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Accelerated development of cocaine-associated dopamine
transients and cocaine use vulnerability following
traumatic stress
Zachary D. Brodnik1, Emily M. Black1 and Rodrigo A. España 1

Post-traumatic stress disorder and cocaine use disorder are highly co-morbid psychiatric conditions. The onset of post-traumatic
stress disorder generally occurs prior to the development of cocaine use disorder, and thus it appears that the development of
post-traumatic stress disorder drives cocaine use vulnerability. We recently characterized a rat model of post-traumatic stress
disorder with segregation of rats as susceptible and resilient based on anxiety-like behavior in the elevated plus maze and context
avoidance. We paired this model with in vivo fast scan cyclic voltammetry in freely moving rats to test for differences in dopamine
signaling in the nucleus accumbens core at baseline, in response to a single dose of cocaine, and in response to cocaine-paired
cues. Further, we examined differences in the acquisition of cocaine self-administration across groups. Results indicate that
susceptibility to traumatic stress is associated with alterations in phasic dopamine signaling architecture that increase the rate at
which dopamine signals entrain to cocaine-associated cues and increase the magnitude of persistent cue-evoked dopamine signals
following training. These changes in phasic dopamine signaling correspond with increases in the rate at which susceptible rats
develop excessive cocaine-taking behavior. Together, our studies demonstrate that susceptibility to traumatic stress is associated
with a cocaine use-vulnerable phenotype and suggests that differences in phasic dopamine signaling architecture may contribute
to the process by which this vulnerability occurs.
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INTRODUCTION
Post-traumatic stress disorder (PTSD) and cocaine use disorder are
highly co-morbid psychiatric conditions [1–3]. The onset of PTSD
generally occurs prior to the development of cocaine use disorder,
and this has led to the hypothesis that the development of PTSD
drives cocaine use vulnerability [4]. The biological substrates of
cocaine use vulnerability following PTSD onset, however, remain
unclear.
The formation and maintenance of psychological and neuro-

biological associations between drugs and drug-predictive cues is
a critical component in the development and progression of
cocaine use disorder [5, 6]. Such Pavlovian associations are known
to trigger cocaine craving [5, 7], and it has been found that PTSD
symptom severity predicts the intensity of cue-elicited cocaine
craving [8]. Furthermore, cocaine use disorder patients with a
history of trauma display elevations in mesolimbic responses to
cocaine-predictive cues [9]. This evidence suggests that differ-
ences in the development or persistence of Pavlovian associations
between cues and cocaine may contribute to cocaine use
vulnerability following PTSD onset.
Pavlovian associations develop across repeated cue pairings

such that cocaine-associated cues become sufficient to elicit
cocaine seeking [10, 11]. A distributed circuit orchestrates cue-
elicited cocaine-seeking [6, 12], and the nucleus accumbens core
(NAc) is an essential node within this circuit [13–15]. In particular,
phasic increases in NAc dopamine (DA) appear to play a critical

role in cue-elicited drug seeking. For example, it has been shown
that phasic DA signals in the NAc correlate with the expression of
cocaine-seeking behaviors [11, 16, 17], and mimicking these
phasic DA events by electrical stimulation of DA neurons initiates
cocaine seeking [16]. Together these observations raise the
possibility that changes in the development and/or persistence
of cue-evoked DA signals in response to cocaine-cue associations
may drive vulnerability to developing cocaine use disorder in
PTSD patients.
We recently described and validated a version of the predator

odor stress model of PTSD with segregation of rats as susceptible
or resilient based on anxiety-like behavior in the elevated plus
maze and context avoidance [18]. Using this paradigm, we found
that susceptible rats express a PTSD-like phenotype as well as
multiple changes in baseline DA signaling, cocaine pharmacology,
and the behavioral economics of cocaine self-administration [18].
Other studies using stress and segregation approaches subse-
quently demonstrated that susceptible rats display increased
cocaine self-administration, attenuated extinction of self-adminis-
tration, and increases in cue-primed reinstatement of cocaine
seeking [19, 20]. Together these observations point to the co-
occurrence of a PTSD-like and cocaine use vulnerability phenotype
in susceptible rats, thus affording the opportunity to examine the
neurobiology underlying this comorbidity. In the current studies,
we tested the hypothesis that susceptibility to traumatic stress is
associated with aberrations in phasic DA signaling that contribute
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to cocaine use vulnerability. We used fast scan cyclic voltammetry
(FSCV) in freely moving rats to examine changes in both
spontaneous and cue-elicited phasic DA signals in the NAc
following traumatic stress. We then characterized changes in the
propensity to develop cocaine-taking behaviors to determine if
observed changes in phasic DA signaling correspond with
increases in cocaine use vulnerability.

