differences in the sleep patterns among
those with BD compared to those with MDD, particularly those in
remission. In a comparison of actigraphy-derived sleep patterns in
samples of people with interepisode BD vs schizophrenia, Meyer
et al. [3] found that both groups exhibited greater total sleep time,
time in bed, sleep latency, and wake after sleep onset, and greater
variability in total sleep time than controls. However, interepisode
sleep patterns in those with BD did not differ from those with
schizophrenia, potentially suggesting common factors associated
with these disorders. Our review of subsequent studies of BD,
support the conclusions of reviews that BD individuals have longer
sleep duration, but sleep more poorly as measured by wake after
sleep onset (WASO) [65]. In summary, the dozens of controlled
studies of actigraphy in BD have consistently demonstrated
differences in sleep patterns, both during and between acute
episodes. However, the extent to which these patterns are specific
to BD compared to MDD or other mental disorders has not been
well-established.

Motor activity
Although the importance of activation in BD has long been
recognized, changes in motor activity have been relatively
neglected in studies of this condition. The inclusion of changes
in motor activity in the DSM-5 as a core feature of BD is supported
by both clinical assessments and objective measurement through
actigraphy [9]. Counterintuitively, people with BD tend to have a
greater proportion of sedentary time than those without BD or
community controls. Activity profiles also differ by age and BMI,
but not sex [71]. Normative patterns of actigraphy-derived motor
activity show a strong decrease in activity across age, with a dip at
puberty and gradual increase to mid-adult life and a decline
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thereafter [72]. Whereas most of the studies of actigraphy in BD
control for sex and age, there is lack of data on sex and age
differences across development.
The aggregate evidence consistently shows decreased average

activity levels among those with BD compared to controls [10].
Scott et al. [9] found that the lower mean levels of activity in BD
occurred both during euthymia and depression compared with
controls and other comparison groups. Moreover, BD was better
characterized by greater variability than by average levels of
activity. Greater levels of sedentary behavior are strongly
correlated with BMI and longer time spent in depression.
However, some studies have neither found significant differences
in daily activity in people with euthymic BD compared to controls
[61] nor in several indicators of activity [3].
Although the derived parameters from actigraphy do reflect the

timing of peak activity and sleep, few of the studies of BD present
descriptive data on the time of day and activity among people
with BD. For example, Shou et al. [64] showed that the most
significant differences in motor activity between people with BDI
and controls occurred in the latter half of the day, possibly a
reflection of greater eveningness in people with BD. These
somewhat inconsistent findings may therefore be a reflection of
the heterogeneity of the clinical and control samples, study
designs, and procedures described in earlier reviews [10].

Circadian rhythms
The circadian rhythms component of actigraphy is derived
from measures that tap the timing of sleep and motor activity
across the day. One of the most widely studied measures of stable
characteristics of daily activity and sleep is chronotype that is a
measure of the time preference for daily activities and sleep.
Chronotype was first assessed with a validated questionnaire
developed by Horne and Ostberg [73], with more recent measures
such as the Munich ChronoType Questionnaire [74] and the
Composite Scale of Morningness [8] that assess different aspects
of the chronotype concept. These subjective measures of
chronotype are strongly correlated with the objective
actigraphy-derived midpoint of daily activity and sleep [75]. There
is consistent evidence from both subjective and objective data
that people with BD tend to have a late chronotype [75, 76] as well
as later timing of exposure to light [65] and later timing of activity
[63]. However, whether late chronotype is a trait marker,
consequence, or correlate of BD has not been established. Studies
of the developmental, sex, and age manifestations of chronotype
will facilitate our understanding of this concept in BD [77].
Through the use of various analytical techniques, it has become

possible to examine other features of circadian rhythms from
actigraphy data, such as relative amplitude, interdaily stability, and
intra-daily variability as measures of an individual’s circadian
rhythm. As the extraction and analysis of actigraphy data have
advanced, so too has the application of these tools to help answer
outstanding research questions with regard to both state (mania,
euthymia, depression) and trait features of BD.
Similar to motor activity, several studies have compared

