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The effect of chronic oxytocin treatment during abstinence
from methamphetamine self-administration on incubation of
craving, reinstatement, and anxiety
Nicholas A. Everett 1, Sarah J. Baracz1 and Jennifer L. Cornish1

Methamphetamine (METH) abuse is characterised by chronic relapse and anxiety, for which there are no effective
pharmacotherapies. Acute treatment with the neuropeptide oxytocin has shown therapeutic potential for METH addiction and has
social and anxiolytic effects in METH-naïve rats. However, the effects of chronic oxytocin treatment in METH-experienced rats are
unknown. This study investigated the effects of repeated oxytocin treatment during abstinence from METH self-administration on
incubation of cue-induced relapse, yohimbine- and METH-induced reinstatement, trait anxiety, and social interaction. Male and
female Sprague-Dawley rats self-administered intravenous METH for 2 h/day (12 days) and then on short-access (2 h/day; ShA) or
long-access (6 h/day; LgA) sessions (10 days). Rats underwent 30 days of drug abstinence, during which they received 15 days of
intraperitoneal oxytocin (1 mg/kg) or saline (days 6–20) injections. Anxiety and social interaction were tested on days 25–28, and
incubation was assessed by testing cue-induced relapse on days 2 and 30. Rats underwent extinction after the final cue-relapse test,
followed by yohimbine- and METH-primed reinstatement. LgA, but not ShA rats exhibited incubation of METH-craving and
enhanced METH-primed reinstatement in both sexes, and enhanced yohimbine-induced reinstatement in females. Importantly,
chronic oxytocin attenuated incubation and METH-primed reinstatement in both sexes, and yohimbine-induced reinstatement in
females, although only in LgA rats. LgA produced a heightened anxiety phenotype, which was partially rescued by chronic oxytocin
treatment. Using a translatable addiction model, these findings demonstrate the therapeutic efficacy of chronic oxytocin after
METH self-administration and supports the clinical utility of oxytocin for METH addiction in both sexes.
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INTRODUCTION
Abuse of, and addiction to, the psychostimulant methampheta-
mine (METH) is a rapidly growing public health concern and is
the second most abused illicit drug worldwide [1]. Methamphe-
tamine addiction is characterised by chronic relapse, and often
co-occurs with anxiety [2, 3], which may contribute to
heightened relapse risk [4]. There are currently no approved
pharmacotherapies which prevent relapse to METH addiction [5].
The neuropeptide oxytocin has shown substantial promise in the
preclinical literature as a potent inhibitor of METH self-
administration [6–8], METH reward [9, 10], cue-induced relapse
[8, 11, 12], METH-induced relapse [6, 13–15], and yohimbine-
induced relapse [7, 16]. The social [17] and anxiolytic [18] effects
of oxytocin treatment may have added benefits for METH-
dependent individuals. Together, these promising findings from
animal models have set the stage for the pre-registration of the
first randomised, double-blind, placebo-controlled trial investi-
gating the effects of oxytocin as an adjunct to psychosocial
therapy in humans with a METH-use disorder [19]. However,
clinical utility will require chronic treatment with oxytocin, the
effects of which have not been widely investigated.
Within the preclinical addiction field, the effects of chronic

oxytocin treatment have only been investigated prior to access to
the addictive drug, and typically during a crucial developmental

window. For example, rats treated for 10 days with oxytocin
during adolescence exhibited reduced free-consumption of
alcoholic beer [20] and reduced motivation to self-administer
METH [21]. However, when administered to adult rats for 10 days
prior to METH self-administration, oxytocin had no effect on
reinstatement to METH-seeking behaviours unless the rats had
experienced chronic stress [16]. The experience-dependent effects
of chronic oxytocin indicate that the therapeutic utility of oxytocin
may need to be understood in animal models exhibiting a robust
addiction-like phenotype (for review see ref. [22]).
Intravenous drug self-administration procedures can be mod-

ified to induce distinct addiction phenotypes. For example,
although procedures involving short daily access (ShA) to METH
(~2 h /day) are widely used, this model does not necessarily
induce human-like addiction traits. In contrast, long daily access
(LgA) to METH (≥6 h /day) can produce incubation of cue-induced
craving during protracted abstinence [23], which is also reported
in human METH users [24]. Other dysfunctions reminiscent of
human METH addiction are also induced by LgA, including
memory impairments [25], deficient sensorimotor gating [26],
dysphoria [27], and altered glutamate and dopamine neurotrans-
mission [28, 29]. Treatment with oxytocin interacts with many of
these behaviors [30–32] and neurotransmitter systems [12, 33, 34]
disrupted by LgA that may contribute to addiction, although the
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effects of oxytocin treatment have not yet been studied in these
translational LgA models.
The present study investigated the effects of chronic oxytocin

treatment when administered during a period of protracted
abstinence from ShA or LgA METH self-administration, on cue-,
drug-, and yohimbine-induced relapse, as well as on anxiety-like
behaviours. Sex was included as a primary variable as sex interacts
with both oxytocin (e.g. ref. [35]) and METH (e.g. ref. [36]), and
acute oxytocin treatment interferes with METH behaviours
differently between the sexes [7].