METHODS
Animals
Male Sprague–Dawley rats (300–350 g, Harlan, Frederick, MD)
were given ad libitum access to food and water and kept on a
reverse 12:12 h light:dark cycle (lights on at 15:00 or 17:00 h). All
protocols and animal care procedures were maintained in
accordance with the National Research Council’s Guide for the
Care and Use of Laboratory Animals: Eighth Edition (The National
Academies Press, Washington, DC, 2011) and approved by the
Institutional Animal Care and Use Committee at Drexel University
College of Medicine.

Chemicals
Cocaine hydrochloride was obtained from the National Institute
on Drug Abuse. 2,4,5-trimethyl-3-thiazoline (TMT), and butyric acid
were obtained from Sigma–Aldrich (St. Louis, MO).

Intravenous catheterization surgery
All rats were implanted with jugular catheters for intravenous (IV)
delivery of cocaine. Catheterization surgeries were performed as
previously described [18, 21]. For FSCV experiments, rats were
anesthetized using isoflurane and for self-administration experi-
ments rats were anesthetized with ketamine (100mg/kg) and
xylazine (10mg/kg). IV silastic catheters were implanted into the
right jugular vein. The catheter was connected to a cannula which
exited through the skin on the dorsal surface in the region of the
scapulae. Rats received post-surgical antibiotic (Neo-Predef, Phar-
macia & Upjohn Company, and 5mg/kg Baytril, Bayer HealthCare
LLC) and analgesic (5mg/kg; Ketoprofen, Patterson Veterinary) and
were allowed 1–3 weeks to recover before experimental proce-
dures began. Catheters were manually flushed with saline every
2–3 days during recovery to maintain catheter patency.

FSCV surgery
For the subset of rats tested with FSCV, electrodes were implanted
immediately following catheterization surgeries. Chronically
implanted carbon fiber electrodes were implanted in the NAc core
(+1.0 A/P, ±2.3 M/L, −7.0 to −7.5 D/V), and a reference electrode
was implanted in the posterior cortex (−2.5 A/P, −2.5 M/L,
−2.0 D/V). Electrodes were secured into place using dental acrylic
cement and five screws driven into the skull. Rats received
postsurgical antibiotic (Neo-Predef, Pharmacia & Upjohn Company,
and 5mg/kg Baytril, Bayer HealthCare LLC) and analgesic (5mg/kg;
Ketoprofen, Patterson Veterinary) and were allowed to recover for
21–28 days before FSCV experiments began [22].

Stress and segregation testing
For all rats, odor exposures, as well as context avoidance and
elevated plus maze testing, were carried out as previously
described [18]. Treatment of control and stressed rats differed
only in the odor of exposure, otherwise all rats underwent the
same series of procedures. Control rats were exposed to butyric
acid and stressed rats were exposed to TMT. A subset of TMT-
exposed rats display a PTSD-like phenotype comprised of
significant context avoidance, as well as increases in anxiety-like
behavior, acoustic startle response, and late waking phase
corticosterone levels [18].
Odor exposure was performed in a three-chamber place

conditioning box (Med Associates Inc., Fairfax, VT). On the first

day of testing, rats were allowed to freely explore all chambers of
the apparatus in a recorded, 5-min preference test. On the
following day, rats were randomly confined to one of the two
context chambers and 10 µl of either TMT or butyric acid was
pipetted onto tissue paper placed below the chamber floor. Odor
exposures were performed at the beginning of the light phase
(ZT 0:00) and lasted for 15min.
Elevated plus maze and context avoidance tests were

