Prophylactic efficacy of 5-HT4R agonists against stress

Abstract

Enhancing stress resilience could protect against stress-induced psychiatric disorders in at-risk populations. We and others have previously reported that (R,S)-ketamine acts as a prophylactic against stress when administered 1 week before stress. While we have shown that the selective 5-hydroxytryptamine (5-HT) (serotonin) reuptake inhibitor (SSRI) fluoxetine (Flx) is ineffective as a prophylactic, we hypothesized that other serotonergic compounds such as serotonin 4 receptor (5-HT4R) agonists could act as prophylactics. We tested if three 5-HT4R agonists with varying affinity could protect against stress in two mouse strains by utilizing chronic corticosterone (CORT) administration or contextual fear conditioning (CFC). Mice were administered saline, (R,S)-ketamine, Flx, RS-67,333, prucalopride, or PF-04995274 at varying doses, and then 1 week later were subjected to chronic CORT or CFC. In C57BL/6N mice, chronic Flx administration attenuated CORT-induced weight changes and increased open-arm entries in the elevated plus maze (EPM). Chronic RS-67,333 administration attenuated CORT-mediated weight changes and protected against depressive- and anxiety-like behavior. In 129S6/SvEv mice, RS-67,333 attenuated learned fear in male, but not female mice. RS-67,333 was ineffective against stress-induced depressive-like behavior in the forced swim test (FST), but prevented anxiety-like behavior in both sexes. Prucalopride and PF-04995274 attenuated learned fear and decreased stress-induced depressive-like behavior. Electrophysiological recordings following (R,S)-ketamine or prucalopride administration revealed that both drugs alter AMPA receptor-mediated synaptic transmission in CA3. These data show that in addition to (R,S)-ketamine, 5-HT4R agonists are also effective prophylactics against stress, suggesting that the 5-HT4R may be a novel target for prophylactic drug development.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995;52:1048–60.

    CAS  PubMed  Google Scholar 

  2. 2.

    Amat J, Dolzani SD, Tilden S, Christianson JP, Kubala KH, Bartholomay K, et al. Previous ketamine produces an enduring blockade of neurochemical and behavioral effects of uncontrollable stress. J Neurosci. 2016;36:153–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Brachman RA, McGowan JC, Perusini JN, Lim SC, Pham TH, Faye C, et al. Ketamine as a prophylactic against stress-induced depressive-like behavior. Biol Psychiatry. 2016;79:776–86.

    CAS  PubMed  Google Scholar 

  4. 4.

    McGowan JC, LaGamma CT, Lim SC, Tsitsiklis M, Neria Y, Brachman RA, et al. Prophylactic ketamine attenuates learned fear. Neuropsychopharmacology. 2017;42:1577–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    McGowan JC, Hill C, Mastrodonato A, LaGamma CT, Kitayev A, Brachman RA, et al. Prophylactic ketamine alters nucleotide and neurotransmitter metabolism in brain and plasma following stress. Neuropsychopharmacology. 2018;43:1813–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Mastrodonato A, Martinez R, Pavlova IP, LaGamma CT, Brachman RA, Robison AJ, et al. Ventral CA3 activation mediates prophylactic ketamine efficacy against stress-induced depressive-like behavior. Biol Psychiatry. 2018;84:846–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    McGhee LL, Maani CV, Garza TH, Slater TM, Petz LN, Fowler M. The intraoperative administration of ketamine to burned U.S. service members does not increase the incidence of post-traumatic stress disorder. Mil Med. 2014;179:41–6.

    PubMed  Google Scholar 

  8. 8.

    Ma J-H, Wang S-Y, Yu H-Y, Li D-Y, Luo S-C, Zheng S-S, et al. Prophylactic use of ketamine reduces postpartum depression in Chinese women undergoing cesarean section. Psychiatry Res. 2019;279:252–8.

    CAS  PubMed  Google Scholar 

  9. 9.

    Xu Y, Li Y, Huang X, Chen D, She B, Ma D. Single bolus low-dose of ketamine does not prevent postpartum depression: a randomized, double-blind, placebo-controlled, prospective clinical trial. Arch Gynecol Obstet. 2017;295:1167–74.

    CAS  PubMed  Google Scholar 

  10. 10.