circadian rhythm variables to differentiate mood states in
individuals with the BPI subtype of BD [78, 79]. For example,
one study employed actigraphy to differentiate healthy controls
from euthymic individuals with BD, irrespective of subtype [80],
while another used motor activity patterns to differentiate
controls from euthymic individuals with BDI, BDII, and MDD [64].
Still, other studies have focused on differentiating individuals with
BD from those with other psychiatric disorders such as schizo-
phrenia [81] or borderline personality disorder [59].
Biologic and genetic correlates of actigraphy parameters have

also been examined for BD. For example, Pagani et al. [82] used
actigraphy as one of a series of potential endophenotypes for BD
in large extended pedigrees of people with this disorder. Vreeker
[7] further examined other measures, including neuroimaging,

cognitive and temperamental factors, as correlates of actigraphy
parameters [7]. Other studies have investigated sleep patterns in
the offspring of individuals with BD [70, 83]. Twin studies have
begun to examine the components of actigraphy that may be
heritable [84]. Taken together, these studies illustrate the potential
of actigraphy as a research tool that may inform broader
phenotypic and biologic and genetic correlates of the
manifestations of BD.

ANCILLARY SUBJECTIVE MEASURES: EMA
The core components of diagnostic criteria for mental disorders
are largely dependent on subjective interpretation of emotions,
fears, thoughts, and changes to the “usual levels” of their
underlying dimensional manifestations. Traditional clinical evalua-
tions are prone to bias in retrospective reporting of the typical
number and intensity of symptoms [85]. Moreover, the dynamic
nature of mechanisms that influence the onset or severity of
symptoms that may unfold over seconds, minutes, or hours rather
than the periods of weeks, months, or years that are most often
applied in their assessment. This is a particular concern in the
diagnosis and treatment of BD, which is characterized by
emotional instability and heightened stress reactivity regardless
of current clinical status [86]. While some of these temporal
limitations may be overcome by certain laboratory or clinic-based
paradigms, an additional concern is the ecological validity of data
that are collected solely within the same environmental context.
That is, observations made in controlled conditions may not fully
correspond to the actual expression of clinical phenomena in
daily life.
A solution to these fundamental barriers of time and context is

to administer more frequent, albeit brief, assessments in real time
and in the natural environments of daily life. This approach, which
began with clinical research diaries in the 1940’s, has evolved with
mobile technologies into what is known today as EMA. While
there is considerable heterogeneity in the use of this method, the
typical procedure involves providing participants with a smart-
phone or other electronic device that prompts them to complete
assessments at multiple time points throughout the day. In their
reviews, Ebner-Preimer and Trull [87, 88] enumerate the major
benefits that EMA offers, including the reduction of retrospective
bias, real-time tracking of dynamic processes, simultaneous
integration of multilevel data (e.g., biological, psychological),
characterization of context-specific associations of behaviors and
symptoms, inclusion of interactive feedback, and enhanced
generalizability of results. EMA has been shown to be highly
feasible and valid in the assessment of patients with mood
disorders [29, 32], and in the assessment of frequently-associated
conditions such as substance abuse or suicide ideation [89, 90].
Using EMA, studies of differences in mood between individuals

with BD and controls have reported mixed results. One study that
examined levels of positive affect (PA), negative affect (NA), and
self-esteem was unable to differentiate those with BD from
controls. However, those with BD did have relatively high levels of
within-person variability [91]. In contrast, studies by Havermans
et al. reported that people with BD reported less PA and more NA
than controls [92, 93]. Similarly, two recent studies found that
adults with BD reported significantly lower median mood and
energy levels when compared to controls [94], and another study
showed that youth with BD reported less PA and greater NA [95].
EMA studies of emotional reaction to stress in daily life in

people with BD have also been inconsistent. While Myin-Germeys
et al. [96] found that patients with BD reported larger decreases in
PA than controls in response to stress, Havermans et al. [93] did
not. More recently, Lamers et al. [97] found that individuals with
BPI reported greater decreases in both sad and anxious mood
than controls after positive events, whereas individuals with MDD
only experienced greater decreases in anxious mood. By contrast,

Real-time mobile monitoring of bipolar disorder: a review of evidence and. . .
GP Dunster et al.