performed 7 days after odor exposure [18, 20, 23, 24]. Rats were
first recorded for 5-min on the elevated plus maze [25]. Time spent
in each arm of the elevated plus maze was quantified using
Ethovision XT software (Noldus, USA, VA, Leeburg). One hour after
elevated plus maze testing, rats were re-introduced to the place
conditioning box where they were allowed to freely explore all
three chambers in a recorded, 5-min context avoidance test. To
quantify context avoidance behavior, we calculated the change in
time spent in the odor-paired chamber (Δ Paired), which was
defined as the difference in time spent in the odor-paired
chamber during the avoidance and preference tests. Nonspecific
avoidance (Δ Unpaired) was similarly calculated for time spent in
the unpaired chamber. All animals included in these studies
underwent this series of procedures and tests, and we refer to this
process as “Stress and Segregation” testing (Fig. 1a).
To determine if elevated plus maze and context avoidance data

obtained in the current studies was comparable to that described
in our previous work [18], we first tested for significant differences
between butyric acid or TMT-exposed rats from our previously
published studies [18] against data obtained for the current
studies using Student's t tests. We found no differences in
elevated plus maze open arm time for butyric acid-exposed rats
(t(50)= 0.0892, p= 0.9293) or TMT-exposed rats (t(88)= 0.6335, p=
0.5088). Similarly, we found no difference in context avoidance for
butyric acid-exposed rats (t(50)= 0.2348, p= 0.8145) or TMT-
exposed rats (t(88)= 0.6380, p= 0.5252). Since these behavioral
data did not differ across studies, we segregated rats in the
current studies according to our previously established algorithm
[18], which defines all butyric acid-exposed rats as controls, and
segregates predator odor-exposed rats into resilient and suscep-
tible groups using cutoff criteria (time in open arms less than 50 s
and Δ Paired less than −20 s; Fig. 1b).
To further validate these cutoff criteria within this study, we

applied them to all rats and examined the distribution of rats
meeting susceptible or resilient criteria. In line with our previous
report [18], TMT-exposure was associated with significantly more
rats meeting susceptible criteria relative to rats exposed to butyric
acid (chi= 95.72, p < 0.001) (Fig. 1c). Although two butyric acid-
exposed rats met susceptible criteria, it is unlikely that these
animals formed meaningful context aversion given that butyric
acid is not fear-inducing [26]. Consistent with this, data from the
two butyric acid-exposed rats that met susceptible criteria fell well
within the range of data obtained for other control rats and not
within the range observed for TMT-exposed, susceptible rats (data
not shown). Based on this, we believe that the two butyric acid-
exposed rats that met susceptible criteria are not functionally
susceptible, but rather met susceptible criteria due to a
combination of individual differences in anxiety-like behavior
[27, 28] and chance. This issue raises the possibility that TMT-
exposed rats could similarly meet susceptibility criteria due to
individual differences that are independent of TMT-exposure.
While possible, our previous work using the same segregation
criteria indicated that susceptible rats displayed strong within-
group consistency in DA signaling and motivation for cocaine that
significantly differed from both control and resilient rats [18].

In vivo FSCV procedures
FSCV experimentation began the day after stress and segregation
testing. Rats were transferred to operant chambers (Med-Associate
Inc.) housed within custom built sound-attenuated boxes where
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they were connected to voltammetry and infusion lines and
allowed 1 h to acclimate. During this period, the carbon fiber
electrode potential was linearly scanned (−0.4 to 1.3 V and back to
−0.4 V vs. Ag/AgCl) and cyclic voltammograms were assessed at
the carbon fiber electrode every 100 ms with a scan rate of 400 V/s
using a voltammeter/amperometer (Electronics and Materials
Engineering, Seattle, WA).
On the first day of FSCV testing, we examined DA transient

frequency and magnitude at baseline and in response to cocaine
in a “Pharmacological Effect Test” (Fig. 2). We recorded
spontaneous DA transients for 6 min before administering a
single IV injection of 1.5 mg/kg cocaine. Spontaneous DA
transients were then recorded for an additional 5 min after
cocaine delivery. On the second day of testing, we examined the
development of cue-evoked DA transients across repeated cue-
cocaine pairings during a “Cue-cocaine Association Test” (Fig. 2).
We used a single day procedure that has previously been shown

