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Abstract 

 

Genome-wide association studies and other discovery genetics methods provide a means to 

identify previously unknown biological mechanisms underlying behavioral disorders that may 

point to new therapeutic avenues, augment diagnostic tools and yield a deeper understanding of 

the biology of psychiatric conditions. Recent advances in psychiatric genetics have been made 

possible through large-scale collaborative efforts. These studies have begun to unearth many 

novel genetic variants associated with psychiatric disorders and behavioral traits in human 

populations. Significant challenges remain in characterizing the resulting disease-associated 

genetic variants and prioritizing functional follow-up to make them useful for mechanistic 

understanding and development of therapeutics. Model organism research has generated 

extensive genomic data that can provide insight into the neurobiological mechanisms of variant 

action, but a cohesive effort must be made to establish which aspects of the biological 

modulation of behavioral traits are evolutionarily conserved across species. Scalable computing, 

new data integration strategies, and advanced analysis methods outlined in this review provide a 

framework to efficiently harness model organism data in support of clinically relevant 

psychiatric phenotypes.  
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PROMISES AND CHALLENGES IN HUMAN GENETICS OF PSYCHIATRIC 

DISORDERS 

Psychiatric disorders are highly polygenic and show a continuous range of variation 

influenced by both environmental and genetic factors [1].  A major goal of psychiatric genetic 

research is to better understand the molecular mechanisms through which genetic variants act to 

influence liability to these traits. The identification of novel genetic variants provides a foothold 

into the complex genetic architecture that undergirds psychiatric traits. Model organisms provide 

an avenue into understanding the biological mechanisms that are impacted by genetic variation.  

In this review, we outline Big Data approaches that efficiently weave the vast amounts of 

convergent genomic data from other species into human genetic findings to elevate the 

likelihood of uncovering biologically meaningful pathways for further experimental follow-up 

and therapeutic discovery. 

 

The utility of GWAS in psychiatry  

Genome-wide association studies (GWAS) of psychiatric traits have generated an 

outpouring of recent discoveries in risk variant identification and polygenic prediction. From 

highly heritable traits, such as schizophrenia (for which >100 common loci have been reported 

with N = 150,064 [2]) to common but less heritable conditions such as problematic alcohol use 

(for which 29 independent loci have been reported with N  =  435, 563 [3]) and major 

depression (for which 102 common loci were detected with N = 807,553  [4]), as well as for 

liability across psychiatric disorders (109 loci with N = 727,126 [5]) progress abounds. In 

addition, for substance use, a recent large GWAS of tobacco smoking (N for smoking initiation = 

1,232,091) and typical drinking (N for drinks/week = 941,280) has identified over 400 loci [6].  
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The increased power accumulated across studies of major psychiatric disorders, arising from 

collaborative research, has revealed clues into novel mechanisms of susceptibility to mental 

illnesses and substance use disorders. These large-scale GWAS have also revealed patterns of 

genetic variation associated with multiple disorders as well as disorder-specific loci, e.g. CADM2 

has been linked to multiple substances and common addiction mechanisms (e.g., risk-taking 

cognition), while the alcohol dehydrogenase genes remain alcohol-specific (e.g. [7], [8]).  

  

Challenges and opportunities within GWAS for psychiatric genetic studies 

The recent gains in psychiatric genetic studies outlined above amplify the need to address 

several enduring challenges within GWAS. First, at a variant level, the bulk of GWAS “hits” fall 

in non-coding regions of the genome. A major advantage of GWAS as a means of discovering 

the biological basis of psychiatric disorders is that the lack of a priori gene centric hypotheses 

enables discovery of trait regulatory variants in enhancer and promotor regions, lncRNAs, 

microRNAs and any other molecular entity that is part of the gene regulatory mechanism. 

However, in contrast to variants within coding genes,  it is far more  difficult to link statistically 

significant genetic associations to the gene products and biological mechanisms through which 

they act [9]. Interpretations of significant GWAS findings are complicated by patterns of related 

inheritance (e.g., linkage disequilibrium), such that the most significant genetic variant in a locus 

may not be “causal” but could “tag” a true causal variant. This, coupled with long distance 

genomic regulation, poses challenges for unveiling specific genes and variants underlying human 

traits via GWAS [10]. In this review, we highlight how regulatory genetic variants can be 

integrated coherently with coding genes within and across species using unifying data structures.   
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A second challenge with GWAS is that power analyses reveal that the massive 

polygenicity underlying psychiatrically relevant traits and illnesses requires larger sample sizes 

for additional discoveries from GWAS data alone [11]. Likewise, the predictive power of a 

polygenic risk score (PRS), an index of aggregated genetic susceptibility to a disorder, for 

psychiatric disorders is also directly linked to the current statistical power of discovery GWAS 

[12].  However, the identification of additional trait-associated variants continues to substantially 

augment SNP-heritability estimates, especially in the case of rare variants, suggesting that there 

is more signal to be found in GWAS and sequencing studies [13], provided that higher sample 

sizes continue to be attained. In this review, we highlight approaches that exploit complementary 

data resources from model organisms that, when placed in an integrative framework with GWAS 

data, are showing some promise in prioritizing variants that are detected.  