200

Neuropsychopharmacology (2021) 46:197 – 208



there were no changes in either anxious or sad mood in people
with BDI following negative events. Several studies have also
employed EMA to characterize additional features of BD. For
example, recent research suggests that while individuals with this
condition do not differ with regard to speed of thoughts or
impulsivity relative to controls, they do report significantly higher
variability in these domains [94]. A recent study that applied the
novel methodology of fragmentation analysis as an index of the
instability of mood states (see below) to EMA data from the NIMH
Family Study revealed that people with BDI have greater
fragmentation or instability of attention and energy, but not
mood or anxiety [98]. This provided additional evidence that
instability of mood may not be a core feature of this subtype of
BD. By contrast, people with MDD had greater fragmentation of
sad mood, as would be expected with this disorder.
The concomitant use of active and passive monitoring is a

particularly valuable approach to investigate the interrelations of
motor activity, sleep, circadian rhythms with mood, and other
subjective states among people with BD compared to controls or
other conditions, such as borderline personality disorder
[28, 59, 63, 94]. For example, in the National Institute of Mental
Health Family Study of Affective Spectrum Disorders [28], we
combined actigraphy and EMA 4 times per day to track energy,
mood, sleep, and motor activity in a community-based sample
that included subgroups with BD, MDD, and controls. The findings
revealed bidirectional associations between motor activity and
sleep and between motor activity and subjective energy, and a
unidirectional association between motor activity and mood at
the subsequent assessment across all participants in the study.

Among those with BD, there was greater cross-domain reactivity
in people with BDI, suggesting that dysregulation of homeostatic
balance may underlie BD [28]. These observations are consistent
with the application of physical activity programs to relieve
depressed mood [71]. The collection of physiologic and biologic
data such as cortisol, melatonin, and heart rate measures in
conjunction with actigraphy and EMA will provide greater insight
into the biologic correlates of the patterns and rhythms of the
manifestations of BD in daily life [59, 99].
The approach shown in Fig. 1 provides dynamic, real-time

multilevel measures that depict their level, stability, and variability
of each domain, as well as the cross-sectional and ordinal
associations within and between days. The aggregate patterns
of these measures can provide individualized profiles of emo-
tional, physiological, motor activity, sleep, diet, and reactivity to
daily events that may ultimately inform personalized interven-
tions. Concomitant developments in statistical methods are
providing powerful tools to analyze these intensive repeated
measures multilevel functional data using structural equation
modeling and functional data methods that incorporate both
group and individual-level associations as described below.

CHALLENGES IN INTERPRETING AND AGGREGATING MOBILE
ASSESSMENTS
Sampling and procedures
The compelling evidence for differences in patterns of daily
rhythms in several mental disorders holds promise for the utility of
these approaches to inform interventions, but translation is

12 am 12 pm 4 pm 8 pm 12 am

1 2 3
654

7 8 9
Mood

1 2 3
654

7 8 9
Sleep/
Activity

1 2 3
654

7 8 9
Eating

1 2 3
654

7 8 9
Energy

1 2 3
654

7 8 9
Heartrate

Biomarkers

8 amTime

Fig. 1 Figure 1 illustrates the domains assessed in the NIMH Family Study through simultaneous objective and subjective ratings tracked
in real time. Continuous objective measures of sleep and heart rate are derived from accelerometry with a wrist-worn device and analog
ratings of mood, energy, anxiety and a range of other emotions, contextual information, stressors, food intake, sleep timing and quality,
exercise and saliva samples are collected four times per day on a mobile phone application.
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limited by wide variation across studies in the samples,
procedures, and measures used [9, 10]. Methodologic differences
in particular have impeded our ability to summarize the aggregate
evidence for patterns of activity and sleep in mood disorders, as
well as their associations with psychological states, behavior, and
context in real time. The most important challenge is the variation
in the procedures used for the collection of mobile data, including
different devices, platforms, assessment durations, and intervals.
The sample sizes included in most studies (and particularly