MATERIALS AND METHODS
Subjects
Pregnant Sprague-Dawley dams were purchased (Animal
Resources Centre, Australia), and pups were weaned at post-
natal day (PND) 22. A total of 48 male and 48 freely-cycling female
offspring were pair-housed by sex in open-top plastic cages (lights
on at 07:00, off at 19:00). Rats had ad libitum access to chow and
water. All procedures were conducted in accordance with the
Australian Code of Practice for the Care and Use of Animals for
Scientific Purposes (8th Edition, 2013), and the Macquarie
University Animal Ethics Committee.

Drugs
Methamphetamine hydrochloride was purchased (Australian
Government Analytical Laboratories, Australia), and oxytocin was
synthesized by ChinaPeptides (China). Yohimbine hydrochloride
was purchased from Sigma Aldrich (Australia). For intraperitoneal
(IP) injection, drugs were prepared in 0.9% physiological saline
(oxytocin, METH, 1 ml/kg) or distilled water (yohimbine, 2 ml/kg).
For self-administration, METH was dissolved in saline at 0.1 mg/kg
per 50 μl infusion. METH was prepared every 1–2 days for each
sex, based on their average body weight.

Surgery
Rats (PND 47) were randomly assigned to a METH-naïve group (16/
sex) or were implanted with jugular vein catheters for intravenous
METH self-administration (32/sex). Surgical and post-operative
procedures were performed as previously described [14], after
which self-administration procedures began in early adulthood
(PND 56).

Experimental procedures
Experimental groups and timeline of procedures is depicted in
Fig. 1. For each test, descriptions of apparatus are included in
the Supplementary Materials and Methods.

Methamphetamine self-administration and extended access
Rats lever pressed for METH during daily fixed-ratio-1 sessions
across 12 consecutive days (2 h/day) in operant chambers.
Depression of the active lever resulted in an intravenous METH
infusion, illumination of a cue light for 3-seconds, and 20-seconds
without the house light, signaling a time-out period where METH
was unavailable. Following the 12th self-administration session, rats
were randomly allocated to either continue self-administration for
2 h (Short Access, “ShA”), or 6 h per day (Long Access, “LgA”) for
10 days. Allocated ShA and LgA groups did no differ regarding:
body weight, total METH intake, or rate of acquisition (data not
shown). Infusions were limited to a maximum of 60 (ShA) and 150
(LgA) per session, otherwise ShA and LgA were identical.

Treatment during forced abstinence from methamphetamine
Following the final day of self-administration, rats underwent
30 days of forced abstinence where they remained in their home
cages. Rats were randomly allocated to receive oxytocin (1mg/kg
IP) or saline injections on days 6–20 of abstinence. Allocations were
conducted by home cage, so that each pair received the same

treatment. Treatment groups did not differ regarding total METH
intake, body weight, or lever pressing on cue-extinction day 2.

Elevated plus maze
On the 25th abstinence day, rats were placed in the centre of the
elevated plus maze (EPM) facing an open arm and could freely
explore the apparatus (5 min). Time spent in the open arms was
scored by a person blind to treatment group. For both EPM and
social interaction test, rats with no METH exposure but which had
received 15 days of oxytocin or saline were also assessed.

Social interaction test
On the 26th abstinence day, rats were individually habituated to the
testing arena (20mins), and then on abstinence days 27–28 they
were tested for their social interaction with novel partners. Each rat
separately interacted with two novel conspecifics of their same
group (METH-Access; Sex; Chronic-Treatment), and body weights of
pairs were within 10%. Interaction pairs were not siblings and were
from nonadjacent home cages. Pairs of rats were allowed to interact
for a 5-minute period. The time spent engaged in social behaviours
was scored by a researcher blind to treatment condition. Measure-
ment of social behaviour was based on [20], and included:
anogenital investigation, nose-to-nose investigation, pinning, and
climbing, which were scored as one aggregate variable.