Third, consistent with indications from early family and twin studies, there is evidence 

for pleiotropy among psychiatric traits to a degree suggestive of an underlying dimension of 

genetic liability that parallels the general factor model of psychopathology [5], [14]. Thus, it is 

important to consider variants in context of both the underlying neurobiological mechanisms in 

which they function, and the multiple traits which are influenced by that variation to find the 

specific, as well as the overlapping biological mechanisms underlying behavioral traits. A 

landmark contribution to our current ability to annotate GWAS signals arise from FUMA [15], a 

platform for functional and regulatory annotation of variants. Summary statistics from a GWAS 

can easily be aligned with tissue and cell-type specific expression data and to a variety of 

regulatory and chromatin signatures with no computational burden on the user, making FUMA 

widely accessible. As an alternative to gene-based mapping techniques, software tools can also 

map variants to the non-coding transcriptome (e.g., LincSNP 3.0 [16]). Beyond variant mapping, 
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harnessing multiple sources of omics data can be utilized in a multivariate framework to 

implicate “causal” gene sets for a disease state (e.g., SMR [17], iRIGs [18], PAINTOR [19], 

FOCUS [20]). Efforts are also underway, with varying degrees of success, to demonstrate to 

what extent similar regulatory enrichment of polygenic risk scores could enhance prediction 

(e.g., AnnoPred [21], LDpred-funct [22]). However, most of these approaches have been limited 

to human genetics and genomics data.  In this review, we highlight approaches that bring 

together the breadth and depth of well-controlled model organism studies that place genetic and 

genomic findings in biobehavioral context that can expand on this or other interpretive tool sets.  

 

MULTI-SPECIES GENOMICS TO ADDRESS CHALLENGES IN GWAS VARIANT 

INTERPRETATION 

Across these historical and contemporary research challenges, Big Data approaches that 

harness information from additional sources, including cross-species genomic analyses, can 

provide elegant solutions to current barriers in psychiatric genetics [18], [23]. It cannot be 

understated that we need better-powered GWAS, especially as we look to polygenic scores as a 

means of leveraging the modest effect sizes from GWAS. However, increasing the sample size 

alone may be merely a theoretical solution for certain traits where rare variation and modest 

effect sizes contribute substantially. Incorporating evidence from molecular and cellular biology 

shifts the focus of genome-wide analyses from variant detection and identification to evaluating 

the relative contribution of a prioritized subset of loci. This helps control the familywise error 

rate, thus increasing power, and provides context about the genome at multiple levels (i.e., 

structure, function, and regulation) while also accounting for the polygenicity of a trait. 
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Leveraging information from annotated genomic regions that affect gene function was shown to 

robustly increase the power to identify genomic associations across 27 human traits [24].  

There is extensive information available from human and model organism functional 

genomics that may be brought to bear on human GWAS findings in the context of specific 

behaviors, tissues, and molecular mechanisms [25], [26]. Prior to the widespread availability of 

human ‘omics data, some of the earliest efforts to characterize the mechanism of variants 

detected in human association studies relied on expression of orthologous genes from studies 

performed in animal models. The rich data resources from these studies continue to be valuable 

due to the breadth and depth of studies that are possible in animal models, under precisely 

controlled conditions of drug exposure and other neurobiological or behavioral processes. 

Further, model organism data also contains a rich source of expression regulatory information 

including eQTL and epigenetic data from many tissues and brain regions, some of which is 

collected in populations that facilitate the global correlation of transcript abundance to 

neurobiological and behavioral parameters [27].  Integration of functional genomic information 

from multiple species into GWAS provides new clues about the biological context and 

consequences of genetic associations and polygenic risk scores, and provides insight into how to 

model such variation in in vivo preclinical models with intact central nervous systems and 

expression regulatory machinery.  

Below, we illustrate the promise of harnessing these model organism data, for which 

decades of comparative behavioral research has produced numerous experimental paradigms 

aimed at consilience, such as drug self-administration and response studies across multiple 

mouse and rat populations in genetics and genomics [28]. We propose methods for integrating 

valuable and ever-expanding complementary model organism and human genetics and genomics 
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data (such as GTEx [29] and GeneNetwork.org [30], psychENCODE [31] and modENCODE 

[32]) and highlight new approaches for boosting power in human genetics through Bayesian 

inference in heritability and polygenic analyses, outline exciting developments aimed at bridging 

the “analytic currency” gap between human and model organism research, and present some 

technical and philosophical challenges. The overarching goal of this review is to focus on ways 

in which we might utilize the complementary strengths of human and animal genetics to advance 

their common research mission: gaining a better understanding of the biology of complex traits.  

 

Potential and Challenges for Model Organism Data Integration 

 

There is considerable and growing interest in employing non-human animal models to meet 

some of the challenges for human genetics outlined above. There is a tremendous depth and 

breadth of model organism genetics and genomics studies spanning many areas of behavioral 

and neurobiological parameters. These include differential expression studies following various 

behavioral and drug exposure paradigms [33], large-scale screens of gene-targeted deletion 

mutants [34], and genetic studies in populations such as the BXD RI mouse lines [35] and inbred 

strain panels [36] which often combine gene expression and genetic analysis. Numerous QTL 

positional candidates have been identified from a large number of behavioral and neurobiological 

mapping studies [37]. Selective breeding in rats and mice have been able to separate alcohol 

preferences [38], [39] and chronic use/withdrawal [40]. These data provide a rich backdrop and 

context in which to interpret the more global phenotype or disease information that is the 

frequent subject of GWAS analysis.     
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Animal geneticists have a rich history of using model organisms to study behavioral traits 

that mirror aspects of human psychopathology. Many of the genes and variants identified in 

model organisms are also now also being found in human GWAS studies (Table 1), indicating 

that convergence of these studies is feasible. To date, model organism evidence has largely been 

used as a form of post-GWAS validation to characterize significant SNP/gene effects (e.g., [41], 

