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Multivariate classification of schizophrenia and its familial risk
based on load-dependent attentional control brain functional
connectivity
Linda A. Antonucci1,2,3, Nora Penzel1,4, Giulio Pergola3,5, Lana Kambeitz-Ilankovic1,4, Dominic Dwyer1, Joseph Kambeitz4,
Shalaila Siobhan Haas1,6, Roberta Passiatore3, Leonardo Fazio7, Grazia Caforio3, Peter Falkai1, Giuseppe Blasi3,
Alessandro Bertolino3 and Nikolaos Koutsouleris1

Patients with schizophrenia (SCZ), as well as their unaffected siblings (SIB), show functional connectivity (FC) alterations during
performance of tasks involving attention. As compared with SCZ, these alterations are present in SIB to a lesser extent and are more
pronounced during high cognitive demand, thus possibly representing one of the pathways in which familial risk is translated into
the SCZ phenotype. Our aim is to measure the separability of SCZ and SIB from healthy controls (HC) using attentional control-
dependent FC patterns, and to test to which extent these patterns span a continuum of neurofunctional alterations between HC
and SCZ. 65 SCZ with 65 age and gender-matched HC and 39 SIB with 39 matched HC underwent the Variable Attentional Control
(VAC) task. Load-dependent connectivity matrices were generated according to correct responses in each VAC load. Classification
performances of high, intermediate and low VAC load FC on HC-SCZ and HC-SIB cohorts were tested through machine learning
techniques within a repeated nested cross-validation framework. HC-SCZ classification models were applied to the HC-SIB cohort,
and vice-versa. A high load-related decreased FC pattern discriminated between HC and SCZ with 66.9% accuracy and with 57.7%
accuracy between HC and SIB. A high load-related increased FC network separated SIB from HC (69.6% accuracy), but not SCZ from
HC (48.5% accuracy). Our findings revealed signatures of attentional FC abnormalities shared by SCZ and SIB individuals. We also
found evidence for potential, SIB-specific FC signature, which may point to compensatory neurofunctional mechanisms in persons
at familial risk for schizophrenia.

Neuropsychopharmacology (2020) 45:613–621; https://doi.org/10.1038/s41386-019-0532-3

INTRODUCTION
Schizophrenia is a brain disease whose risk pathways are hetero-
geneous and multi-factorial [1, 2]. Such complex architecture is
mainly due, on one hand, to the multiple gene-by-gene additive and
epistatic interactions [1, 3, 4] and, on the other hand, to the
interaction between genetic risk and environmental risk factors [2].
Within this framework, a wide variety of studies [1, 5–8] have proved
that the investigation of people with familial risk for schizophrenia
(e.g., unaffected siblings of patients-SIB) may uncover biological
traits with shared heritability with schizophrenia, which may thus
have a role in the risk pathways of the disorder, as SIB share about
half of the genetic variation with probands [9].
Within this context, studies have indicated brain functional

anomalies in patients with schizophrenia (SCZ) and SIB during
cognitive processing [7, 8, 10], which are more prominent in both
groups when a high cognitive demand is required. Furthermore,
whole-brain functional connectivity (FC) alterations in SCZ are a
largely replicated finding [8, 11–14]. Previous evidence [15–19]
indicated that such FC anomalies are also detectable in SIB, as well

as in other first-degree relatives of SCZ [15–17]. In particular, a
previous investigation [5] has revealed that SCZ exhibit thalamic
hypoconnectivity within an attentional-control related network
during task-related functional Magnetic Resonance Imaging (fMRI).
Interestingly, this disease-associated phenotype was present also
in SIB, even if to a lesser extent. Indeed, SIB’s FC pattern was
intermediate between those displayed by SCZ and healthy
controls (HC).
Overall, this body of evidence suggests that abnormalities in

attentional control-related FC is core, state-independent schizo-
phrenia phenotype [7] and is potentially representative of an
endophenotypic biomarker. However, schizophrenia-associated
FC phenotypes have been mostly described at the group level
through univariate statistics, and studies have so far had limited
success in identifying clinically meaningful markers of disease
[20, 21]. Indeed, several fMRI studies did not investigate complex
brain network properties but have focused on single, a-priori
defined regions of interest (ROIs), assessing significance through
group-level tests [22, 23]. However, to understand whether a
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disease-associated intermediate phenotype could also be quali-
fied as a disease biomarker (i.e., as a measurable feature
associated with a certain condition or biological process [24]),
one should investigate its sensitivity and specificity in identifying
the respective patient population [21, 25, 26]. To take into account
the complexity of FC at the network level, as well as to investigate
such performance metrics, Support Vector Machine (SVM)
techniques can be applied to brain imaging data. SVM can “learn”
whole-brain FC patterns which characterize brain pathologies
from training data and generalize the learned discriminative rules
to unseen patients [27]. SVM techniques are therefore considered
a promising tool to identify individualized biomarkers for
numerous psychiatric illnesses [28, 29].
Previous studies [30–32] suggested that FC patterns have good