clinical samples) are quite small, diminishing the power to fully
exploit the complex network of factors involved in the domains
tapped by mobile assessments. Likewise, few studies include
systematic sampling procedures, and subsamples of large
population registries with actigraphy are often non-
representative of the full sample. Although most studies have
controlled for the effects of sex and age, there is a lack of
information reported on sex differences in these studies,
particularly across stages of development. Our earlier study
showed a sex difference in the timing of motor activity, with
females having significantly greater activity than males later in the
day [64]. The other glaring gap in this research is the lack of
diversity of the samples; race and ethnicity were rarely reported in
previous studies. This is surprising in light of the evidence for
strong ethnic/racial differences in circadian rhythms and sleep
from population-based studies [100].
Other well-established confounders of the associations between

mood disorders and actigraphy domains such as body mass index
(BMI), smoking, medication use, and additional factors have not
been controlled in the majority of studies using actigraphy in BD.
The association between actigraphy parameters and BMI is of
particular interest, as systematically investigated by Boudebesse
et al. [78]. In addition, many studies that have employed
actigraphy as an index of sleep do not include the sleep diary
questions that are recommended by the guidelines of professional
sleep and biologic rhythms societies [7, 8].

Analytic challenges and innovation
A review of traditional statistical methods in actigraphy and sleep
studies of people with BD has been recently summarized by the
Circadian Rhythms Task Force of the International Society for
Research in BD [60]. Some limitations in current analytic
approaches of actigraphy data include the parametric methods
used to analyze actigraphy data due to the restrictive assumptions
of many of the derived parameters, different methods for
combining the minute-to-minute data derived from actigraphy
across days and weeks, and differences in within-day compared to
cross-day summaries that are often not incorporated in the
analyses or presentation of the data. A spectrum of novel
“functional” data analysis (FDA) [101] methods have recently
been developed that are fully data-driven without the required
parametric assumptions about the functional form of diurnal
patterns required by most traditional actigraphy analytic methods.
Here, “functional” is a term reflecting the idea that epoch-by-
epoch actigraphy counts can be thought of as “curves”
representing persons’ rest/activity patterns over 24-h periods.
Techniques such as functional principal component analysis
(FPCA) [17, 102], multilevel functional principal component
analysis (MFPCA) [12], function-on-scalar regression (FOSR) [103],
and generalized function-on-scalar regression (gFOSR) [104] that
combines both MFPCA and FOSR [105] have provided more
powerful approaches to capture the intense repeated measures
data extracted from actigraphy. Application of these approaches
to the growing body of actigraphy data on BD, particularly with
the growing effort to combine data across studies, will have more
power to represent the daily, weekly, seasonal, and annual
patterns of sleep, physical activity, and circadian rhythms in this
disorder.

An important challenge for researchers on BD concerns the
difficulty in selecting the most pertinent parameters derived by
actigraphy from among the highly numerous metrics generated
from this technology. This difficulty is complicated even further by
the frequent lack of a priori hypotheses concerning how specific
metrics may be related to BD symptoms. Most studies that have
investigated genetic factors associated with actigraphy para-
meters have examined dozens of derived features individually,
sometimes with a false discovery or other correction for multiple
testing. However, these findings may be misleading because of
the high intercorrelations among the actigraphy metrics. The use
of the joint and individual variance explained (JIVE) [106] method,
a data reduction technique for multivariate data on multiple
domains, estimates the joint and individual variance explained by
the three domains derived from actigraphy, sleep, activity, and
circadian rhythmicity. These features are estimated through
integrative analyses that decompose the data into a low-rank
approximation that estimates the portion of variance that is
shared across the three domains as well as specific to each. Due to
its capacity to integrate complex relations within and between
domains, the JIVE regression generally results in a higher area
under the curve and a greater percentage of variance explained.
In Fig. 2, we illustrate the application of this novel technique to