to produce cue-evoked DA signals in the NAc [29]. Specifically, we
paired IV infusions of 0.375mg/kg cocaine with a 20-s light and
tone cue 30 times at a pseudo-random 3–6min interval. On the
third day of testing, we examined the persistence of cue-evoked
DA signals following cue-cocaine association training on the
previous day in a “Cue-evoked Dopamine Test” (Fig. 2). We
exposed rats to the light and tone cue five times at a pseudo-
random 3–6min interval. Cue-evoked DA tests were conducted
without administration of cocaine to test the persistence and
magnitude of cue-elicited DA signals independent of the
pharmacological effects of cocaine.

FSCV data analysis
Phasic DA transients were identified using Demon Voltammetry
and Analysis software [30], and were based on previously
described approaches [21, 31]. Voltammograms from DA release
events with amplitudes that exceeded five times the background
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noise were compared to a template cyclic voltammogram
obtained from electrically evoked DA release in the NAc core of
an awake rat. DA release events that displayed correlations greater
than or equal to an r2= 0.80 relative to the template cyclic
voltammogram were used for subsequent analysis.
DA transient magnitude was quantified by measuring area under

the curve. Once a DA transient was identified, the outer bounds of
each transient were defined as the first two points surrounding peak
DA release with template cyclic voltammogram correlations less
than r2= 0.20 (Supplemental Fig. 1). We then quantified DA
concentration by dividing the area under the curve for each
transient by an electrode calibration factor determined using an
in situ calibration method as described previously [32] (Supple-
mental Fig. 2). This approach was used to measure DA transient
magnitude for both spontaneous and cue-evoked DA signals.
For examination of spontaneous DA transients, we measured

both frequency and magnitude of events. In addition, we built
histograms of these data to more closely examine the relationship
between groups [33]. For frequency, we averaged the number of
inter-transient intervals into 1-s time bins across the duration of
baseline recording (6 min). For magnitude, we binned DA
transients into 0.1 nM bins across the duration of baseline
recording (6 min) and then normalized these values by dividing
each bin by the total number of DA transients observed (N/NTotal)
to account for any between group differences in DA transient
frequency.
For examination of the rate of cue-evoked DA development,

cue-evoked DA release data were analyzed by creating 30-s, peri-
event FSCV data files aligned to cue presentation such that 5 s
preceded and 25 s followed the cue onset. These peri-event files
were then averaged across 5 trials such that the 30 trials from the
first day of testing were analyzed as 6 trial block averages (i.e.,
trials 1–5, 6–10, 11–15, 16–20, 21–25, and 26–30) and the 5 trials
from the second day of testing were analyzed as a single trial
block average (i.e., trials 1–5).

Self-administration acquisition tests
Acquisition of cocaine self-administration behavior was examined
in a separate cohort of rats. Following stress and segregation
testing, catheters were connected through a stainless-steel spring
attached to a counterbalance and rats were provided access to
cocaine on the following morning. Rats were given access to a
lever within their home cage for 6 h (ZT 18-0) on each day of the
16-day acquisition period. Single lever presses resulted in the
activation of a cue light placed directly above the lever and a
single cocaine injection delivered over a 2–5s period. Cocaine
injections were followed by a 20-s timeout period in which the
lever was retracted. Extension of the lever after the timeout period
served to cue the availability of cocaine. Injections of 0.09, 0.19,
0.38, or 0.75 mg/kg doses were incrementally available for 4
consecutive daily sessions.
Self-administration behavior was analyzed only for rats that self-

administered at least five cocaine injections of each cocaine dose
to ensure that all included rats adequately experienced each
available dose. For example, a rat that lever pressed only one time
on each of the 4 days of 0.09 mg/kg availability would not meet
inclusion criteria (total lever presses= 4) and would be excluded
from all analyses. By comparison, a rat that lever pressed two
times on each day would have met the inclusion criteria (total
lever presses= 8). In total, two control, two resilient, and one
susceptible rat failed to meet this inclusion criteria and were thus
removed from all analyses. Separate from the inclusion criteria, we
defined the acquisition criteria to be used for post hoc analyses as
3 consecutive days of ten or more lever presses. Rats that lever
pressed ten or more times on the final day of testing were allowed
to continue self-administration for an additional 2 days to allow
these rats to meet acquisition criteria. Rats that did not meet
acquisition criteria were tested for catheter patency and were

removed if patency was deemed insufficient‚ resulting in the
removal of one control rat from analyses.