Incubation of methamphetamine craving
To model incubation of METH craving, rats were returned to
operant chambers on forced abstinence days 2 and 30 and
underwent extinction tests in the presence of methamphetamine-
associated cues (for review, see [37]). During these sessions, rats
were exposed to a single illumination of the cue-light 30 seconds
into the session. Thereafter, depression of the active lever
illuminated the cue light for 3 seconds. The difference in active
lever pressing from day 2–30 was calculated to create an
“Incubation Score” [38].

Extinction of lever pressing
After the cue-extinction test on day 30, rats underwent daily 1-h
sessions to extinguish lever pressing, where depression of either
lever had no programmed consequences. Following 8 days of
extinction, all rats met standard extinction criterion of <15 active
lever presses. Rats received saline injections (IP) immediately prior to
the final 2 sessions, to habituate them to reinstatement conditions.

Yohimbine- and methamphetamine-primed reinstatement
Following extinction, rats underwent yohimbine- and then METH-
primed reinstatement to drug seeking. Yohimbine-induced
reinstatement was achieved by IP injection with the α-2
adrenoceptor antagonist yohimbine, which induces cravings in
humans [39] and reinstatement in rodents [40]. Reinstatement
tests were separated by three extinction sessions, and all rats met
extinction criterion prior to the next reinstatement test. All
yohimbine- and METH-primed reinstatement sessions were
programmed identically to extinction sessions. On the first session,
rats received 0.625mg/kg yohimbine, were returned to their home
cage for 30min, and then placed in their operant chamber for 1 h.
Reinstatement session two was identical, except rats received
1.25mg/kg yohimbine. Reinstatement sessions three and four
began 5min after rats received 0.3 or 1.0mg/kg METH, respectively.

Statistical analysis
Self-administration and reinstatement data were analysed using a
between subject’s ANOVA, including independent variables of
METH-Access (ShA, LgA), Chronic-Treatment (saline, oxytocin), and
Sex (male, female) for a total of eight groups (n= 8/group). Data
from the social interaction test and EPM were analysed similarly,
with the addition of a third level of METH-Access (“None”) for a
total of 12 groups (n= 8/group). For reinstatement data, inactive
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lever pressing was included as a covariate, and dose of yohimbine
(0.625, 1.25 mg/kg)) and METH (0.3, 1.0 mg/kg) was included as a
within-subjects variable. Main effects, interactions (α= 0.05) and
simple effects adjusted with Bonferroni’s test for multiple
comparisons (α= 0.05/#possible contrasts) are reported. Analyses
were conducted in SPSS (IBM, Version 20), and visualized in
Graphpad (Prism, Version 7.04). Analyses of inactive lever pressing
and locomotor data is presented in the Supplementary Results.

RESULTS
Methamphetamine self-administration
All rats acquired METH self-administration (Fig. 2a). Extended
access to METH self-administration (LgA) resulted in significantly
higher life-time METH intake than ShA (F(1,58)= 274.933, p <
0.001; Fig. 2b). The binge-like intake at the start of sessions was
enhanced by LgA, whereby METH intake in the first 15 and first
120min of the session was significantly higher after 10 days of
LgA training, compared with rats first LgA session (all p < 0.01;
Fig. 2d). There was no significant effect of Sex on METH intake
(F(1,58)= 0.092, p= 0.866). There was a significant Sex ×METH-
Access interaction on locomotor activity, whereby females
exhibited higher locomotor counts more in the LgA condition
than ShA (F(1,58)= 107.32, p < 0.001; Fig. 2c).

Effect of methamphetamine self-administration and chronic
oxytocin treatment on anxiety
On the EPM test, the interactions of Sex ×METH-Access × Chronic-
Treatment (F(1,84)= 0.220; p= 0.803), Sex ×METH-Access (F(1,84)=
0.022; p= 0.978), METH-Access × Chronic-Treatment (F(1,84)=
1.470; p= 0.236), and Sex × Chronic-Treatment (F(1,84)= 0.254;
p= 0.616) on time spent in the open arm were not significant.
There were significant main effects of METH-Access (F(1,84)= 9.221;
p < 0.001; Fig. 3a), Chronic-Treatment (F(1,84)= 5.410, p= 0.022),
but not Sex (F(1,84)= 0.787; p= 0.377) on open arm time. Simple
contrasts (α= 0.017) revealed that compared with METH-Naïve rats,
LgA Saline rats spent significantly less time in the open arms (Males:
p= 0.009; Females: p= 0.010), while ShA Saline rats were not
significantly different to METH-Naïve Saline (Males: p= 0.488;
Females: p= 0.240). Comparing between METH-Access groups,
LgA rats spent less time in the open arms than ShA, although this
was not significant after controlling for multiple comparisons (Males:
p= 0.040; Females: p= 0.120). Within LgA, the oxytocin group spent

more time in the open arms than saline, although this too was not
significant after controlling for multiple comparisons (Males: p=
0.040; Females: 0.056).