discriminative power in classifying SCZ from HC and allow to
identify disease-associated patterns of alterations. Nevertheless,
only three studies have investigated whether FC patterns may
have the potential to identify a brain signature able to classify at
the multivariate level both people with the disease and people at
familial risk for the disease. Findings from two studies have
revealed the existence of network-based FC signatures that allow
the discrimination of patients with SCZ, SIB, and HC [33, 34], but
only using resting state data. On the other hand, another resting
state study [35] reported through multivariate techniques the
existence of both FC commonalities and differences between
unaffected siblings and their probands. These shared and unique
FC patterns could, therefore, reflect the contemporary familial risk-
related and compensatory-related mechanisms occurring in SIB at
the brain functional level.
However, no study has yet been conducted to assess the ability of

task-related FC to identify a pattern of connectivity alterations which
characterizes both SCZ and SIB at the multivariate level. Notably,
cognitive deficits associated with specific neural substrates predate
the onset of the disorder [36]. Furthermore, studies have demon-
strated that a large portion of resting-state fMRI BOLD signal change
is associated with vascular effects [37], as well as with individual
emotional and mood variation that is difficult to control [38, 39],
thus limiting the utility of “pure” FC patterns at rest. Therefore, we
believe that the use of task-related fMRI data for multivariate
classification purposes would (i) offer complementary information to
resting state on schizophrenia pathophysiology, and (ii) overcome
some of the shortcomings of resting state MRI. Therefore, the aim of
this study is to identify both common and unique patterns of
functional alterations between SCZ and SIB through SVM techni-
ques. We employed a “reversal discovery-validation strategy” (Fig. 1),
in which FC signatures for SCZ and SIB were built independently and
subsequently cross-validated between the two cohorts. Further-
more, we investigated the potential clinical associations of these
findings by testing the association between such discriminative
signatures and well-established clinical phenotypes of schizophrenia
(i.e., symptomatology levels), and of risk for the disease (i.e.,
schizotypy), given findings revealing that familial risk for psychosis
disorder predicts schizotypy in SIB [40].

MATERIALS AND METHODS
Sample determination
65 SCZ on stable antipsychotic treatment for at least one month
and 39 SIB were enrolled in this study. In order to avoid
demographic and sample size confounds within the machine
learning pipeline, two independent age and gender propensity-
matched [41, 42] HC cohorts (N= 65 and N= 39; Supplementary
Information, section 1) were selected from a larger sample (N=
324) of HC who previously took part in an fMRI experiment.
Diagnosis of schizophrenia for SCZ, as well as exclusion of any
psychiatric diagnoses for HC, were assessed with the Structured
Clinical Interview for DSM-IV [43]. Symptoms severity was assessed
through the Positive And Negative Symptoms Scale [44] (PANSS).

Schizotypal personality characteristics were assessed in SIB
through the Schizotypal Personality Questionnaire [45] (SPQ), a
self-assessment questionnaire consisting of 74 items with
dichotomous response format. Inclusion and exclusion criteria
are reported in Supplementary Information, section 1. All
procedures performed in this study were in accordance with the
ethical standards of the institutional and/or national research
committee and with the 2013 Helsinki Declaration or comparable
ethical standards. Informed consent was obtained from all
participants included in the study.

The neuropsychological task
Participants underwent fMRI while performing the Variable
Attentional Control (VAC) task [6, 46, 47], which requires three
increasing levels of attentional control. It is composed of stimuli
made of arrows with 3 different sizes either pointing to the right
or to the left. In the task, 42 small arrows are embedded in 6
medium arrows, which are in turn embedded in a single large
arrow (Fig. S1). Stimuli are presented with a cue word above each
stimulus (big, medium, or small). Individuals are instructed to
focus on the cue word and press either the left or right button on
an optic fiber button box corresponding to the direction of the
big, medium, or small arrows indicated by the cue word. To
increase the level of attentional control required (VAC load), the
direction of the arrows may be congruent or incongruent across
all three sizes. This resulted in three different conditions and in
three different VAC loads, according to the level of attentional
control required (high, intermediate, low; Supplementary Informa-
tion, section 2).