Statistics
Data were analyzed using IBM SPSS Statistics 24. Specific analyses
are reported in respective figure captions.

RESULTS
Susceptible rats express context avoidance and increased anxiety-
like behavior
We first analyzed elevated plus maze and avoidance behavior of
control, resilient, and susceptible rats using previously established
cutoff criteria (Fig. 1b) [18]. These analyses revealed that, similar to
our previous work [18], susceptible rats express increased anxiety
like-behavior as measured by reduced open arm time in the
elevated plus maze (Fig. 1d) and heightened avoidance of the
odor-paired chamber (Fig. 1e), while resilient rats did not differ
from controls across these measures. We also found that neither
susceptible nor resilient rats differed from controls in nonspecific
avoidance (Fig. 1f). When considered with our previous work [18],
these results indicate that susceptible rats used in the current
studies express a PTSD-like phenotype, while resilient rats do not.

Baseline phasic DA transient frequency is elevated in susceptible
rats
We previously found that susceptible rats show increases in tonic
DA levels at baseline [18]. However, the effects of trauma on
baseline spontaneous, phasic DA signaling architecture remain
unknown. To address this question, we first tested for differences
in baseline spontaneous DA transient frequency across control,
resilient, and susceptible rats. We found that average sponta-
neous DA transient frequency was elevated in susceptible rats but
did not differ between control and resilient rats (Fig. 3a–c). In
addition, we examined the magnitude of spontaneous DA release
events in control, resilient, and susceptible rats. We found that DA
transient magnitude did not differ across groups (Fig. 3a, d, e).
These observations are consistent with our previous findings
indicating that following traumatic stress exposure, susceptible
rats exhibit increased extracellular DA at baseline [18], and
suggest that a portion of this hyperdopaminergic phenotype is
driven by increases in the rate at which spontaneous phasic DA
transients occur.

The phasic DA response to cocaine is elevated in susceptible rats
Cocaine is known to increase both the frequency and amplitude of
spontaneous DA transients [34, 35], and cocaine-induced changes in
spontaneous DA transient architecture are proposed to impact the
development of cocaine use disorder [36, 37]. Importantly, while we
and others have demonstrated that susceptible rats display
enhanced sensitivity to the effects of cocaine using ex vivo FSCV
and microdialysis [18, 38] it is unclear if this change in sensitivity
influences phasic DA signaling in vivo. To address this, we carried
out a “Pharmacological Effect Test” (see Fig. 2) to determine if
susceptible rats express changes in spontaneous DA transient
architecture following a single 1.5mg/kg IV cocaine injection.
We found that the frequency of spontaneous DA transients was

increased following cocaine in susceptible, resilient, and control
rats (Fig. 3a, f), and that this increase in frequency did not differ
across groups when expressed as a percent of baseline (Fig. 3g).
Further, we found that cocaine increased average spontaneous DA
transient magnitude in control, resilient, and susceptible rats
(Fig. 3a, h), but that this increase was significantly higher in
susceptible rats when expressed as a percent of baseline (Fig. 3i).
Resilient rats did not differ from controls across any measure of
cocaine effects on phasic DA transients. Together, these data
indicate that while the processes that drive cocaine-induced
increases in DA transient frequency are normal in susceptible rats,
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these rats nevertheless display enhanced cocaine effects on
transient magnitude.