actigraphy data collected from 311 adult participants with a range
of mood disorder subtypes and controls who participated in the
National Institute of Mental Health Family Study of Affective
Spectrum Disorders [28]. We applied JIVE to the NIMH Family
Study actigraphy data in order to identify the joint and individual
variance explained by the three features of activity including
physical activity, sleep, and circadian rhythmicity. Figure 2 shows
the individual variance explained by these features of actigraphy.
Joint variation explained 57% for the variance of sleep, 84.6% of
the variance of physical activity, and 49.8% of the variance of
circadian rhythmicity. The high levels of joint variation indicates
the substantial overlap across these three domains that have
generally been considered independently in research on BPD.
Regression analyses of the JIVE scores showed that people with
BDI differed significantly from controls on the joint score that
loaded for the average and variability of motor activity and intra-

Fig. 2 Individual variation from application of JIVE to the NIMH
Family Study actigraphy data. The individual variation attributable
to sleep features was 31.3%, circadian rhythm variables was 30.5%,
and physical activity 11.4%.
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daily variability of circadian rhythmicity (CR) feature (intra-daily
variability), but not on the individual or joint factors involving
sleep parameters. Of interest, there were no significant differences
for people with either BD- II or MDD compared to controls.
Likewise, analytic tools that represent the multilevel intensive

time series data collected in the within- and between-day ratings
on EMA devices also have some limitations in terms of
assumptions and multiple testing. One novel framework that
was recently introduced for EMA data application is fragmentation
modeling that quantifies the stability/instability or fragmentation
of standardized trajectories of emotional states. This procedure
applies a two-step approach that first normalizes participant-level
scores and then dichotomizes states inside and outside a range of
1 standard deviation as an index of stability (less fragmentation) or
instability (more fragmentation) of assessed domains [98]. There
are also substantial ongoing efforts to adapt structural equation
modeling and other statistical tools for such high intensity
multilevel repeated measures data that may improve our ability
to characterize and predict changes in multilevel dynamic states
that can now be tracked with mobile technologies.
Considerable variation is observed in the number of days of

monitoring for both the active and passive assessments covered
in this review. The average duration of EMA studies was 8.2 days
(range: 6–14 days). The average duration of the recent actigraphy
studies covered in this review was 25.5 days (range: 14–50 days),
which represents an increase in homogeneity relative to the range
for studies included in previous reviews (1–56 days). Within-day
variability is a particular concern for EMA studies, which ranged
from two to ten assessments per day for subsequent studies
reviewed here. However, this variation is explained by the fact that
discreet and rapidly fluctuating phenomena (such as specific
cognitions) are more easily assessed by within-day sampling
schedules at a high frequency, while events that typically persist
over several hours or days typically require a lower frequency of
assessment.
Missing data are another important methodologic issue, but it

was not consistently reported across studies. Most participants
with BD are highly compliant with the multiple within-day
assessments of EMA studies, with an average cross- study
compliance rate of 85.9% (range: 78–90.5%) and that do not
differ considerably from those of controls (average: 85.3%; range
83–87%). Again, due to the continuous nature of passive
monitoring, missing data are rarely reported because it may be
erroneously assumed that such information is not pertinent. In our
review, only one study published information on missing data,
restricting it to stating the percent of subjects who wore their
monitors for the entirety of the study [63]. Whether this lack of
reporting is because of excellent general adherence across
studies, or due to study conventions or other reasons is unknown.
However, this lack of clarity underscores the need to system-
atically report this information in future studies.
A number of techniques to enhance compliance and reduce