[42]).  There have been a few promising recent examples of model organism research that, when 

coupled with human GWAS findings, have revealed insights into the biological mechanisms 

underlying psychiatric disorders. Model organism data has also produced experimental insight 

into disease mechanism. For example, researchers used mouse models to study the effect of a 

particular protein, complement component 4 (C4), on synaptic mediation during development 

[43]. By using a mouse model in conjunction with convergent evidence from human genomic 

studies, researchers were able to study the effects of C4 gene deficiencies on synapse elimination 

during post-natal development in a way that is not possible in humans. Researchers are 

beginning to leverage model organism genomics directly in the context of human genetic studies. 

For instance, gene co-expression networks associated with mouse neurodegeneration phenotypes 

demonstrated enrichment for human GWAS associations with Alzheimer’s Disease [44]. 

Integrative methods for jointly analyzing model organism data directly with human GWAS are 

are under active development. One recent example identified novel brain mechanisms of alcohol 

use and dependence by co-analyzing human GWAS, human protein-protein interaction networks 

and mouse gene co-expression data. In doing so, the researchers interrogated ethanol-

responsiveness genes obtained from mouse gene expression data of the PFC, VTA, and NAc 

[45]. 
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Despite this substantial progress, there remain conceptual and technical challenges for 

data integration across species.  These occur at the levels of phenotypic comparison, genetic 

conservation, and computational scale.  A major challenge at the phenomic level is that any 

effort to integrate evidence across model organisms and humans must acknowledge that human 

psychiatric diagnoses and classifications are often based upon clinical instruments and nosology 

that are not easily transferable to model organisms, therefore efforts to “diagnose” animal models 

are discouraged. However, it is apparent that aspects of a disorder can transfer across species and 

be easily captured with experimental data, and increasingly, GWAS of psychiatric disorders are 

providing corroborating support for variants that influence both disorders and their trait-like 

manifestations that may be recapitulated in model organisms [46]. For example, it was recently 

shown that ethanol responsive genes in mouse prefrontal cortex, nucleus accumbens and ventral 

tegmental area were overrepresented in GWAS for alcohol dependence in the Irish Affected Sib-

Pair Study of Alcohol Dependence  and the Avon Longitudinal Study of Parents and Children 

[26]. The identification of network-level associations between humans and mice suggests shared 

sensitivity in ethanol responding, and thus can serve as support for nominal GWAS signals.  

However, far more complexity and heterogeneity than ethanol response underlies alcohol 

dependence in humans. Recent genomic distinctions identified between the consumption 

(AUDIT-C items 1-3) and the problematic (AUDIT-P items 7-10) subscales of the Alcohol Use 

Disorder Inventory Test (AUDIT) [8], [47] echo similar findings in model systems, the data from 

which will be critical for the interpretation of molecular mechanisms [48].  

 There is concern that comparative, multi-species approaches will not be as readily 

feasible for certain psychiatric traits. Behavioral characteristics including speech, language and 

certain executive and metacognitive functions are also impossible to assess in model organisms. 
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However, most studies that attempt comparative genomics across species are based on limited 

genetic diversity, often comparing a single idiosyncratic strain to a small sample of the 

population of humans, e.g. [49], and therefore can not discern between individual differences 

within populations and between species. For some disorders, there is a substantial role of brain 

structures that are under developmental control of poorly conserved genomic regions, leading to 

significant cross-species differences in these structures [50]. This potentially could preclude 

detection of genetic variants which regulate disorders through effects on the development of 

these structures. Following this logic, some aspects of substance use disorders are served by 

neural structures that show more conservation and may be more likely to provide convergent 

mechanistic evidence for overt characteristics of drug intake, withdrawal, compulsive responding 

even with choice and punishment, but perhaps not “desire to quit” or other metacognitive and 

psychosocial aspects of addiction.    

However, all psychiatric disorders including SUDs are highly complex traits likely 

involving many risk loci. Some of these traits are manifest across species, even if the end-result 

in humans includes behavioral output not readily observable in non-human model organisms. 

Therefore, one can model the effects of genetic risk variants on more proximal biological 

consequences; for example, one might study the influence of C4 variation [43] on 

endophenotypes captured in Research Domain Criteria (RDoC) including synaptic excitability, 

or neuronal reactivity and the various startle phenotypes it is associated with, but not all of the 

species specific cognitive and behavioral output that are central to the disease pathology. 

Historically, the field has been distracted by pharmacologically predictive characteristics that 

have little face validity with the disorders to which they are applied [51]. Below we describe how 

cross-species comparative genomics provides a tool that can be used to identify what aspects of 
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the human disorder are reflected in model organism genomics, allowing data-driven discovery of 

the relations among traits across species [52]. 

At the genetic conservation level, cross-species genetic research has been hindered by the 

“analytic currency” problem. Human geneticists typically work at the variant level, and 

genomics data, particularly from expression studies, are often reported at the gene or transcript 

level. Prior efforts at model organism follow-up of human GWAS data were limited to human 

variants that could be positionally assigned to a gene, but as described below, this is no longer 

the case. As is evident from regulatory mapping analyses, the action of a variant does not readily 

correspond to the most proximal gene, or even a single gene.  Further compounding the problem, 

non-coding regulatory variants are often found in poorly conserved regions of the genome, which 

renders cross-species gene orthology mapping challenging and variant mapping through 

sequence alone, impossible in many cases. Therefore, approaches that exploit both gene 

orthology and convergence of variant regulatory relations are most promising toward relating 

trait regulatory variation across species.  