Cue-evoked DA signals develop more rapidly in susceptible rats
Cue-evoked DA signals develop following repeated cue-cocaine
pairings [21, 29], and similar cue-evoked DA transients have been
shown to drive cocaine taking [16]. Furthermore, it has been
proposed that cocaine-induced increases in spontaneous DA
transient frequency and magnitude support the development of
cue-evoked DA signals [36, 37]. To examine whether changes in
DA transient architecture observed in susceptible rats correspond

with changes in the rate of cue-evoked DA signal development we
carried out a “Cue-cocaine Association Test” (see Fig. 2).
We used a noncontingent, cue-cocaine pairing procedure

previously shown to produce cue-evoked DA signals in the NAc
within a single session [29] to test cue-evoked DA signal
development in control, resilient, and susceptible rats. We
observed that cue-cocaine pairings elicited cue-evoked DA signals
in all groups (Fig. 4a), but that susceptible rats developed cue-
evoked DA signals more rapidly than their resilient and control
counterparts (Fig. 4a, b). In addition, we found that despite
the more rapid development of these signals in susceptible rats,
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(F(35,715)= 41.03, p < 0.001), and group × interval interaction (F(70,715)= 5.910, p < 0.001). Shaded regions indicate s.e.m. d Average DA transient
magnitude measured across the 6-min baseline recording session. One-way ANOVA revealed no effect of group. e DA transient magnitude
histogram normalized for frequency and measured across the 6-min baseline recording session. Between subjects two-way ANOVA with
group as a between-subjects measure and DA magnitude as the repeated measure revealed a significant effect of magnitude (F(35,720)= 27.14,
p < 0.001), but no effect of group or interaction. Shaded regions indicate s.e.m. f Average DA transient frequency during baseline recording
and after cocaine delivery. Two-way ANOVA with group as a between-subjects measure and time as the repeated measure revealed a
significant effect of group (F(2,205)= 106.7, p < 0.001) and time (F(10,205)= 5.461, p < 0.001), but no interaction. g Change in DA transient
frequency calculated as a percent of baseline across baseline and after cocaine delivery. Two-way ANOVA with group as a between-subjects
measure and time as the repeated measure revealed a significant effect of time (F(10,170)= 5.095, p < 0.001), but no effect of group or
interaction. h Average DA transient frequency during baseline recording and after delivery of cocaine. Two-way ANOVA with group as a
between-subjects measure and time as the repeated measure revealed a significant effect of time (F(10,190)= 6.028, p < 0.001), but no effect
of group or interaction. i Change in DA transient magnitude calculated as a percent of baseline across baseline and after delivery of
cocaine. Two-way ANOVA with group as a between–subjects measure and time as the repeated measure revealed a significant effect of group
(F(2,19)= 4.959, p < 0.05), and time (F(10,190)= 6.585, p < 0.001), but no interaction. Control n= 8, Resilient n= 10, Susceptible n= 5. Bonferroni
post hoc: *p < 0.05; ***p < 0.001. COC= 1.5 mg/kg IV cocaine. Data are shown as mean (±s.e.m.)
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cue-evoked DA release did not differ across groups by the final
trial block (trials 26–30) of the session (Fig. 4a, b). Next, we
examined if the rate of change in DA signal magnitude varied
throughout training across groups. Cue-evoked DA signal
magnitudes, however, were not linear in all cases, with susceptible
rats displaying decreases in DA signal magnitude in the fifth and
sixth trial blocks (trials 21–25 and 26–30, respectively) relative to
the fourth trial block (trials 16–20; Fig. 4c). This decrease may be
attributable to differential activation of D2 auto receptors [39],
cocaine-induced inhibition of DA release [40], or an as-of-yet
undetermined mechanism. Thus, in order to avoid confounds
associated with these factors, we calculated the rate of change in
DA signal magnitude by performing a linear regression across the
first through fourth trial blocks (trials 1–20; Fig. 4d). We found that
susceptible rats displayed a greater rate of change in DA signal
magnitude across these trial blocks (Fig. 4e), and that this rate of
change in DA signal magnitude did not differ between control and
resilient rats. Together, these observations indicate that cue-
evoked DA signals known to drive cocaine-taking behavior
develop more rapidly in susceptible rats.