missing data in people with BD and other serious mental disorders
including people with schizophrenia. These approaches generally
include three strategies: (1) participation-contingent compensa-
tion (whereby bonuses are provided based on the achievement of
a specified threshold of compliance; it is used for both active and
passive assessments); (2) Device-based restitution of compliance
information (such as providing a counter for the percentage of
completed assessments; it is used in EMA studies); and (3)
providing information to the participant to encourage their
participation as well as reminder contacts throughout the
assessment period (both active and passive assessments). This
third approach is rarely mentioned when presenting study
methods, but it is perhaps the most important of all established
strategies. In brief, compliance can be greatly improved by
communicating the value of unique individual-level information to
the participant at study inception and explaining how it

supplements other information that is inaccessible to other
research methods.

SUMMARY AND FUTURE DIRECTIONS
Summary
Rapidly accumulating data from mobile assessments of people
with mental disorders is facilitating our ability to track the patterns
of core emotions, behaviors, biologic rhythms, and their
contextual influences in real time. These approaches have been
widely applied to study the core features, traits, changes in states,
and impact of treatments in BD [61]. The dozens of published
studies that have used actigraphy in BD converge in showing
significantly greater average variability of total sleep time and
sleep disturbances among those with this disorder compared to
controls. There is also compelling evidence for lower average
motor activity among people with BD from studies of actigraphy
in the euthymic state as well as during depressive episodes. These
studies have shown that people with BD have a later sleep
midpoint, a marker of morningness-eveningness, and a shift to
activity later in the day than those with MDD or controls.
Despite the consistency of the findings, there is still insufficient

evidence regarding state versus trait effects, differences by
subtypes of BD (including BDI vs BDII) and the lack of specificity
of findings on sleep patterns for BD. These rich studies have
nonetheless provided high-resolution phenotyping of people with
BD and other conditions in real time, but they are time and labor-
intensive, requiring a fairly long-term investment of investigators
and participants. Perhaps for this reason, sample sizes in most of
these studies are generally too modest to explore correlates of
domains jointly assessed by active and passive monitoring such as
confounding influence of social structure (weekend vs weekday),
seasonality, substances or medications, and physical conditions
that frequently co-occur with BD. Non-systematic samples have
often precluded exploration of sex and age effects, a finding that
is particularly noteworthy given the growing evidence for both
age and sex differences in the biologic and contextual factors
influencing mood, sleep, motor activity, and circadian rhythms.
Nevertheless, despite limitations of the current evidence base,
mobile technologies will continue to provide an increasingly
powerful tool to identify the heterogeneity of BD and its biologic
and environmental correlates.
This review also shows the progress in the shift toward the

conceptualization of dysregulation of rhythms in BD as opposed
to the accumulation of symptoms of sleep, energy, appetite, and
activity. Whereas most actigraphy research on BD has focused on
sleep patterns, the more recent shift to characterize motor
activity as a core feature of this condition has facilitated a more
accurate description of the full 24-h cycle. Circadian rhythms
that were often not incorporated in early work, are now being
recognized as sources of heterogeneity for the genetic, biologic,
and contextual factors that contribute to BD. Advances in our
understanding of the complex molecular biology of circadian
rhythms and their intrinsic and extrinsic drivers [107] will guide
the development of more systematic hypotheses regarding
specific components of BD that can be tested using real-time
technology over longer periods in the natural contexts of
daily life.