Analysis on demographics and behavioral data
Two sample t-tests and χ2 tests were used to compare
demographic characteristics across groups (Table 1). Furthermore,
repeated-measures ANOVA (between factor: group, repeated-
measures factor: VAC load) was employed to investigate any
significant group by VAC load interaction on behavioral perfor-
mance within the HC-SCZ and HC-SIB cohorts. Specifically,
behavioral accuracy (expressed as the percentage of correct
responses) and reaction time (RT, in milliseconds) were calculated

Fig. 1 The reversal discovery-validation machine learning strategy
employed to identify. a disease and risk-related functional con-
nectivity signature. HC-SCZ and HC-SIB Support Vector Machine-
based classification models were built within a repeated nested
cross-validation scheme (10 permutations × 10 folds both for HC-
SCZ and HC-SIB classifications, and related validations)
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per VAC level of attentional control. Details on BOLD fMRI data
acquisition and analysis are reported in Supplementary Informa-
tion, section 3.

Load-dependent connectivity matrices generation
Vector of onsets reflecting the timing of correct responses during
each VAC load, as well as slice-time corrected, unwarped, spatially
normalized (MNI template) and smoothed (gaussian kernel= 8mm)
VAC-related fMRI volumes (Supplementary Information, section 3)
entered the BetA Series COrrelation (BASCO) toolbox [48], which was
specifically designed to investigate inter-regional FC in event-related
fMRI data. Individual ROIxROI VAC load-related connectivity matrices
(Pearson’s r, Fisher-z transformed [48]; Supplementary Information,
section 4) based on the Dosenbach atlas [49], composed of 160 ROIs,
were generated, resulting in 12720 fMRI features for every
participant within each load-dependent matrix. Following this
process, high, intermediate and low attentional control-related
connectivity matrices were obtained.

Machine learning strategy
Following our aim, we employed a reversal discovery-validation
strategy (Fig. 1) across the two samples through the following steps:

1. a HC-SCZ load-dependent FC classifier was built to identify a
disease-related FC signature. To investigate whether this
disease-related signature could also be associated with
familial risk for schizophrenia, models generated for HC-SCZ
classification were applied to the HC-SIB cohort. Here, we
expected to identify a pattern of FC anomalies that not only
classified HC and SCZ with high accuracy, but that could also
discriminate between HC and SIB with good validation
performance.

2. a HC-SIB load-dependent FC classifier was built and then
applied to the HC-SCZ cohort. We expected to generate a
classifier able to discriminate between HC-SIB, but with poor
or null validation performance on the HC-SCZ cohort. Indeed,
some previous literature suggests that functional activity and
connectivity abnormalities in SIB are qualitatively similar to
those exhibited by SCZ, but quantitatively present only to a
lesser extent [5, 7]; on the other hand, other studies show the
presence of potential compensatory mechanisms occurring
in SIB, and not in SCZ, at the functional level [35].

Machine learning pipeline. The machine learning platform Neu-
roMiner (www.pronia.eu/neurominer), version 1.0 [50], was used to
set up a machine learning analysis pipeline in which (i) the
individual classification ability (HC vs. SCZ and HC vs. SIB) of the
three VAC load-dependent FC matrices (high, intermediate, low,
hereby called “uni-modal classifiers”), and (ii) the classification
performance of the three uni-modal classifiers together (HC vs. SCZ
and HC vs. SIB), was tested. For this purpose, uni-modal classifiers
were combined within the machine learning environment through
a stacking procedure [51]. To avoid overfitting, test the estimation
of the model’s generalizability and prevent information leakage
between training and test participants, repeated nested cross-
validation (CV) was employed (Supplementary Information, section
4). This CV structure implies the presence of an inner CV cycle,
where models are generated, embedded in another, super-
ordinate, outer CV cycle which is ultimately used to test for
models’ generalizability [20]. In the inner CV cycle, matrices were
pruned of zero-variance features. Then, a dimensionality reduction
procedure was applied using Principal Component Analysis (PCA).
Consistently with recent work [26, 50, 52], PCA models were
trained with a limited number of Principal Components (15, 20, and
25 eigenvectors) in the CV1 training data in order to reduce the risk
of overfitting and increase the generalizability of classification
models [53] . PC scores were 0–1 scaled and underwent a greedy
sequential forward feature selection procedure [21, 54] that
employed linear SVM [55] to detect a set of PCs that optimally
predicted the training and test cases’ labels in given CV1 partition
(Supplementary Information, section 4). To avoid overfitting, we
stopped the forward feature selection procedure when 20% of the
PCs had been discarded from the feature pool.
This analysis pipeline was applied to the outer CV cycle

determining the participant’s classification (HC vs. SCZ and HC
vs. SIB) through majority voting within every uni-modal classifier.
This way, we obtained SVM decision models for high, intermediate
and low attentional control-related FC features. Decision models
from each of the three VAC load-related uni-modal classifiers were
then used to build a stacking-based classifier [51, 56]. Stacked
generalization [51] trains a new higher-level machine-learning
algorithm which learns from the decisions of lower-level models
[21]. Specifically, we used the decisions models from our three VAC
load uni-modal classifiers altogether (high, intermediate, low) to
build a new, final learning algorithm which did not learn from raw

Table 1. Demographic and neuropsychological characteristics (mean(SD)) of the (A) SCZ and HC-matched cohort, and (B) SIB and HC-
matched cohort

A N Age Gender
ratio (m:f )

VAC low load
behavioral accuracy

VAC low load RT VAC int load
behavioral accuracy

VAC int load RT VAC high load
behavioral accuracy

VAC high
load RT

PANSS
total score

Chlorpr. Eq.