Cue-evoked DA signal persistence is increased in susceptible rats
Exposure to cues previously paired with cocaine can
initiate cocaine-taking behaviors [10, 11, 41], and it appears
that cue-evoked DA signals are critical for the expression of

cue-elicited cocaine seeking [5, 41]. Thus, it is likely that persistent
cue-evoked DA signals participate in continued cocaine seeking
after initial usage. To examine the extent to which the magnitude
of persistent cue-evoked DA signals differ across control, resilient,
and susceptible rats on the day following cue-cocaine pairings, we
performed a “Cue-evoked Dopamine Test” (see Fig. 2). We found
that persistent cue-evoked DA signal magnitude was greater in
susceptible rats than in their control and resilient counterparts and
that DA signal magnitude did not differ between control and
resilient rats (Fig. 4f–h). These findings indicate that cues
previously paired with cocaine elicit stronger cue-evoked DA
signals following initial pairings in susceptible rats.

Factors associated with increases in cue-evoked DA signal
development and persistence
We next explored the relationship between baseline DA signaling
and cocaine pharmacology with the rate of change and
persistence of cue-evoked DA signals across rats in our FSCV
studies. We used a stepwise multiple regression analysis to
determine if the rate of change in cue-evoked DA signal
magnitude was predicted by: (1) DA transient frequency at
baseline; (2) DA transient magnitude at baseline; (3) peak DA
transient frequency following cocaine; (4) peak DA transient
magnitude following cocaine; (5) peak DA transient frequency
following cocaine as a percent of baseline; or (6) peak DA transient
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magnitude following cocaine as a percent of baseline (Supple-
mental Fig. 3). We found that only baseline DA transient frequency
significantly predicted the rate of cue-evoked DA signal develop-
ment (Supplemental Table 1). In addition, we examined if any
features of phasic DA signaling at baseline or in response to
cocaine predict the magnitude of persistent DA signals observed
24 h after cue-cocaine parings (Supplemental Fig. 4). We found
that baseline DA transient frequency and peak cocaine-induced
changes in DA transient magnitude both predict the magnitude of
the persistent cue-evoked DA signal (Supplemental Table 2).
Phasic DA transients are related to DA neuron bursting [42], and

thus measurements of baseline DA transient frequency may
function as a readout of DA neuron burst activity [42, 43].
Considering this, our current results suggest that elevations in the
processes that increase DA system burst activity in susceptible rats
may also facilitate the development and persistence of cue-
evoked DA signals following cue-cocaine pairings. In addition,
cocaine-induced increases in DA transient magnitude reflect the
pharmacological effects of cocaine on DA release and uptake, and
thus our regression analysis also suggests that elevations in the
pharmacological effects of cocaine participate in the elevated
magnitude of persistent cue-evoked DA signals observed in
susceptible rats, but not in the rate at which these signals develop.

Susceptible rats display an elevated propensity to self-administer
cocaine
In our FSCV experiments, we found that susceptible rats
developed cue-evoked DA signals more rapidly than their control
and resilient counterparts. Cue-evoked DA signals play an
essential role in the initiation of cocaine-taking [16, 37], and thus
it follows that increases in the rate and persistence of cue-evoked
DA signals may confer an increase in the propensity to self-
administer cocaine. To examine this, we employed a modified
extended access self-administration acquisition procedure [44, 45]
that allows rats to escalate cocaine taking (Fig. 5a). We found that
susceptible rats show increases in cocaine-reinforced lever
pressing (Fig. 5b), and greater cumulative cocaine intake relative
to control and resilient rats (Fig. 5c). In addition, we found that
susceptible rats acquired cocaine self-administration faster than
control and resilient rats (Fig. 5d).
To further examine these differences in acquisition, we referred

to markers of addiction vulnerability in human populations.
Specifically, human populations at risk for developing drug
dependence show symptoms of addiction with fewer drug
experiences than lower risk populations [46, 47]. We modeled
this feature of addiction vulnerability by measuring the total
amount of cocaine self-administered without reaching acquisition
criteria across rats. We found that susceptible rats required less
cocaine experience to acquire self-administration (Fig. 5e), but
that resilient rats did not differ from controls. Lastly, humans who
are vulnerable to developing cocaine use disorder transition from
controlled drug taking to excessive drug use more rapidly than
less vulnerable individuals [48]. To assess if susceptible rats
transition to excessive cocaine taking more rapidly than their
control and resilient counterparts, we compared cumulative
cocaine intake after excluding all rats that did not meet acquisition
criteria. We found that susceptible rats self-administer more
cocaine over the 16-day testing period than the control and
resilient rats (Fig. 5f). This latter observation suggests that
susceptible rats more readily transition to excessive cocaine
intake patterns relative to control and resilient rats.