Effect of methamphetamine self-administration and chronic
oxytocin treatment on social interaction
On the social interaction test, there were no significant interac-
tions of METH-Access × Sex × Chronic-Treatment (F(1,84)= 0.420;
p= 0.658; Fig. 3b), METH-Access × Sex (F(1,84)= 1.752; p= 0.180),
Sex × Chronic-Treatment (F(1,84)= 0.613; p= 0.436), or METH-
Access × Chronic-Treatment (F(1,84)= 0.300; p= 0.742), on time
spent interacting. There was a significant effect of Sex (F(1,84)=
12.749; p < 0.001), where overall, female pairs spent less time
engaged in social interaction than male pairs. There was a
significant effect of Chronic-Treatment (F(1,84)= 8.907; p= 0.004),
whereby oxytocin treated pairs engaged in more social interaction
than saline treated pairs. There was a significant effect of METH-
Access on social interaction time (F(1,84)= 36.891; p < 0.001), and
simple contrasts (α= 0.017) revealed that compared with METH-
Naïve pairs, LgA pairs spent significantly less time interacting
(Males: p < 0.001; Females: p= 0.001) while ShA pair interaction
did not differ to naïve controls (Males: p= 0.516; Females: p=
0.236). LgA pairs also interacted significantly less than ShA pairs
(Males: p < 0.001; Females: p= 0.011). Within LgA, oxytocin treated
pairs did not differ significantly in time spent interacting than
saline pairs (Males: p= 0.261; Females: p= 0.110). However, within
METH-Naïve females, oxytocin treatment significantly increased
social interaction time compared with saline pairs (p= 0.016).

Effects of chronic oxytocin treatment on incubation of cue-
induced reinstatement
When comparing day 2 to day 30, all four LgA groups and ShA
females significantly increased their active lever pressing over
time (all p < 0.002; Figure S2 and Table S2), while ShA males did
not (Saline: p= 0.162, Oxytocin: p= 0.060). Incubation Scores (day
30–day 2) were therefore analysed to detect differences in
magnitude of incubation. There were no significant interactions
of Sex × METH-Access × Chronic-Treatment (F(1,58)= 0.033; p=
0.856), Sex ×METH-Access (F(1,58)= 0.182; p= 0.671), or Sex ×
Chronic-Treatment (F(1,58)= 0.232; p= 0.632) on incubation
scores. There was a significant interaction of METH-Access ×
Chronic-Treatment on incubation scores (F(1,58)= 11.151; p=
0.001), whereby the inhibitory effect of oxytocin versus saline on
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Fig. 1 Timeline of experimental procedures. ShA Short Access to METH self-administration (2 h/day). LgA Long Access to METH self-
administration (6 h/day). EPM Elevated Plus Maze. SIT Social Interaction Test. n= 8/sex/group.
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Fig. 2 Acquisition and escalation of METH (0.1 mg/kg/infusion) intravenous self-administration during short access (ShA: 2 h/day) and long
access (LgA: 6 h/day) in male and female rats. a Active and Inactive lever presses. b METH infusions (0.1 mg/kg) and total intake. Inset graph
illustrates the difference in total METH intake between ShA and LgA rats. c Locomotor activity. d Development of binge-like METH intake in
LgA trained rats (combined male and female), comparing the first and final 2 and 6 h sessions in 15-minute bins. Inset graph illustrates the
comparison between the first 2 h of the labelled sessions in LgA rats. #p < 0.05. *p < 0.05 from 6 h D1. Data are presented as mean ± SEM. n=
16/sex/group.