HC 65 29 (5) 53:12 99.4 (2.05) 876.23 (178.77) 96.29 (3.97) 1008 (170.89) 91 (11.11) 1084.75 (193.4) n.a. n.a.

SCZ 65 29 (6) 50:15 94.07 (8.01) 838.28 (172.97) 82.78 (13.18) 955.13 (220.51) 80 (14.52) 984.26 (224.9) 98.44 (29.3) 678.5 (351.31)

p value 1 0.5 0.7 <0.0001 0.23 <0.0001 0.13 <0.0001 0.008 n.a. n.a.

B N Age Gender
ratio (m:f )

VAC low load
behavioral accuracy

VAC low load RT VAC int load
behavioral accuracy

VAC int load RT VAC high load
behavioral accuracy

VAC high load RT SPQ total score

HC 39 35 (10) 20:18 99.18 (2.18) 799.64 (139.85) 91.46 (11.65) 951.63 (175.93) 85.88 (15.60) 1021.21 (184.74)

SIB 39 35 (9) 15:24 98.31 (3.61) 864.82 (150.54) 91.98 (9.03) 1043.48 (154.61) 88.65 (12.84) 1076.22 (160.84) 12.42 (10.79)

p value 1 0.9 0.2 0.24 0.07 0.83 0.02 0.42 0.18 n.a.

C Age Gender
ratio (m:f )

VAC low load behavioral
accuracy

VAC low
load RT

VAC int load behavioral
accuracy

VAC int
load RT

VAC high load behavioral
accuracy

VAC high
load RT

HC(SCZ) vs. HC(SIB) <0.001 <0.001 0.62 <0.001 <0.001 0.14 0.07 0.12

SCZ vs. SIB <0.001 <0.001 <0.001 0.44 <0.001 <0.001 <0.001 <0.001

Table 1/c reports significant and non-significant differences between the SCZ-matched and the SIB-matched HC cohorts, and between SCZ and SIB groups.
All p < 0.05
VAC variable attentional control, int intermediate, RT reaction time, PANSS positive and negative symptoms scale, SPQ schizotypal personality questionnaire
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features (i.e., pairwise functional connections), but from the VAC
load-related decisions scores of the uni-modal classifiers. This was
done in order to investigate whether using all the information
coming from the VAC task, i.e., combining decisions from high,
intermediate and low VAC load classifiers, would have led to an
increase in HC-SCZ and HC-SIB classification accuracy, compared
with the classification ability of VAC load-related uni-modal
classifiers. Statistical significance of individual and ensemble
classifiers was assessed through permutation testing [57, 58], with
α= 0.05 and 1000 permutations (Supplementary Information,
section 5). To better understand which variables might inform
SCZ and SIB classes at the single-subject level, we extracted the
percentage difference in connectivity between HC and SCZ and
between HC and SIB for the 99th percentile of reliable connections,
following published procedures [30]. Reliability for each connec-
tion is defined in terms of a Cross-Validation Ratio (CVR=mean(w)/
standard error(w)) [50]. In this formula, w represents the normal-
ized individual weights from SVM models generated in the
repeated nested CV scheme. Normalization is performed using
the Euclidean norm of w, defined as s=w/||w||2 [50]. A positive
CVR for each pairwise connection indicates greater connectivity for
SCZ or SIB compared to HC, while a negative CVR for each pairwise
connection indicates a decrease in connectivity for SCZ or
compared to HC. CVR for the 99th percentile of most reliable
connections [30] of the VAC high load uni-modal classifiers
discriminating between SCZ and HC and between SIB and HC
(see sections “HC-SCZ classification validated in the HC-SIB cohort”
and “HC-SIB classification validated in the HC-SCZ cohort”) are
reported in Table S2/A and S2/B, respectively.

Validation analyses of individual and stacking-based classifiers.
Following the strategy described in section “Load-dependent
connectivity matrices generation”, after building classification
models, we respectively validated: (i) the HC-SCZ model in the
HC-SIB cohort, and (ii) the HC-SIB model in the HC-SCZ cohort. To
do so, all SVM decision models obtained from our individual and
stacked analyses were applied without any in-between re-training
step to the respective external validation cohort.