Clinical implications
There have been several efforts to incorporate actigraphy as an
objective measure to assess the impact of treatment [61, 108]. For
example, Hwang et al. [109] used actigraphy to examine
differential treatment effects of quetiapine and lithium for BD.
Several studies are now using mobile tools to provide objective
measures of changes in sleep, and there is a growing effort to use
mobile tools to actually deliver treatment for the improvement of
sleep regularity and related rhythms [110]. These mobile tools may
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also be valuable in characterizing symptoms and progression in
order to provide a more accurate diagnosis by discriminating
between BD and ADHD [14] or borderline personality disorder and
BD [63]. As suggested by Benard et al. [108], a further important
application of these mobile tools is to identify the role of sleep
and circadian rhythms in suicide attempts. By establishing stable
dynamic patterns of multiple systems in tandem over relatively
long periods, it may be possible to track people at risk for suicide
ideation and attempts that are one of the most tragic
consequences of BD.
Aside from activity, sleep, and circadian parameters, the rapid

developments in multimodal sensors that can be used to collect
physiologic parameters such as melatonin, cortisol, heart rate, skin
temperature, and conductance, and light spectrum and intensity
have provided a more comprehensive depiction of the spectrum
of circadian systems in real time. However, understanding of the
biologic systems underlying domains tracked by passive assess-
ments, such as circadian sensors and actigraphy, is limited by
inferences regarding concomitant subjective emotional states,
such as anxiety, irritability, and rapidly fluctuating cognitive states
(e.g., inattention, executive dysfunction) that are core features of
BD. The collection of patient self-reports or in vivo performance on
mobile cognitive tests, through EMA [36] also represents an
advance over more static neuropsychological testing. When
coupled with active monitoring of psychological states, behavior,
cognition, and social and contextual factors, these measures are
enabling a revolution in neuropsychiatric monitoring than can
provide a comprehensive portrait of emotions, behavior, and their
underlying physiologic parameters. In a recent review of these
tools, Reinertsen and Clifford [99] describe how the growing
availability of contextual and physiologically relevant digital
sensors could help address the challenges of lack of access to
care and artificial clinical settings that may enable objective
indexing of patient severity, and inform rapid adjustment of
treatment in real time.

Future directions
The use of mobile technologies provides exciting opportunities to
address the mind-body dichotomy that has long been central to
our understanding of human behavior and psychopathology. This
review summarized information on BD based on tools that
passively assess essential biological or physical processes such as
sleep, activity and other rhythmic functions, as well as research
that has actively gathered data to track the subjective experiences
that are inaccessible to tools for objective data collection. These
tools provide information on different aspects of experience, so
the combination of these approaches is likely to be increasingly
frequent in psychiatric research in the coming decade.
The strong associations that were observed both within and

between the three major domains of sleep, physical activity, and
circadian rhythms derived from the features of actigraphy
highlight the need to study these systems simultaneously. The
duration of actigraphy and EMA in most studies of BD has
generally averaged one or two weeks that provides only a brief
snapshot of the dynamic cross-domain interrelations that may not
generalize over longer time periods. As these tools have become
more refined and available, however, it is now possible to
administer real-time assessments over longer periods that can be
used to characterize clinical states, monitor treatment, and identify
the influence of environmental conditions, such as light,
temperature, and seasons, that may have a broad influence on
rhythms and reactivity. One cautionary note is that the striking
increase in the number of mobile apps for BD as well as for other
psychiatric symptoms or disorders, often lacking an evidence
base, has made it challenging for patients and clinicians alike to
select appropriate devices and programs. There is therefore an
urgent need for the establishment of standards for their use in
description, prediction, and treatment because few of these apps

adhere to contemporary practice guidelines lines or standards
[26, 27].
The developmental nature of changes in sleep, circadian

rhythms, and motor activity that has been shown in studies of
humans and in basic science requires further investigation. Several
studies of the offspring of parents with BD show that at-risk youth
may already manifest sleep problems and variability in daily
rhythms of sleep and physical activity [111, 112]. Therefore, sleep
difficulties and unstable circadian rhythms could comprise
endophenotypes or predisposing factors for BD. Future prospec-
tive studies of offspring at risk or of people with early
manifestation of suspected BD will be valuable in identifying
specific biomarkers for BD.
One particularly exciting future direction is the opportunity to