In the case of intragenic variants, current methods use transcript and protein annotations 

to identify causal SNPs based on the severity of mRNA and protein modifications [53] and other 

functional consequences [54]. However, the majority of SNPs are intergenic, suggesting the 

involvement of distal gene-regulatory mechanisms (e.g., chromatin accessibility). Therefore, the 

common approach of associating SNPs to nearby downstream and upstream genes can elicit false 

positives [55] and therefore it is necessary to use data from gene expression quantitative trait loci 

(eQTLs), epigenetics and 3D genomics to assess the relationships among regulatory variants and 

their distal targets.  
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Although most prior variant-to-gene annotation efforts have relied on positional 

approaches, i.e., assigning SNPs to genes based solely on physical proximity (e.g., MAGMA 

software [56]), modern approaches in humans rely on extensively curated functional and 

regulatory mapping from ‘omics data (e.g., S-PrediXcan software [57], TWAS [58], Hi-C 

coupled MAGMA or H-MAGMA software [59]).  

However, all of these approaches have almost exclusively used data from human 

genomic analyses. Similar approaches have been deployed in model organisms, but the 

integration of resources across species has remained rather incomplete, limiting the approach to a 

small number of applications. To facilitate cross-species analysis, integrative data analyses have 

historically relied on gene homology associations from model organism databases [60] and gene 

orthology services [61]. Analysis involving multiple species therefore most often occurs at the 

gene level, introducing a GWAS-specific integration challenge: the need to associate genetic 

variants with genes. For complex disorders, such as schizophrenia and SUDs, this often requires 

characterization of the regulatory nature of genetic variants associated with disease, or 

identifying functional variants in sub-molecular domains of drug targets that could confer 

vulnerability or resistance to various treatment. However, non-coding regions of the genome are 

often very poorly conserved across species, and the targets of the variants can be far away. 

Moreover, many of the implicated non-coding variants in GWAS reside in gene expression 

regulatory regions [62]. Here, we highlight solutions for the assessment of conserved effects of 

variants through their orthologous genomic targets to support a wide-range of applications in 

integrative functional genomics (Figure 1). 

 

SOLUTIONS FOR DATA-DRIVEN CROSS-SPECIES ANALYSIS 
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Broadly speaking, integration of multi-species functional genomic data can occur in two 

ways—from the phenomic or genomic orientation. For example, top-down, trait-based 

approaches to cross-species analysis utilize the similarity of human disease-related phenotypic 

profiles to model organism phenotypic profiles to identify gene-disease associations [63]. These 

approaches, embodied in resources developed by The Monarch Initiative [64] identify similar 

phenotypes across species through integrated ontologies and semantic similarity methodologies 

that apply semantic reasoners to a unified knowledge graph [65]. Such phenotype-driven 

approaches, which leverage multi-species data, have been effective at assisting rare disease 

diagnosis [66] and improving identification of causal genetic mechanisms [67], but these 

approaches are challenging to apply in the context of high phenotypic and genetic heterogeneity 

due to the extensive differences among species in the behavioral manifestations of 

neurobiological variation. 

 In highly complex psychiatric disorders in which model organism traits may only capture 

a facet of the human disease, alternative bottom-up strategies that aggregate genomic data may 

be more suitable for identification of the driving genetic mechanisms associated with complex 

traits and disease. The varieties of biological entities—genes, proteins, variants, methylation 

sites, and chromatin states for example, which can be characterized via genome-wide 

experimentation, pose a challenge for integration and analytic efforts [68]. These challenges may 

be mitigated via combinatorial integration of fundamental data attributes into generalized data 

structures that can be mined for patterns or emergent gene-disease relationships. GeneWeaver 

[69] for example, relies on a bi-partite data model [70] and heterogeneous data networks [71] to 

integrate and analyze functional genomics data such as differential expression studies, GWAS, 

curated annotations, and QTL mapping studies through a single data structure that facilitates 
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aggregation of information. Harmonizome [72], on the other hand, aggregates functional 

genomics studies from a variety of sources by implementing an association matrix across shared 

attributes and relying on machine learning approaches to identify novel patterns.  

 Fundamental integration through knowledge graphs may also be applied to large scale 

heterogenous analysis. KnowEng [73] uses a knowledge network to navigate the integration of 

statistical experimental data and contextualized user information to identify human and mouse 

interactions. Aggregated knowledge networks can be analyzed using traditional network mining 

approaches or machine learning. Other tools, such as HumanBase [74] or the DIAMOnD [75] 

algorithm, also takes advantage of traversing large ad hoc networks of functional connectivity. 

Networks are navigated through machine learning or association matrices to connect multi-

species gene or variant relationships.  

 There are many approaches to cross-species comparative genomics and phenomics 

integration (e.g. Table 2) and analysis must optimize among competing needs of computing 

scalability, data accessibility, and data scope. For example, the sheer number of variants in 

humans and rodents and the unbounded phenotype dimension lead to the problem of phenomenal 

computational scale. The tremendous heterogeneity of model organism data sets, from mutation 

characterization studies, curated pathway and gene annotation sets, and extensive genetic and 

genomic data at the level of genes and variants, presents a problem of size, scope and 

complexity, in the realm of Big Data problems, requiring computationally scalable solutions. 