Additional classification analyses. To exclude that demographic
and neuropsychological differences between the two HC cohorts
(Table 1/c) would have affected the discrimination performance of
HC-SCZ and HC-SIB models, we performed additional classification
analyses between the two HC cohorts. Related methods and results
are reported in Supplementary Information, section 6, and Table S3.

Correlations between models’ decision scores and disease and
risk-related phenotypes
To further explore the relationship between the performance of
the VAC load-high uni-modal classifier generated in HC-SCZ and
validated in HC-SIB (Section “Results”) and disease and risk-related
prototypical phenotypes, we performed Pearson’s r correlation
analysis between (i) subject-specific linear SVM decisions scores
(generated in SCZ and validated in SIB) and, respectively (ii) PANSS
total score, for SCZ (data were available for 37 out of 65
participants), and (iii) SPQ total score for SIB (data were available
for 27 out of 39 participants).

Correlations between models’ decision scores and task
performance
To further investigate classifiers performance, correlation analyses
between the VAC load-high uni-modal classifiers generated,
respectively, in HC and SCZ and in HC and SIB, and neuropsycho-
logical performance during the high VAC load were performed. We
used both behavioral accuracy and RT computed over high
attentional control stimuli. Correlations were run in the whole
HC-SCZ cohort (N= 130) and in the whole HC-SIB cohort (N= 78).
All p values are <0.05, FDR-corrected for multiple comparisons [59].

Further correlation analyses have been conducted in order to
exclude any association between HC-SCZ and HC-SIB high VAC
classifiers’ decision scores and potential demographic and pharma-
cological confounds (Supplementary Information, section 7, and
Table S4).

RESULTS
Neuropsychological differences between samples
ANOVA on load-dependent behavioral accuracy in the HC-SCZ
cohort revealed a main effect of group (F= 55.25, p= 0.0001),
with SCZ having poorer behavioral accuracy than HC. In addition,
a main effect of VAC load (F= 65.50, p= 0.00001) was found, i.e.,
participants showed a linear dose effect between behavioral
accuracy and VAC load. Analyses revealed also a group by VAC
load interaction (F= 8.874, p= 0.0001), such that the behavioral
accuracy percentage significantly decreased as the VAC load
increased, with SCZ having poorer behavioral accuracy compared
with HC in every VAC load (Table 1/a). Furthermore, ANOVA on
load-dependent RT revealed a main effect of VAC load (F= 178.5,
p= 0.0001), characterized by a linear RT increase as long as the
VAC load request increased, but no main effect of group (F= 3.8,
p= 0.054). A significant group by VAC load interaction on RT (F=
5.749, p= 0.004) was found, such that VAC RT significantly
increased as the VAC load increased, with SCZ having lower RT
compared with HC just in the high VAC load (Table 1/a).
HC-SIB neuropsychological comparisons revealed a main effect

of VAC load on behavioral accuracy, with all participants showing
a linear behavioral accuracy percentage drop as long as the VAC
load increased (F= 33.223, p= 0.0001). On the other hand, no
main effect of group (F= 0.19, p= 0.655) and no significant group
by VAC load interaction (F= 0.84, p= 0.434) on behavioral
accuracy were found. For what concerns RT, no main effect of
group (F= 3.7, p= 0.059) was found, but a main effect of VAC
load, with all participants showing a linear RT increase as long as
the VAC load request increased, was present (F= 233.9, p=
0.0001). No significant group by VAC load interaction on RT was
found (F= 1.587, p= 0.208). Further sample comparisons are
reported in Table 1/c.

HC-SCZ classification validated in the HC-SIB cohort
The high attentional control classifier correctly discriminated SCZ
from HC with a cross-validated accuracy of 66.9% and was
significant at p= 0.002. The intermediate attentional control
classifier produced a significant classification accuracy of 62.3%
(p= 0.013). The low attentional control classifier separated study
groups with 64.6% accuracy (p= 0.002). The stacking model,
fusing the decisions generated by all classifiers, discriminated HC
from SCZ with a 66.9% accuracy and was significant at p= 0.005.
Detailed statistics of all individual classification models are
reported in Table 2/a. The HC-SCZ classification based on VAC
high load uni-modal classifier was mainly characterized by
decreased FC between ROIs located in prefrontal cortex, basal
ganglia, inferior parietal lobule, insula, cerebellum and thalamus,
with SCZ having decreased FC compared to HC (Fig. 2/a, Table S2/
A). Applying the models generated within the HC-SCZ cohort to
the HC-SIB cohort revealed that individual and stacked classifiers
all predicted HC-SIB group membership at chance level (for
detailed statistics, see Table 2/b) except for the high attentional
control classifier, which was able to discriminate between HC and
SIB above chance level (accuracy= 57.7%, Table 2/b).