Fig. 3 The effect of chronic oxytocin treatment during abstinence on trait anxiety, social interaction, and incubation of cue-induced relapse, in
male and female rats with no METH exposure (“None”), and in ShA and LgA trained rats. a Time spent in the open arms of the elevated plus
maze. b Time spent interacting with a novel conspecific, c Difference in active lever presses between cue-relapse day 2 and day 30
(“Incubation Score”). d Inactive lever presses, and e locomotor activity on cue-induced relapse day 30. @p < 0.017 compared with respective
‘None’ group. #p < 0.017 compared with respective saline group. *p < 0.017 compared with respective ShA group. Data are presented as
mean ± SEM. n= 8 per group.
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incubation scores was greater in LgA than ShA rats. There was no
significant effect of Sex on incubation scores (F(1,58)= 3.836; p=
0.055). Comparing within Saline treated rats, LgA had significantly
higher incubation scores than ShA (Males: p < 0.001; Females: p <
0.001). Comparing within LgA, oxytocin treated rats had sig-
nificantly lower incubation scores than saline treated rats (Males:
p= 0.012; Females: p= 0.015).

Extinction
All rats extinguished their active lever pressing within 8 extinction
sessions (<15 presses; Fig. S1). There was no effect of oxytocin
treatment (F(1,58)= 0.555, p= 0.459) on the number of extinction
sessions required to achieve extinction criterion. There was, however,
a significant interaction of METH-Access × Sex (F(1,58)= 27.198; p <
0.001), whereby the difference in the number of extinction sessions
required to achieve extinction criterion between ShA and LgA
groups was greater in males than females. LgA males required
significantly more sessions to extinguish than ShA males (p< 0.001).

Effects of chronic oxytocin treatment on yohimbine-induced
reinstatement
There was a significant effect of yohimbine dose on active lever
pressing (F(1,54)= 23.158, p < 0.000), so each dose was analysed
in separate three-factor models below.

0.625 mg/kg yohimbine. On the 0.625mg/kg yohimbine rein-
statement test, there were no significant interactions of Sex ×
Chronic-Treatment ×METH-Access (F(1,58)= 1.478; p= 0.229),
Sex ×METH-Access (F(1,58)= 2.441; p= 0.124), or METH-Access ×
Chronic-Treatment (F(1,58)= 0.027; p= 0.869) on active lever
presses, while adjusting for inactive lever presses. However, there
was a significant Sex × Chronic-Treatment interaction (F(1,58)=
9.853; p= 0.003), as the difference between chronic oxytocin and
saline treatment on active lever pressing was greater in females
than males, regardless of METH Access. There was also a
significant effect of METH-Access on active lever pressing,
whereby LgA rats had higher active lever pressing than ShA rats
(F(1,58)= 47.859; p < 0.001; Fig. 4a). There was no significant main
effect of Sex (F(1,58)= 0.056; p= 0.813) or Chronic-Treatment
(F(1,58)= 0.995; p= 0.323) on active lever pressing. Simple
contrasts (α < 0.017) revealed that within Saline treated rats, LgA
resulted in significantly higher active lever pressing than ShA
(Males: p= 0.003, Females: p= 0.004). Within LgA rats, oxytocin
did not significantly reduce active lever pressing compared to
chronic saline treatment (Males: p= 0.226, Females: p= 0.062),
whereas within ShA rats, oxytocin treatment significantly reduced
active lever pressing in females (p < 0.001) but not males (p=
0.990). Comparisons with baseline extinction data are included in
the figure legends, and in Table S1.

1.25 mg/kg yohimbine. On the 1.25 mg/kg yohimbine-induced
reinstatement test, there were no significant interactions of Sex ×
METH-Access × Chronic Treatment (F(1,58)= 0.112; p= 0.739) or
METH-Access × Chronic Treatment (F(1,58)= 0.370; p= 0.545) on
active lever pressing, when adjusting for inactive lever pressing.
Importantly, there were significant interactions of Sex ×METH-
Access (F(1,58)= 12.343; p= 0.001), as LgA induced higher active
lever pressing compared to ShA more so in females than males;
and Sex × Chronic Treatment (F(1,58)= 8.782; p= 0.004), whereby
oxytocin reduced active lever pressing compared to saline
treatment to a greater extent in females than males. Simple
comparisons reveal that within Saline treated rats, LgA signifi-
cantly increased active lever pressing (Males: p= 0.004, Females:
p < 0.001). Within LgA rats, oxytocin treatment significantly
reduced active lever pressing compared with saline treatment in
females (p= 0.007) but not males (p= 0.159). Within ShA rats,
oxytocin similarly reduced active lever pressing in females (p=
0.002) but not males (p= 0.489).

Effects of chronic oxytocin treatment on methamphetamine-
primed reinstatement
There was a significant effect of METH dose on active lever
pressing (F(1,54)= 71.963, p < 0.000), so each dose was analysed
in separate three-factor models.