 

BIG DATA AND THE INTEGRATION OF HUMAN AND MODEL ORGANISM 

STUDIES IN PSYCHIATRIC GENETICS 
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Cross species analysis typically happens at the level of abstracted relations among 

variants or genes and can thus be quite reduced in scale. However, 1) the scope of genomic 

studies is completely unbounded and it is possible to find hundreds, if not thousands of animal 

studies of disease relevant neurobiology and 2) the parsing and representation of genomic 

variants from diverse data sources and their mappings onto one another does not scale so easily. 

Retaining this traceable mapping while allowing integrative and interactive analysis is a problem 

of high complexity and scale. The storage, analysis, distribution and integration of human and 

model organism functional genomic data are especially challenging, as they embody typical 

problems encountered in the Big Data world [76] often referred to as the four V’s of data--

Volume, Variety, Velocity, and Veracity.  

 The sheer volume of data required to support comprehensive cross-species data 

integration of genes and individual variants is staggering. For example, if we assume that the 

average number of coding genes in mammalian genomes is approximately 25,000, then 

constructing rudimentary connections among the genes in five species would produce ½n(n-1) 

relationships, where n is the number of genes in the network. If represented as a graph, with each 

edge representing a relationship, the graph would be enormous but tractable, comprising ~7.8E9 

edges. But, the genome is only one dimension of the problem. The other is the sheer number of 

contexts in which that genome is experimentally profiled. With thousands of human and model 

organism addiction genomics data sets, and hundreds of thousands of species-specific pathway 

data, brain regional transcriptomes and other relevant data resources, one quickly reaches a 

problem requiring scalable solutions. Analysis of a handful of organisms can therefore be 

handled with large, conventional high-performance computing systems. At the variant level, 

however, the relationship problem is greatly compounded. Known variants, which outnumber 
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genes within the typical model organisms by more than 20,000 to 1, would naïvely require 

~1.25E17 edge relationships. While intelligent approaches for computing on large graphs, such 

as taking advantage of partitioning [77], sparse connectivity [78], or heuristics [79], can aid in 

the management and analysis of these relationships, exhaustive examination of static graphs of 

this potential size is intractable due to computing limitations, storage and real-time accessibility. 

As the number of genomic experiments continue to grow, particularly in the model organism 

space, one viable option may be the dynamic analysis of data sets using elastic on-demand cloud 

services that make use of horizontally-scalable computing to efficiently distribute computing 

tasks to address very specific questions. 

A corollary to the volume/variety of data associated with variant mapping across species 

is the velocity at which it is produced, and, subsequently, the rate at which it must be collated, 

curated, and made accessible. With over 4500 eukaryotic genomes assembled over the last 

decade [80], it has been argued that genome-scale data will be bigger than Big Data associated 

with astronomy, YouTube, and Twitter by 2025 [76]. To complicate the processes used to 

integrate the vast scope of data are data sharing policies that historically do not require 

automated sharing of model organism data, resulting in data analysis processes that result 

primarily from ad hoc relationships [81]. To mitigate the stresses imposed by data velocity, it is 

critical to devise a means to access, integrate, and dynamically update these data in a manner that 

avoids redundancies and keeps data provenance intact. While it is inevitable that there will be an 

uneven integration of data from a variety of sources, it is incumbent on the bioinformatics 

community to create systems to rapidly track intentional methodologies for data cleaning and 

reduction through the discovery of duplicated or deprecated data.                                                      
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By addressing these problems in Big Data, scalable applications in integrative functional 

genomics for psychiatric genomics are enabled (Figure 2). The integrated, global mapping of 

trait regulatory variants across species through target genes can facilitate the integration of model 

organism genomic data to fill the mechanistic knowledge gap between non-coding human 

genetic variant and human disease. This integration can be accomplished through the aggregation 

of curated and high-throughput experimental data from multiple domain-specific resources. Data 

resources such as GTEx [29], ENCODE [82], and Roadmap Epigenomics [83], provide 

extensive coverage of genomic regulatory features and gene-regulatory mechanisms. High-level 

regulatory features including CTCF binding sites, enhancers, open chromatin, promoter, 

promoter flanking, and transcription factor binding site attributes can all be retrieved from 

regulation databases [84]. These features can be annotated to genomic variants from the Ensembl 

variation database [85], for example, to identify regulatory variants within regions of interest. 

Identifying putative regulatory interactions between regulatory variants and genes can be 

accomplished through layering several approaches. Topologically associated domains (TAD), 

verified from Hi-C studies and integrated from published studies and the ENCODE resource, can 

be used to delineate putative gene-regulatory boundaries and all combinations of regulatory 

variants and genes that are associated within the boundary. Experimentally confirmed feature-

gene interactions mediated by RNA polymerase II (RNAPII) and identified using ChIA-PET 

studies, sourced from ENCODE and various publications, can also be used. Finally, eQTLs can 

identify variant influences on specific genes. 

Compounding the issues encountered by the complexity of raw data is the potential for 

underlying data bias and the subsequent difficulty of attributing veracity to the data. There is an 

implicit bias in the sampling of genes represented in an experimentally derived genomic data set 
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because each genomic technology and especially a curated genomic data resource is based on a 

different breadth, e.g. individual mutation studies curated from literature by the Model Organism 

Databases vs. genome-wide gene expression by RNA-seq data. Differing approaches affect the 

rate of false positives in the data set. For example, QTL positional candidate sets may have many 

genes with likely only one or a few true positives, in contrast to differential gene expression sets 

for which the statistical threshold defines a false discovery rate. Semi-quantitative or quantitative 

scores for these data sets need to be created to reduce our reliance on qualitative scoring. 