    Highland JN, Zanos P, Georgiou P, Gould TD. Group II metabotropic glutamate receptor blockade promotes stress resilience in mice. Neuropsychopharmacology. 2019;44:1788–96.

    CAS  PubMed  Google Scholar 

  11. 11.

    Bockaert J, Claeysen S, Compan V, Dumuis A. 5-HT4 receptors. Curr Drug Targets CNS Neurol Disord. 2004;3:39–51.

    CAS  PubMed  Google Scholar 

  12. 12.

    Bockaert J, Claeysen S, Compan V, Dumuis A. 5-HT(4) receptors: history, molecular pharmacology and brain functions. Neuropharmacology. 2008;55:922–31.

    CAS  PubMed  Google Scholar 

  13. 13.

    Dumuis A, Sebben M, Bockaert J. The gastrointestinal prokinetic benzamide derivatives are agonists at the non-classical 5-HT receptor (5-HT4) positively coupled to adenylate cyclase in neurons. Naunyn Schmiedebergs Arch Pharmacol. 1989;340:403–10.

    CAS  PubMed  Google Scholar 

  14. 14.

    Dumuis A, Sebben M, Bockaert J. BRL 24924: a potent agonist at a non-classical 5-HT receptor positively coupled with adenylate cyclase in colliculi neurons. Eur J Pharmacol. 1989;162:381–4.

    CAS  PubMed  Google Scholar 

  15. 15.

    Faye C, Hen R, Guiard BP, Denny CA, Gardier AM, Mendez-David I, et al. Rapid anxiolytic effects of RS67333, a serotonin type 4 receptor agonist, and diazepam, a benzodiazepine, are mediated by projections from the prefrontal cortex to the dorsal raphe nucleus. Biol Psychiatry. 2019. https://www.sciencedirect.com/science/article/abs/pii/S000632231931621X.

  16. 16.

    Bonaventure P, Hall H, Gommeren W, Cras P, Langlois X, Jurzak M, et al. Mapping of serotonin 5-HT(4) receptor mRNA and ligand binding sites in the post-mortem human brain. Synapse. 2000;36:35–46.

    CAS  PubMed  Google Scholar 

  17. 17.

    Hegde SS, Eglen RM. Peripheral 5-HT4 receptors. FASEB J. 1996;10:1398–407.

    CAS  PubMed  Google Scholar 

  18. 18.

    Amigo J, Diaz A, Pilar-Cuellar F, Vidal R, Martin A, Compan V, et al. The absence of 5-HT4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: adaptive changes in hippocampal neuroplasticity markers and 5-HT1A autoreceptor. Neuropharmacology. 2016;111:47–58.

    CAS  PubMed  Google Scholar 

  19. 19.

    Lucas G, Rymar VV, Du J, Mnie-Filali O, Bisgaard C, Manta S, et al. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron. 2007;55:712–25.

    CAS  PubMed  Google Scholar 

  20. 20.

    Mendez-David I, David DJ, Darcet F, Wu MV, Kerdine-Romer S, Gardier AM, et al. Rapid anxiolytic effects of a 5-HT(4) receptor agonist are mediated by a neurogenesis-independent mechanism. Neuropsychopharmacology. 2014;39:1366–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Samuels BA, Mendez-David I, Faye C, David SA, Pierz KA, Gardier AM, et al. Serotonin 1A and serotonin 4 receptors: essential mediators of the neurogenic and behavioral actions of antidepressants. Neuroscientist. 2016;22:26–45.

    CAS  PubMed  Google Scholar 

  22. 22.

    Eglen RM, Bonhaus DW, Johnson LG, Leung E, Clark RD. Pharmacological characterization of two novel and potent 5-HT4 receptor agonists, RS 67333 and RS 67506, in vitro and in vivo. Br J Pharmacol. 1995;115:1387–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Giannoni P, Gaven F, de Bundel D, Baranger K, Marchetti-Gauthier E, Roman FS, et al. Early administration of RS 67333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of Alzheimer’s disease. Front Aging Neurosci. 2013;5:96.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Prins NH, Van Haselen JF, Lefebvre RA, Briejer MR, Akkermans LM, Schuurkes JA. Pharmacological characterization of 5-HT4 receptors mediating relaxation of canine isolated rectum circular smooth muscle. Br J Pharmacol. 1999;127:1431–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Morris PJ, Moaddel R, Zanos P, Moore CE, Gould TD, Zarate CA Jr., et al. Synthesis and N-Methyl-d-aspartate (NMDA) receptor activity of ketamine metabolites. Org Lett. 2017;19:4572–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Zanos P, Gould TD. Intracellular signaling pathways involved in (S)- and (R)-ketamine antidepressant actions. Biol Psychiatry. 2018;83:2–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Grimwood S, Drummond E, Zasadny K, Skaddan M, Brodney M, Coffman K, et al. Translational receptor occupancy for the 5-HT4 partial agonist PF-04995274 in rats, non-human primates and healthy volunteers. Alzheimer’s Dement: J Alzheimer’s Assoc. 2011;7:S653.