0.3 mg/kg methamphetamine. On the 0.3mg/kg METH-primed
reinstatement test, there were no significant interactions of Sex ×
Chronic-Treatment ×METH-Access (F(1,58)= 0.084; p= 0.772), Sex ×
METH-Access (F(1,58)= 0.341; p= 0.562), Sex × Chronic-Treatment
(F(1,58)= 0.797; p= 0.376), or METH-Access × Chronic-Treatment
(F(1,58)= 1.029; p= 0.315), on active lever pressing while adjusting
for inactive lever pressing. There was, however, a significant effect of
METH-Access on active lever pressing (F(1,58)= 13.296, p= 0.001;
Fig. 5a), whereby LgA rats demonstrated significantly higher active
lever pressing than ShA rats. There was no effect of Sex (F(1,58)=
0.173; p= 0.680) or Chronic-Treatment (F(1,58)= 1.479; p= 0.229).
Simple contrasts within Saline treated rats found that LgA resulted in
significantly higher active lever pressing for females (p= 0.050) but
not males (p= 0.077). Within LgA rats, oxytocin compared with
saline treatment did not significantly affect active lever pressing
(Males: p= 0.398, Females: p= 0.255).

1 mg/kg methamphetamine. On the 1mg/kg METH-primed rein-
statement test, there were no significant interactions of Sex ×
METH-Access × Chronic-Treatment (F(1,58)= 0.482; p= 0.490),
Sex ×METH-Access (F(1,58)= 0.227; p= 0.636), Sex × Chronic-Treat-
ment (F(1,58)= 0.449; p= 0.506) on active lever pressing when
adjusting for inactive lever pressing. There was a significant METH-
Access × Chronic-Treatment interaction (F(1,58)= 9.011; p= 0.004),
whereby the difference between oxytocin and saline groups on
active lever pressing was significantly greater for LgA than ShA rats.
There was no effect of Sex (F(1,58)= 0.108; p= 0.744). Simple
comparisons within Saline treated rats found that LgA significantly
increased active lever pressing compared to ShA (Males: p < 0.001,
Females: p= 0.005). Within LgA rats, oxytocin significantly reduced
active lever pressing compared to saline (Males: p= 0.008, Females:
p= 0.010). Within ShA rats, oxytocin did not significantly affect
active lever pressing (Males: p= 0.075, Females: p= 0.075).

DISCUSSION
Our study investigated the effects of chronic oxytocin treatment
during abstinence from METH self-administration. This data
indicate that 15 days of oxytocin treatment during a 30-day
abstinence period is sufficient to suppress METH relapse, and to
subtly improve anxiety-like behaviours. Importantly, these findings
were largely consistent between sexes, and primarily evident in
rats which had extended access to METH self-administration.

Extended access to methamphetamine induced a high-addiction
and high-anxiety phenotype in both sexes
The extended access procedure resulted in binge-like patterns of
METH intake in LgA but not ShA rats. Bingeing is common in early
stages of addiction in humans [41] and has been shown to predict
several addiction-like behaviours in rodents [42]. Female LgA rats
also exhibited substantially higher locomotor hyperactivity during
self-administration than LgA males despite similar METH intake,
which may parallel the higher rates of psychosis in METH-
dependent females than males [43]. Importantly, all LgA groups
exhibited incubation of cue-induced relapse, and reinstated to
METH more than ShA rats, while yohimbine-induced reinstate-
ment was only elevated by LgA in females. This is consistent with
previous demonstrations of enhanced METH-primed reinstate-
ment in LgA compared to ShA rats [44, 45], and clinical
observations of higher stress-related psychopathology in female
psychostimulant users compared with males [46, 47]. Interestingly,
ShA produced a minor but significant incubation effect in females

The effect of chronic oxytocin treatment during abstinence from. . .
NA Everett et al.

601

Neuropsychopharmacology (2020) 45:597 – 605



Fig. 5 The effect of chronic oxytocin treatment during abstinence on 0.3 mg/kg (a–c) and 1.0 mg/kg (d–f) METH-primed reinstatement to
METH-seeking behaviour in ShA and LgA trained male and female rats. a, d Active lever presses. b, e Inactive lever presses. c, f Locomotor
activity. METH was administered IP immediately prior to initiation of the reinstatement session. Overlaid graphs depict data from the
respective extinction day prior to each test. *p < 0.05 compared with respective ShA group. #p < 0.05 compared with respective saline group.
^p < 0.05 compared with extinction day prior to test. Data are presented as mean ± SEM. n= 8/group.