study the influence of light on sleep, motor activity, and circadian
function in real time. As reviewed above, although the influence of
light on BD has long been suspected and used as a treatment to
regulate the rhythms of people with this disorder, its neural
architecture has only recently been articulated. In particular,
advances in characterizing the retinal pathways affected by light
and depression-like behavior and cognition in basic science
research provides a powerful opportunity to track these same
systems in humans. This work could inform studies have used
actigraphy to track the effects of blue-light-blocking glasses and/
or other manipulations of light exposure as a tool to modify
rhythms in people with BD [113].
Despite clear points of consensus in research findings and the

promise of new technological developments for the future, there
is a pressing need for greater coordination across studies
employing these mobile approaches in order to standardize the
procedures, analytic methods and study the factors that influence
circadian rhythms in BD. The following recommendations are
therefore formulated in order to improve compatibility across
studies and advance scientific contributions to the field:

1. These findings strongly support the importance of combin-
ing both objective and subjective assessments to link
personal experience and contextual influences to objec-
tively rated physiologic and behavioral domains. The
growing availability of multimodal tools for both active
and passive will facilitate our understanding of the cross-
regulation of multiple systems as well as their directional
links that can enhance understanding of etiology. Therefore,
expanding this work to include a broader series of domains
that are related to the complex web of systems involved in
BD will inform potential etiologic chains that could be used
to identify targets for intervention.

2. Now that there are fairly consistent findings across more
than two dozen studies of actigraphy and EMA in people
with BD, there is a need to develop a deeper understanding
of how these findings may differ across development, sex,
age, and ethnicity. It will also be important to gain
understanding of the influence of medications, smoking,
and alcohol use on these activities, sleep, and circadian
parameters, as well as insight into the increased level of BMI
in BD that is also strongly related to many of the parameters
derived from actigraphy. Likewise, studies of ethnic
differences in mood disorders and these related systems
will require a concerted effort to obtain more diverse
samples.

3. One of the most important gaps was the variability of
clinical assessment methods to accompany actigraphy and
the specific symptoms that were assessed in EMA studies.
Developing common protocols for the collection of
diagnostic and other clinical data could enhance the
comparability of this work. These protocols should include
methods to track the subthreshold expression of BD,
incorporate comorbid conditions that were rarely
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considered in the above studies, and contextual influences
on their manifestations over time. Finally, the lack of
specificity that has been apparent in many of the studies
also highlights the need to move beyond studies of a single
case group to multiple subgroups to further investigate
differences across the diagnostic spectrum.

4. Most of the reviewed studies were limited to less than four
weeks. Expansion of this work to elucidate patterns at
different times of the year that would provide insight into
the stability of these findings is a critical next step in this
work. As mobile tools, particularly passive assessments,
become more refined and less burdensome, it will be
possible to collect data over longer periods of time that can
provide information on the stability of the findings across
time, season, and life changes.

Collaborative efforts that develop common protocols can
facilitate cross-study comparisons and cross-site aggregation.
There are several large-scale ongoing studies that are using a
common protocol for mobile tools to track treatment and
progression of BD [114] and major depression [16]. By accumulat-
ing larger sample sizes, such studies will help to address
limitations in power to pursue mechanistic studies that have not
been possible in smaller samples. Our groups at the NIMH and
Johns Hopkins Bloomberg School of Public Health have estab-
lished a collaborative research network, the Motor Activity
Research Consortium for Health (mMARCH) to facilitate the
coordination of procedures, analyses, and data sharing among
research groups around collecting actigraphy and EMA data
focused on mood disorders (ZIA MH002954-04 Motor Activity
Research Consortium for Health (mMARCH)). Such initiatives
should greatly reduce the cross-site heterogeneity that has
hindered the aggregation of data and prevented high-powered,
multi-site analyses of questions of essential importance to BD as
well as to other forms of mental illness.
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