Enrichment analyses and systems genetic correlation tools suffer from annotation bias in that one 

often retrieves results representing areas of investigation that are dense with information, 

resulting in apparent patterns and trends that are an artefact of coverage. Data resources like 

GTEx also suffer from biases based on uneven sample size, and the particular tissues and 

conditions investigated. The net effect of the uneven statistical power in these data resources is to 

upwardly bias well-powered but less relevant findings, in which tissues or phenotypes are 

spuriously associated with disease. Therefore, it is important to consider error-rate controls, and 

other procedures, but also the uniformity of analysis in the data used in analysis.  

Multi-tissue eQTL data can be integrated to provide context-specific variant mapping.  

Primarily derived from the GTEx project or model organism resources such as GeneNetwork  

[30], data from mouse, rat and human genetics experiments represent a diverse and deep pool of  

data. Single cell RNA (scRNA) enables the exciting possibility to investigate eQTLs and gene  

coexpression in complex, multicellular tissues. For example, scRNA sequences have been used  

to create high fidelity classifications of brain regions based on local variants [86].  

Furthermore, scRNA have been used to identify cell type-specific cis-eQTLs and variant co- 

expression networks [87]. Gene expression genetics studies in model organisms have tremendous  
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precision with new populations like the Diversity Outbred segregating 45 million mouse  

genetic variants comprising 90% of the known mouse genetic variome [88]. Recombinations are  

at extremely high precision, and large mapping population sample sizes for an increasing number 

 of brain regions, and the derivation of this population from eight founder strains provides a  

means of reducing eQTLs to a small handful of regulatory variants at the SNP level [89]. As  

such, it is possible to identify eQTL variants which may affect one of several gene regulatory  

mechanisms targeting a human orthologue, and to assess its effect on mouse phenomics, cellular  

gene expression, or other endpoints in silico, in vitro, or in vivo. Many of these tools provide  

browser-based and limited scriptable interfaces with continued adoption of new technologies, but  

exposing model organism eQTL data to large-scale dynamic tools for graphical integration  

would be of tremendous utility in readily enabling facile interrogation of variant-gene relations. 

 

MULTIPLE APPLICATIONS ARE READILY POSSIBLE WITH INTEGRATED DATA 

STRUCTURES 

A compelling approach to the prioritization of GWAS variants enabled by BigData 

integration is the use integrated cross-species data to identify and characterize those variants with 

a known mechanistic role in neurobiological pathways to disease, or to identify human variants 

with highly specific hypothesized roles in particular cases of disease, such as the widely studied 

ADH1B in AUDs. Although current applications and analytic implementations do not fully take 

advantage of large scale data resources, the emerging scale of data and high-volume comparative 

analyses will most certainly merit scalable approaches in the near future. Most present 

approaches do not yet harness the full capacity of cross-species comparative analyses at scale, 

and initial applications have been necessarily focused on small, single locus problems. However, 
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these simple applications are ripe for extrapolation to global questions about the neurobiological 

mechanisms of addiction. One promising application of multi-species epigenomic integration is 

comparative gene regulation. Now that characterization of gene-regulatory components (e.g., 

enhancers, TF binding sites) and their putative gene targets is improving, integrative methods 

can identify shared genomic regulators across species. In one example, from studies on alcohol 

dependence and cholesterol, at least 4,000 SNPs from human GWAS can be mapped onto the 

mouse genome [90]. Furthermore, some of these SNPs, which are involved in human liver 

function, can be mapped to liver-specific enhancers in mice [91]. This type of comparative 

analysis could be used to identify convergent regulatory features and variants across species, 

enabling the development of mouse models for testing SNP causality in humans. Integrative 

systems have successfully been used to identify disease-relevant genes and to identify gene-

regulatory SNPs involved in alcohol preference and withdrawal involved in epigenetic regulation 

in mice at a distal enhancer element [92]. Query of public genetic data resources indicates that 

variation in the same gene occurs in humans, via a promoter variant, rather than an enhancer 

[93].     

 Several recent approaches have been developed for prioritization of disease relevant 

genes and variants from integrative omics analysis.  These tools utilize large integration pipelines 

coupled to networking and statistical tools to establish a relative importance (e.g., priority 

indexing) of variants across tissues of interest focusing on immune-mediated traits. For example, 

Wang et al., develop a risk gene selection method, called iRIGs [18], which incorporates GWAS 

and a number of genomic features including expression, chromatin interactions, and gene-

regulatory data into a Bayesian framework for prioritization. This framework prioritizes genes 

within a small 2MB region near risk loci identified from GWAS using a select set of epigenetics 
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including promoter, enhancer, and chromatin interactions from Hi-C studies. A similar approach, 

developed by Fang et al., utilizes a priority index (Pi) pipeline [94] designed to prioritize genes 

from GWAS variants for specific immune traits. Pi combines genomic predictors in the form of 

gene proximities, chromatin interactions, and expression modulation evidence (eQTLs) with 

network-based models to prioritize trait-gene associations. To date, these approaches have not 

been applied to model organism data, but they most certainly can be. Furthermore, with the 

implementation of cross species variant mapping such as those presented in Figure 1, they can 

exploit the broad, heterogeneous multi-species data corpus. 