HC-SIB classification validated in the HC-SCZ cohort
Only the high attentional control classifier correctly discriminated
SIB from HC significantly (p= 0.003) with a cross-validated
accuracy of 69.2%. The intermediate attentional control classifier
produced a 52.6 classification accuracy (p= 0.313) and the low
attentional control classifier separated study groups with a 53.8%
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Table 2. (A) Validated classification performance of uni-modal and stacked classifiers in the HC-SCZ cohort; (B) classification performance of the
models generated in HC-SCZ and applied to the HC-SIB cohort without any in-between re-training; (C) validated classification performance of uni-
modal and stacked classifiers in the HC-SIB cohort; (D) classification performance of the models generated in HC-SIB and applied to the HC-SCZ
cohort without any in-between re-training

A. Classification: HC
vs. SCZ

True
negatives

True
positives

False
negatives

False
positives

Sensitivity Specificity Accuracy Positive
predictive value

Negative
predictive value

Number
needed to
diagnose

Positive
likelihood ratio

Diagnostic
odds ratio

Permutation
test, p value

High VAC load
classifier

56 31 34 9 47.7 86.2 66.9 77.5 62.2 3 3.4 11.9 0.002

Int VAC load
classifier

40 41 24 25 63.1 61.5 62.3 62.1 62.5 4.1 1.6 2.7 0.013

Low VAC load
classifier

29 55 10 36 84.6 44.6 64.6 60.4 74.4 3.4 1.5 2.3 0.002

Stacking-based
classifier (High,
Int, Low)

38 49 16 27 75.4 58.5 66.9 64.5 70.4 2.9 1.8 0.4 0.005

B. Out-of-sample
validation: HC vs. SIB

True
negatives

True
positives

False
negatives

False
positives

Sensitivity Specificity Accuracy Positive
predictive value

Negative
predictive value

Number needed to
diagnose

Positive
likelihood ratio

Diagnostic
odds ratio

High VAC load classifier 38 7 32 1 17.9 97.4 57.7 87.5 54.3 6.5 7 49

Int VAC load classifier 22 16 23 17 41.0 56.4 48.7 48.5 48.9 −39 0.9 0.9

Low VAC load classifier 12 16 23 27 41.0 33.3 35.9 37.2 34.3 −3.5 0.6 0.4

Stacking-based classifier
(High, Int, Low)

22 12 27 17 30.8 56.4 43.6 41.4 44.9 −7.8 0.7 0.5

C. Classification: HC
vs. SIB

True
negatives

True
positives

False
negatives

False
positives

Sensitivity Specificity Accuracy Positive
predictive value

Negative
predictive value

Number
needed to
diagnose

Positive
likelihood ratio

Diagnostic
odds ratio

Permutation
test, p value

High VAC load
classifier

37 17 22 2 43.6 94.9 69.2 89.5 62.7 2.6 8.5 72.2 0.003

Int VAC load
classifier

25 16 23 14 41.0 64.1 52.6 53.3 52.1 19.5 1.1 1.3 0.317

Low VAC load
classifier

28 14 25 11 35.9 71.8 53.8 56.0 52.8 13 1.3 1.6 0.22

Stacking-based
classifier (High,
Int, Low)

32 18 21 7 46.2 82.1 64.1 72.0 60.4 3.5 2.6 6.6 0.031

D. Out-of-sample
validation: HC vs SCZ

True
negatives

True
positives

False
negatives

False
positives

Sensitivity Specificity Accuracy Positive
predictive value

Negative
predictive value

Number needed to
diagnose

Positive
likelihood ratio

Diagnostic
odds ratio

High VAC load classifier 58 5 60 7 7.7 89.2 48.5 41.7 49.2 −32.5 0.7 0.5

Int VAC load classifier 36 24 41 29 36.9 55.4 46.2 45.3 46.8 −13 0.8 0.7

Low VAC load classifier 46 8 57 19 12.3 70.8 41.5 29.6 44.7 −5.9 0.4 0.2

Stacking-based classifier
(High, Int, Low)

48 8 57 17 12.3 73.8 43.1 32.0 45.7 −7.2 0.5 0.2

Int intermediate

Fig. 2 Depicting of the cross-validation ratio-based most reliable connections driving the classification between (a) HC and SCZ (mainly
characterized by FC decreases in SCZ), and (b) HC and SIB (mainly characterized by FC increases in SIB). Reliability is defined as the mean value
of the SVM weight divided by its standard error across all the generated models in the cross-validation scheme

Multivariate classification of schizophrenia and its familial risk based. . .
LA. Antonucci et al.