Fig. 4 The effect of chronic oxytocin treatment during abstinence on 0.625mg/kg (a–c) and 1.25mg/kg (d–f) yohimbine-primed
reinstatement to METH-seeking behaviour in ShA and LgA trained male and female rats. a, d Active lever presses. b, e Inactive lever presses.
c, f Locomotor activity. Overlaid graphs depict data from the respective extinction day prior to each test. *p < 0.017 compared with respective
ShA group. #p < 0.017 compared with respective saline group. ^p < 0.017 compared with extinction day prior to test. Data are presented as
mean ± SEM. n= 8/group.
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but not males, which has not previously been shown. Otherwise,
the effects of LgA on escalated METH self-administration,
incubation, and METH-primed reinstatement were similar between
sexes, which largely mirrors previous findings [48].
Additionally, LgA increased trait anxiety and reduced social

interaction time, while ShA rats did not differ from METH-naïve
controls. This is in keeping with previous reports of elevated
anxiety-like behaviour on the marble burying test in LgA
compared to ShA METH rats [27] and reduced social interaction
time following non-contingent METH exposure [49]. Given that
LgA rats do not exhibit deficits in social motivation [50], this effect
of LgA on social interaction may reflect a heightened anxiety state,
like what was measured with the EPM. Overall, this pattern of data
parallels the human literature indicating high levels of anxiety in
METH-dependent individuals [2, 3] and supports the use of
extended access procedures in both sexes to induce addiction-like
phenotypes with translational validity.

Chronic oxytocin treatment during abstinence reduced relapse,
reinstatement, and anxiety in extended access rats
Chronic treatment with oxytocin during abstinence from METH
remediated multiple addiction-like behaviours. Firstly, oxytocin
attenuated the incubation of cue-induced relapse. Incubation of
METH craving after protracted abstinence critically involves activity
in the central amygdala (CeA; [51]), a major recipient of
hypothalamic oxytocin which inhibits CeA output [52]. As
administered oxytocin stimulates endogenous oxytocin activity
[53], then chronic activation of these amygdala projecting axons by
IP oxytocin may have prevented the heightened CeA activity
hypothesised to underpin incubation of METH craving. Interactions
of oxytocin and LgA at the CeA may therefore be a fruitful pursuit.
Secondly, chronic oxytocin treatment also reduced METH-

primed reinstatement in LgA but not ShA rats. Psychostimulant-
primed reinstatement is driven by impaired glutamate home-
ostasis in fronto-striatal circuits, which is augmented by LgA [54].
Interestingly, oxytocin treatment increases expression of gluta-
mate transporter 1 [33], which is responsible for the majority of
glutamate reuptake in addiction circuits [55], and restoration of
which inhibits psychostimulant-seeking more in LgA than ShA rats
[56]. As such, it may be possible that oxytocin treatment worked
to restore LgA-disrupted glutamate homeostasis.
Lastly, yohimbine-primed reinstatement was also attenuated

by chronic oxytocin treatment, but only in females. This effect
was present in both ShA and LgA females, but only LgA males,
although this may be due to a floor effect on ShA males
responding to yohimbine, especially at the lower dose. This is the
most overt sex difference discovered in the present study and
may be related to interactions between oxytocin, sex hormones,
and stress. For example, yohimbine-primed reinstatement can be
reduced in female but not male rats by pretreatment with
allopregnanolone [57], which modulates endogenous oxytocin
release [58]. Oxytocin also interacts with stress differently
between sexes. For example, social defeat stress increases
markers of endogenous oxytocin function in female but not
male mice, while oxytocin treatment reversed behavioural
responses to stress in males but not females [59]. These data
suggest links between stress, oxytocin, and relapse; however,
recent findings demonstrate that food-seeking induced by
yohimbine requires the presence of contingent cues [60]. This
indicates that yohimbine may induce reinstatement through
mechanisms distinct from stress, or that stress reinstates drug-
seeking through augmenting the valence of cues. Given that
yohimbine and foot-shock induce nicotine reinstatement
through convergent neural mechanisms [61], the latter explana-
tion may be likely. Considering this, our data may suggest that
females are more susceptible to this effect on cues (e.g. ref. [38]),
and that oxytocin treatment may have modulated this elevated
cue-salience/valence. Such an effect of oxytocin has been

hypothesised by others [62], whereby oxytocin is thought to
enhance the salience of social stimuli, while dampening the
salience of drug-related stimuli.