 

 Another application is to compare sets of trait associated human and model organism 

genomic data to identify similarly regulated disease-relevant traits suitable for convergent 

validation experiments. Mapping of human disease–related characteristics onto model organism 

behaviors has been a controversial area of research, and for many, the perceived relevance of 

animal models is hindered by ever-refined definitions of face validity [95]. This argument misses 

the point that a model is by definition a simplification of a system that renders it amenable to 

particular types of study, including validation. Animal models, themselves, have successfully 

been used to measure the efficacy of drugs and validate various drug targets [51]. Further, there 

may be sufficient consilience between human disease traits (such as the various aspects of 

alcohol use disorders) and those modeled in animals (e.g., ethanol intake) at a genomic level 

(rg=0.77 between problem drinking and typical alcohol intake [3]) to allow for careful cross-

species data integration for these sub-facets of human disease. Research targeting behavioral 

mechanisms that do converge across species does not discount or diminish the need to study the 

remaining complexity in the human phenotype. Rather, it serves as a powerful means of 
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discovery of the nature of vulnerability and resilience to those components of psychiatric 

disorders that, in their many manifestations and potentially relevant classifications, are amenable 

to biological insights, and thus, promising targets for therapeutic discovery.  

  

Finally, the prioritization of variants for use in polygenic risk analysis can be refined.  

Savvy integrative methods can be combined to achieve sets of variants that meaningfully 

contribute to trait variation from a broad network of genes. Aggregating across the tools and 

databases listed in the current review will help researchers to match 1) variants to genes, 2) genes 

to biological functions, 3) functions to plausible molecular mechanisms—ultimately achieving 

more robust effects with high signal-to-noise ratios—and 4) traits and disease characteristics 

within and across species. A few studies [96] have constructed polygenic scores from variants in 

genes known for disease pathology or targets co-expressed with putative trait genes from 

relevant brain tissues (via GeneNetwork), both of which demonstrated increased prediction than 

a random sets of genes and achieved trait specificity in mice [96] and humans [97]. But not all 

biologically informed polygenic scores exhibit significant prediction [98] and these methods 

have not been benchmarked with classical approaches selecting specific statistical criterion (e.g. 

p-value threshold; PRSice [99]) nor approaches that combine both statistical and alternative 

biological information (e.g., LD; LDpred [100], PleioPRED [101], AnnoPred [21]). A mixture of 

these techniques is likely required to best inform gene and variant prioritization in human GWAS 

studies. 

 

FUTURE RESEARCH DIRECTIONS 
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The multiple strategies we have outlined can be used to address the challenges and opportunities 

for the integration of diverse model organism data sets to augment the interpretation of GWAS 

and define genes and molecular pathways that underlie aspects of psychiatrically relevant 

phenotypes.  Heterogeneous functional genomics leverages the combined information in 

population genetic diversity, systems biology, gene regulatory analysis, and advanced 

phenotypic measurements to identify and characterize mechanisms of psychiatric disorders of the 

greatest complexity. Much work remains to facilitate dynamic data integration across these data 

types. The continued generation of adequately powered and broadly unbiased data resources in 

neurogenomics is essential across multiple species. Data sharing policies and practices along 

with platforms for data sharing and data integration are required. Community standards and 

practices that make data Findable, Accesible, Interoperable and Reproducible (FAIR) need to be 

adopted and resourced so that all researchers engaged in the generation and analysis of 

integrative functional genomics data have the capability of contributing to and benefiting from 

data integration. Development of analytic approaches and algorithms are also required for 

diverse applications in functional genomic data integration.  Scalable computational solutions 

that allow for such high dimensional data integration will enable a growing array of tools and 

approaches for the discovery of unknown mechanisms underlying psychiatric disorders, 

providing a more complete understanding of disease mechanisms.   
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Figure Legends:  

Fig 1. Multi-species genomic and epigenomic data integration. Genetic variation, gene 

regulation, and homology datasets are retrieved from a variety of publicly available resources 

and data repositories. Human (VH) and mouse (VM) variants are connected to the gene (GM, GH) 

that either contains a coding variant or is regulated by a non-coding variant. Epigenetic markers 

and regulatory features (RM, RH) are retrieved from ENCODE and Ensembl, then overlapped 

with genetic variation data from Ensembl and NCBI in order to identify regulatory variants (VM, 

VH). Regulatory variants (VM, VH) are overlapped with gene-regulatory datasets in the form of 

eQTLs (EM, EH; processed from GTEx, GeneNetwork, and specific mouse populations) and 

chromatin interaction studies (e.g., ChIA-PET experiments from ENCODE and gene-promoter 

interactions from the Eukaryotic Promoter Database). Association of regulatory variants and 

gene-regulatory information allows for the identification of putative gene targets. These datasets 

are harmonized within-species for mice (VM, EM, GM, RM) and humans (VH, EH, GH, then related 

across species through orthologous gene targets (OM, OH) derived from homology resources like 

the Alliance for Genome Resources. 