617

Neuropsychopharmacology (2020) 45:613 – 621



accuracy (p= 0.22). The stacking-based model discriminated HC
from SIB with a 64.1% accuracy (p= 0.031). Detailed statistics of all
individual classification models are reported in Table 2/c.
Increased FC highly predictive in the SIB vs HC classification
based on high load was detected between temporal, dorsolateral
prefrontal, cingulate, occipital, parietal, and insular ROIs (Fig. 2/b,
Table S2/B), with SIB having increased FC compared to HC. The
application of the models generated within the HC-SIB cohort to
the HC vs SCZ classification revealed that all individual and
stacked classifiers predicted HC-SIB group membership at chance
level (for detailed statistics, see Table 2/d).

Decision scores and disease and risk-related phenotypes
correlations results
Results in SCZ showed a positive association between high classifier
decision scores and PANSS total score (r= 0.328, p= 0.048).
Coherently, in SIB, validated high classifier decision scores and
SPQ total score were positively associated (r= 0.395, p= 0.05).

Decision scores and task performance correlations results
Correlation analyses performed between VAC load-high uni-modal
classifier decision and VAC high load-related behavioral perfor-
mance revealed no significant association (p= 0.685 for beha-
vioral accuracy, p= 0.098 for RT). In the HC-SIB cohort, there was a
significant association between decision scores of the VAC load-
high uni-modal classifier (accuracy= 69.2%) and high VAC
behavioral accuracy (r=−0.2776, uncorrected p= 0.014, FDR-
corrected p= 0.028), but not between decision scores and high
VAC RT (r=−0.024, p= 0.833). Moreover, the association of
decision scores generated in HC-SCZ and validated in HC-SIB with
VAC high load behavioral performance was not significant in SIB
(p= 0.414 for behavioral accuracy, p= 0.556 for RT).

DISCUSSION
To the best of our knowledge, this is the first multivariate study
assessing the classification ability of attentional control-related
FC with respect to both schizophrenia and its familial risk.
Furthermore, this is the first machine learning study in which
VAC load-related FC patterns, rather than overall task
performance-related [60] or resting state FC [33, 34] are used
for multivariate classification purposes. Therefore, we believe
that our results provide novel insights about (1) the multivariate
performance of task-related fMRI connectivity measures in
classifying both psychiatric and risk conditions, and (2) gain
understanding of the continuum of neurofunctional processes
and their clinical correlates linked to attentional control across
the risk spectrum.
Our findings reveal that high attentional control-related FC

significantly delineates SCZ from HC individuals with an
accuracy of 66.9%. Such results are consistent with previous
investigations in which functional MRI features were used to
discriminate between HC and SCZ with good classification
performance [30–32, 61]. Specifically, high VAC load had the
highest accuracy out of the three attentional control levels
tested, suggesting a dose effect of the stimulus on neurofunc-
tional separability. Furthermore, the stacking-based classifier
involving all VAC loads and the high VAC-based classifier
performed equally (both accuracies= 66.9%), thus suggesting
that intermediate and low-related FC patterns did not yield
additional information for discrimination purposes. This is in line
with a previous investigation employing the VAC task [6]
revealing that the brain activation anomalies in SCZ are load-
dependent and that such anomalies are detectable in nodes of
the attentional control network [62] when a high cognitive
demand is requested.
Furthermore, our results reveal that the majority of aberrant

connections in the SCZ group involved prefrontal cortex, basal

ganglia, inferior parietal lobule, cerebellum, and thalamus, thus
identifying a widespread pattern of decreased FC in SCZ. This
observation is consistent with the literature showing that these
regions have a crucial role in both general cognitive abilities and in
attentional control [3, 5, 6, 8, 62–64]. Furthermore, existing evidence
highlights how decreases in FC in such attentional control nodes is
associated with schizophrenia-related phenotypes [5, 8, 65–67]. The
disease-derived FC pattern also discriminated between HC and SIB
above chance level (57.7% accuracy) and is independent of the HC
samples included in the model and of potential demographic
differences between the two HC cohorts (accuracy= 52.8%,
Table S3). Our finding is coherent with previous structural and
functional investigations [33, 34, 68] which identified multivariate
structural and FC signatures reflecting familial risk for schizophrenia
with good multivariate classification performance. However, this is
one of the first studies in which task-related fMRI data are used
within a machine learning environment for classification purposes in
both SCZ and SIB cohorts. While results are consistent with the
extant literature, we are convinced that the potential added value of
these findings is to qualify attentional control-related FC anomalies
as a schizophrenia biomarker [20, 24, 25]. Biomarkers have intrinsic
potential for translation into clinical practice. For example, they may
be employed to monitor disease progression, or treatment outcome,
especially if combined with other multivariate signatures (i.e., clinical
and cognitive). The accuracy reported in the present work is below
what is needed for clinical translation, but our study shows that
more research into attention control-related FC anomalies is
warranted to develop novel biomarkers.
Nonetheless, our analysis shows a difference in accuracy between