Implications for using oxytocin as an addiction therapy
Across all relapse measures, chronic oxytocin treatment had a
greater effect in LgA than ShA rats. This was somewhat the case
for anxiety and social behaviour as well, where chronic oxytocin
decreased anxiety in LgA males and females, but not in ShA or
controls. These findings align with multiple studies demonstrating
efficacy of oxytocin only in rodents, which exhibit dysregulated
behaviour. For example, rats which have undergone a model of
post-traumatic stress disorder exhibit augmented contextual fear,
which is ameliorated by chronic oxytocin treatment [63]. However,
non-stressed rats received minimal benefit from oxytocin,
suggesting specific interference with the modelled stress pathol-
ogy. Furthermore, although chronic oxytocin treatment (15 days,
icv) prevented the emergence of a high-anxiety phenotype
induced by chronic psychosocial stress in mice, this same chronic
treatment produced a high-anxiety phenotype in non-stressed
mice [64]. Clearly, the effects of oxytocin treatment on socio-
emotional behaviours depend upon the animal’s prior history.
We hypothesise that this extends to addiction-like behaviours,

as demonstrated by the differential effects of oxytocin in LgA and
ShA rats shown here. One explanation for this is that METH
dysregulates the endogenous oxytocin system [65, 66]. As it has
been proposed that the status of the oxytocin system may confer
addiction vulnerability or susceptibility and may impact the
efficacy of exogenous oxytocin [22, 67, 68], then the efficacy of
oxytocin in LgA but not ShA rats may be due to a greater LgA-
induced disruption to the endogenous oxytocin system. Another
possibility is that oxytocin may normalise systems disrupted by
the addiction process, which are common across all drugs of
abuse, rather than specific to METH. For example, acute oxytocin
treatment suppresses escalated alcohol consumption and motiva-
tion in alcohol-dependent but not non-dependent rats, likely
through modulating the CeA [69], which is also implicated in
incubated METH-craving [51]. Overall, the superior therapeutic
effects of oxytocin in LgA rats is particularly encouraging from a
translational perspective, as LgA may better model human drug
addiction (although see ref. [70])
It is largely unknown to what degree the effects of IP oxytocin

administration on addiction-like behaviours are mediated by
action in the periphery, which is rich in oxytocin receptors [71], or
in the brain, which it is thought to poorly penetrate. Recent
findings from studies using oxytocin-null mice indicate that IP
oxytocin reaches the amygdala and hippocampus within 30 min
post administration [72], and is transported into the brain by
receptors for advanced glycation end-products on the blood-brain
barrier [73]. Additionally, there is compelling evidence that IP
oxytocin modulates feeding behaviour and oxytocin neuron
activity through an ascending vagal-dependent pathway [74],
and we have unpublished data indicating that oxytocin inhibits
METH self-administration via the vagus nerve. With this progress
in understanding the route by which IP oxytocin modulates the
brain, the present findings may be interpreted with greater
confidence in their potential for clinical translation.

LIMITATIONS AND CONCLUSIONS
Several limitations of this study should be considered. Firstly,
oxytocin or saline was administered to pairs of rats in their home
cages. As acute treatment with oxytocin induces profound social
effects [75], and social bonds protect against METH self-
administration [76], it is possible that the relapse-suppressant
effects of oxytocin discovered here were due to resulting
differences in social bonds between the oxytocin and saline treated
rats. However, as oxytocin is often used as an adjunct to
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psychosocial therapies (e.g. ref. [77]), such an effect may be
clinically beneficial. Conversely, chronic oxytocin treatment may
adversely alter the endogenous oxytocin system [78] and may
therefore impair behaviour or cognition. However, 21 days of
oxytocin (1mg/kg IP) has shown improvement in probabilistic
reversal learning without impacting effortful motivation in male rats
[79], suggesting that our data are not due to impaired cognition or
motivation. Lastly, estrus cycle is a potent mediator of cocaine-cue
learning [38], and incubation of cocaine craving [80], indicating the
importance of including estrus cycle as a variable, which we did not
do. Although estrus cycle does not moderate the inhibitory effects
of oxytocin on METH-primed reinstatement [7], cycle may interact
with oxytocin during cue- or yohimbine-induced relapse. Under-
standing the sex dependent effects of oxytocin is vital for clinical
translation and requires further investigation.
Overall, our findings support a relapse-prevention strategy of

administering oxytocin during abstinence from METH, for both
males and females. Oxytocin may also be a promising treatment
for the psychosocial symptoms often comorbid with METH-use
disorders. While the mechanisms by which peripherally adminis-
tered oxytocin modulates addiction processes in the brain require
further elucidation, this study convincingly demonstrates through
the use of a translatable animal model, the clinical utility of
oxytocin for treating METH-use disorders.
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