 

Fig 2. Multi-species genomic and epigenomic analysis. Species-specific gene, gene-regulatory, 

and variant-level data is harmonized from public resources. Using variant and gene annotations 

as input from post-GWAS annotation tools (e.g., FUMA, MAGMA, etc.), gene-regulatory 

components can be related across species via epigenomic modeling. Gene targets identified from 

epigenomic modeling can be used for further post-GWAS analysis with tools such as Enrichr, 

GeneWeaver, KnowEng, etc. Such analyses have numerous biomedical applications, such as the 

discovery of disease-relevant model organisms and traits.  
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Tool Name Description Strategy 

AnnoPred Estimates PRS using genomewide variants that are differentially 
weighted based on the integration of evidence across GWAS 
summary statistics and multiple annotation resources for 
different tissue types, genomic features, and the functional 
assessment of SNPs. 

Bayesian framework 
integration 

DIAMOnD This tool identifies potential variant to gene associations based 
on module inclusion. Uses an algorithm for detecting disease 
modules based on network connectivity. 

Algorithm for network 
module analysis 

ENCODE 
Screen 

Useful for discovering the potential regulatory role of genetic 
variants using cis-regulatory elements from ENCODE data in 
human and mouse. 

Database 

FOCUS Used to determine gene–trait associations from transcriptome 
wide annotation studies using LD among SNPs and eQTL 
weights embedded in a probabilistic model.  

Probabilistic Systems 
Framework 

FUMA Online tool to visualize and aggregate positional, eQTL and 
chromatin interaction maps to perform enrichment analysis of 
human GWAS data. Can be used to associate genetic variants 
to target genes based on eQTL and chromatin interaction 
studies. 

Tools pipeline and 
visualization 

GeneNetwork Set of variant, expression and eQTL multi-species tissue specific 
data sets used to link genetic maps to disease and phenotypes 
of interest.  

Database, Statistical 
and Probabilistic 
Tools 

GeneWeaver Multi-species data integration tools that allows users to identify 
putative genes of interest based on shared or unique genetic or 
variant data of interest. Tools available to map, manage and 
analyze large datasets. 

Bi-partite, k-partite, 
Combinatorics, 
Network Analysis 

H-MAGMA A modified version of MAGMA that extends gene-to-variant 
mapping by including long-range loci interactions predicted by 
Hi-C.  

Statistical Multiple 
Regression Models 

Harmonizome Online resource for data integration from existing genomic 
resources. 

Association Matrix, 
Machine Learning 

HumanBase Online tools for tissue specific gene and network interactions. Association Network, 
Machine Learning. 

KnowEng Integrative analysis following formatted pipelines for knowledge 
discovery. 

Knowledge Network, 
Machine Learning 

LDPred-funct Used to derive polygenic scores using multiple genetic variants . 
LDpred-funct estimates polygenic effects by employing a model 
that accounts for LD and identify trait-specific priors that are 
based on posterior casual associations.  

Probabilistic modeling 

MAGMA Software tool used to assign GWAS identified variants to genes, 
based on physical proximity, and perform joint and conditional 
association models that examine gene-, gene-set, and 
interaction effects. 

Statistical Multiple 
Regression Models 
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modENCODE Collaborative data set for genomic functional elements across 
several species, used to define genomic regions and variants of 
interest. 

Database, ModMine 
Toolset 

Monarch Semantic integration of phenotypic disease associations to 
identify underlying genes.  

Knowledge Graph 

PAINTOR Used to determine SNPs to be tested for phenotypes of interest. 
Predicts the impact of multiple casual variants on genomic 
annotations by incorporating summary associations statistics, 
functional annotations, and LD statistics. 

Probabilistic Systems 
Framework 

psychENCODE Collaborative data set for genomic functional elements, used to 
define genomic regions and variants of interest in the brain. 

Database, ModMine 
Toolset 

S-PrediXcan Used to predict gene associations to disease using gene 
expression levels to mediate summary GWAS and measured 
transcriptome studies without the need to use individual-level 
data. 

 

SMR Identifies genes with expression levels and pleiotropic 
associations with diseases of interest via the integration of 
GWAS variants and expression data derived from eQTL studies.  

Mendelian 
Randomized Analysis 

TWAS Identifies expression-trait associations by creating putative 
transcriptome-wide associations derived by integrating gene 
expression measurement with GWAS estimated associations. 
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Gene -regulatory data

Overlap regulatory
features and genomic 
variants with Ensembl

Gene Models 

CTCF variants Enhancer variants

Overlap interacting regulatory variants and gene features

Overlap regulatory variants,eQTLs, and gene targets 
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Regulatory element data
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Gene-regulatory data (eQTLs)
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V M

E M

R M

G M

V M
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G M

G M

G M

C

O M
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Multi-species epigenomic integration

Open chromatin variants Promoter variants TF site variants

Regulatory variants

V H

E H

R H

G H

V H

V MV H
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Direct Intragenic Mapping 

Intergenic Mapping through
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Intergenic Mapping through
eQTLevidence 

Direct Intragenic Mapping 

Intergenic Mapping through
Regulatory Elements  

Intergenic Mapping through
eQTLevidence 

GTEx GeneNetwork eQTL Studies
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Multi-species epigenomics data integrationPost-GWAS annotation

Post-GWAS analysis

LD HubFUMA

S-PrediXcanMAGMA

Identify overlapping
regions driving functional 

genomics 

Prioritize variants based
on polygenic risk 

Multi-species comparison of variants 
and Identify model organism traits that 

correspond to human disease

Analysis tools

Harmonizome HumanBase

Enrichr FOCUS GeneWeaver

KnowEng

Monarch SMR TWAS

Variant
Regulatory feature
Gene
Homlogy cluster
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