the model separating in HC-SCZ (accuracy= 66.9%) and separating
HC-SIB (accuracy= 57.7%). We believe that the decrease in the
classification performance of the model when applied to the HC-SIB
cohort might be due to the fact that functional (and structural)
anomalies in SIB are qualitatively similar to those exhibited by SCZ
but quantitatively present at a lesser extent [69]. Therefore, our
analyses suggest the existence of a common multivariate FC
pattern associated with the psychosis spectrum, but that this FC
pattern is expressed to a different extent in SCZ patients and
individuals with a familial risk for the disease. The potential clinical
relevance of the identified disease and risk-related hypoconnectiv-
ity signature is further confirmed by the results of our correlation
analyses, which revealed that such signature performs better in
classifying SCZ with higher PANSS total score and SIB with higher
overall schizotypal score.
Results from the HC-SIB multivariate classification analysis, on one

hand, confirm that high attentional control–related connectivity
features, out of all individual and stacking-based classifiers, reach the
highest classification performance (accuracy= 69.2%, p= 0.003).
However, the HC-SIB classification pattern was different from the
previously identified HC-SCZ network, mainly characterized by FC
decreases in SCZ. Indeed, the majority of aberrant connections in SIB
involve temporal, cingulate, dorsolateral prefrontal and insular
connections nodes. Of note, differently from the HC-SCZ decreased
FC signature, (i) HC-SIB most discriminative functional connections
identified an increased FC pattern, and (ii) this increased FC pattern
was negatively associated with VAC behavioral accuracy during the
high load, such that the more the likelihood of classifying individuals
as SIBs, the less the VAC behavioral accuracy at the high VAC load.
Taken together, these findings allow to hypothesize a compensatory
pattern of increased FC in temporal, cingulate, prefrontal and insular
nodes in SIB compared to HC. This interpretation is in line with
previous univariate fMRI studies [6, 19, 70–74] testifying region-
specific hyperactivity and hyperconnectivity anomalies in SIB.
Further, they are consistent with models of the relationship between
brain activity and task performance [75] positing that an increase in
brain recruitment parallelized by either intact or decreased
behavioral performance is an indicator of a compensatory, or even
inefficient, recruitment of brain resources. This compensatory
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interpretation is also consistent with the fact that, when the HC-SIB
discriminative hyperconnectivity pattern is applied to the HC-SCZ
cohort, it performs at the chance level. To the best of our
knowledge, only this work and a previous resting state study [35]
reported the possible existence of SIB-specific FC pattern which they
do not share with their probands. Together, we believe that these
findings shed light on how functional compensatory mechanisms in
SIB may be concurrent to FC anomalies associated with familial risk
for schizophrenia.
This study has some limitations. First, there were significant age

and gender differences between SCZ and SIB and the related HC
cohorts. However, (i) no significant associations were found between
decision scores and demographic variables, and (ii) models
classifying between the two HC cohorts performed at chance levels.
These findings, therefore, make it less likely that our classification
models were affected by demographic confounds. Another limita-
tion is that SCZ were chronic patients under stable antipsychotic
treatment. Even if there was no association between SCZ decision
scores and pharmacological treatment levels (Supplementary
Information, section 7), this may limit the generalizability of our
findings. Replication studies involving individuals at the first episode
of the disease, which have shown to have poorer treatment courses
[76], may, therefore, give further information about the reliability of
our results. A further limitation is the sample size, as we are aware
that small sample sizes could be more easily overfitted [77]. In this
line of reasoning, it should also be pointed out that another
important limitation is the lack of an external validation analysis in
independent SCZ and SIB samples, which are currently unavailable
in sufficient sample size to the best of our knowledge. Therefore, the
generalizability of both the unique and shared FC patterns between
SCZ and SIB identified here remains to be tested. Even though a
stringent separation of training and test set was used, and a robust,
repeated-nested CV scheme was employed, replication in indepen-
dent and larger samples is needed to ensure that our findings are
replicable, as external validation is considered the gold standard in
the field to assess model generalizability.
In conclusion, on one hand our results provide evidence of a

shared, common schizophrenia and familial risk-related decreased
FC signature during high attentional control demand. On the
other hand, the increased FC signature able to discriminate
between HC and SIB may reflect specific compensatory mechan-
isms associated with the risk for the disease. Overall, our findings
suggest that employing cognitive load-related FC information for
classification purposes in schizophrenia may lead to reliable
insights on specific cognitive stimuli subtending the existence of
both commonalities and differences of both disease and risk-
related biomarkers. Future studies are needed to validate both
these shared and compensatory functional signatures in first
episode patients and in at-risk individuals that subsequently
convert psychosis risk symptoms in full-blown disease.
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