    Google Scholar 

  28. 28.

    Zanos P, Highland JN, Liu X, Troppoli TA, Georgiou P, Lovett J, et al. R)-Ketamine exerts antidepressant actions partly via conversion to (2R,6R)-hydroxynorketamine, while causing adverse effects at sub-anaesthetic doses. Br J Pharmacol. 2019;176:2573–92.

    CAS  PubMed  Google Scholar 

  29. 29.

    Morris PJ, Moaddel R, Zanos P, Moore CE, Gould TD, Zarate CA Jr., et al. Correction to “synthesis and N-methyl-d-aspartate (NMDA) receptor activity of ketamine metabolites”. Org Lett. 2017;19:5494.

    CAS  PubMed  Google Scholar 

  30. 30.

    David DJ, Samuels BA, Rainer Q, Wang J-W, Marsteller D, Mendez I, et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron. 2009;62:479–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Denny CA, Burghardt NS, Schachter DM, Hen R, Drew MR. 4- to 6-week-old adult-born hippocampal neurons influence novelty-evoked exploration and contextual fear conditioning. Hippocampus. 2012;22:1188–201.

    PubMed  Google Scholar 

  32. 32.

    Drew MR, Denny CA, Hen R. Arrest of adult hippocampal neurogenesis in mice impairs single- but not multiple-trial contextual fear conditioning. Behav Neurosci. 2010;124:446–54.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Luna VM, Anacker C, Burghardt NS, Khandaker H, Andreu V, Millette A, et al. Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus. Science. 2019;364:578.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Lucas G, Compan V, Charnay Y, Neve RL, Nestler EJ, Bockaert J, et al. Frontocortical 5-HT4 receptors exert positive feedback on serotonergic activity: viral transfections, subacute and chronic treatments with 5-HT4 agonists. Biol Psychiatry. 2005;57:918–25.

    CAS  PubMed  Google Scholar 

  35. 35.

    Eglen RM, Wong EH, Dumuis A, Bockaert J. Central 5-HT4 receptors. Trends Pharm Sci. 1995;16:391–8.

    CAS  PubMed  Google Scholar 

  36. 36.

    Warner-Schmidt JL, Flajolet M, Maller A, Chen EY, Qi H, Svenningsson P, et al. Role of p11 in cellular and behavioral effects of 5-HT4 receptor stimulation. J Neurosci. 2009;29:1937.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Egeland M, Warner-Schmidt J, Greengard P, Svenningsson P. Co-expression of serotonin 5-HT1B and 5-HT4 receptors in p11 containing cells in cerebral cortex, hippocampus, caudate-putamen and cerebellum. Neuropharmacology. 2011;61:442–50.

    CAS  PubMed  Google Scholar 

  38. 38.

    Su T-P, Zhang L, Chung M-Y, Chen Y-S, Bi Y-M, Chou Y-H, et al. Levels of the potential biomarker p11 in peripheral blood cells distinguish patients with PTSD from those with other major psychiatric disorders. J Psychiatr Res. 2009;43:1078–85.

    PubMed  Google Scholar 

  39. 39.

    Zhang L, Su T-P, Choi K, Maree W, Li C-T, Chung M-Y, et al. P11 (S100A10) as a potential biomarker of psychiatric patients at risk of suicide. J Psychiatr Res. 2011;45:435–41.

    PubMed  Google Scholar 

  40. 40.

    Zhang L, Ursano RJ, Li H. P11: a potential biomarker for posttraumatic stress disorder. Methods Mol Biol. 2012;829:453–68.

    CAS  PubMed  Google Scholar 

  41. 41.

    Castello J, LeFrancois B, Flajolet M, Greengard P, Friedman E, Rebholz H. CK2 regulates 5-HT4 receptor signaling and modulates depressive-like behavior. Mol Psychiatry. 2018;23:872–82.

    CAS  PubMed  Google Scholar 

  42. 42.

    Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Nosyreva E, Szabla K, Autry AE, Ryazanov AG, Monteggia LM, Kavalali ET. Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J Neurosci. 2013;33:6990–7002.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23:801–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Suzuki K, Nosyreva E, Hunt KW, Kavalali ET, Monteggia LM. Effects of a ketamine metabolite on synaptic NMDAR function. Nature. 2017;546:E1–e3.

    CAS  PubMed  Google Scholar 

  47. 47.

    Teixeira CM, Rosen ZB, Suri D, Sun Q, Hersh M, Sargin D, et al. Hippocampal 5-HT input regulates memory formation and Schaffer collateral excitation. Neuron. 2018;98:992–1004.e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Rebola N, Carta M, Mulle C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci. 2017;18:208–20.

    CAS  PubMed  Google Scholar 

  49. 49.

    De Vadder F, Grasset E, Manneras Holm L, Karsenty G, Macpherson AJ, Olofsson LE, et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci USA. 2018;115:6458–63.

    CAS  PubMed  Google Scholar 

  50. 50.

    Bianco F, Bonora E, Natarajan D, Vargiolu M, Thapar N, Torresan F, et al. Prucalopride exerts neuroprotection in human enteric neurons. Am J Physiol Gastrointest Liver Physiol. 2016;310:G768–75.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Liu MT, Kuan YH, Wang J, Hen R, Gershon MD. 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci. 2009;29:9683–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Sittig LJ, Carbonetto P, Engel KA, Krauss KS, Barrios-Camacho CM, Palmer AA. Genetic background limits generalizability of genotype-phenotype relationships. Neuron. 2016;91:1253–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Darcet F, Gardier AM, David DJ, Guilloux JP. Chronic 5-HT4 receptor agonist treatment restores learning and memory deficits in a neuroendocrine mouse model of anxiety/depression. Neurosci Lett. 2016;616:197–203.

    CAS  PubMed  Google Scholar 

  54. 54.

    Dossat AM, Wright KN, Strong CE, Kabbaj M. Behavioral and biochemical sensitivity to low doses of ketamine: influence of estrous cycle in C57BL/6 mice. Neuropharmacology. 2018;130:30–41.

    CAS  PubMed  Google Scholar 

  55. 55.

    Picard N, Takesian AE, Fagiolini M, Hensch TK. NMDA 2A receptors in parvalbumin cells mediate sex-specific rapid ketamine response on cortical activity. Mol Psychiatry. 2019;24:828–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Thelen C, Flaherty E, Saurine J, Sens J, Mohamed S, Pitychoutis PM. Sex differences in the temporal neuromolecular and synaptogenic effects of the rapid-acting antidepressant drug ketamine in the mouse brain. Neuroscience. 2019;398:182–92.

    CAS  PubMed  Google Scholar 

  57. 57.

    Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Dolzani SD, Baratta MV, Moss JM, Leslie NL, Tilden SG, Sorensen AT, et al. Inhibition of a descending prefrontal circuit prevents ketamine-induced stress resilience in females. eNeuro. 2018;5:pii: ENEURO.0025-18.2018.

    Google Scholar 

  59. 59.

    Mekiri M, Gardier AM, David DJ, Guilloux JP. Chronic corticosterone administration effects on behavioral emotionality in female c57bl6 mice. Exp Clin Psychopharmacol. 2017;25:94–104.

    CAS  PubMed  Google Scholar 

  60. 60.

    Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S, et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry. 1994;51:8–19.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the laboratory for insightful comments on this project and paper. In addition, we thank V Domergue and the staff of the animal care facility of the SFR-UMS Institut Paris-Saclay Innovation Thérapeutique for their technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christine A. Denny.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, B.K., Mendez-David, I., Luna, V.M. et al. Prophylactic efficacy of 5-HT4R agonists against stress. Neuropsychopharmacol. 45, 542–552 (2020). https://doi.org/10.1038/s41386-019-0540-3

Download citation

Further reading

Search

Quick links