DISCUSSION
The current studies demonstrate that susceptibility to traumatic
stress is associated with differences in spontaneous phasic DA
signaling architecture both before and after the administration of
cocaine. Specifically, we found that the high spontaneous DA

frequency rate and high sensitivity to the DA-elevating effects of
cocaine observed in susceptible rats are associated with the rapid
development of high magnitude cue-evoked DA signals. Further,
we demonstrated that susceptible rats exhibit a heightened
propensity to self-administer cocaine. Together, these observa-
tions demonstrate the co-occurrence of trauma susceptibility with
cocaine use vulnerability and suggest that differences in phasic
DA signaling architecture may contribute to the process by which
this vulnerability occurs.
Importantly, when viewed within the framework of our previous

report [18], our current observations enhance our understanding
of the DA dynamics underlying cocaine use vulnerability in
susceptible rats. For example, given that phasic DA transients have
been shown to significantly contribute to DA tone [38], the current
finding that susceptible rats display increased DA transient activity
is consistent with our previous observation that susceptible rats
exhibit increased extracellular DA in the NAc [18].
Interestingly, the lack of difference in spontaneous DA transient

magnitude between susceptible, resilient, and control rats
observed in the current studies (Fig. 3), may at first appear to
contradict our previous observations [18]. Specifically, in our
previous ex vivo studies we observed low electrically-stimulated
DA release in susceptible rats, suggesting the possibility that
spontaneous DA transient magnitude in vivo would be similarly
reduced. Nevertheless, in our previous ex vivo studies we also
observed reduced DA uptake rate in susceptible rats which
suggests an increase in spontaneous DA transient magnitude [18].
Thus, the co-occurrence of these opposing processes in suscep-
tible rats would result in no changes to spontaneous DA transient
magnitude as observed in the current studies in freely moving
animals.
Spontaneous phasic DA signals are believed to be a product of

DA neuron bursting [42, 43]. Thus, the most likely explanation for
susceptible rats displaying increases in spontaneous phasic DA
signal frequency is that susceptibility to traumatic stress coincides
with increases in DA neuron burst activity. DA neuron bursting is a
product of glutamatergic inward calcium currents [49–52], and
these same currents play a significant role in synaptic plasticity
events that are required for the development of cue-evoked DA
signals and Pavlovian learning [53, 54]. Consistent with these
observations, we found that phasic DA transient frequency
correlates with the rate of development and the magnitude of
persistent cue-evoked DA signals. Together, this evidence
suggests that a common mechanism may enhance excitatory
signaling onto DA neurons to drive increases in baseline DA
signaling and cue-evoked DA signaling in susceptible rats.
Continued efforts are focused on elucidating such a mechanism.
We also found that susceptible rats displayed exaggerated

cocaine-induced increases in phasic DA transient magnitude. It
has been hypothesized that cocaine-induced elevations in extra-
synaptic DA may influence the rate at which phasic DA signals
entrain to drug-associated cues. Specifically, it has been shown
that repeated drug-induced increases in extra-synaptic DA trigger
a series of molecular and physiological adaptations across learning
and memory circuits [55–57]. These physiological changes include
enhanced synaptic input onto DA neurons of the VTA [58–60], and
such increases in synaptic strength are a critical factor in reward
learning [53, 57]. In our previous work, we found that susceptible
rats express heightened DA terminal cocaine sensitivity, such that
cocaine is more effective at blocking DA uptake at the level of DA
terminals [18]. Consistent with these prior studies, here we found
that the magnitude of persistent cue-evoked DA signals is higher
in susceptible rats. Furthermore, we found that the effect of
cocaine on DA transient magnitude predicts increases in the
magnitude of persistent cue-evoked DA signals. Together, this
evidence suggests that increases in DA terminal cocaine sensitivity
may drive enhanced cocaine effects on extra-synaptic DA in vivo,
and that this change in cocaine pharmacology participates in
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determining the magnitude of cocaine-associated phasic DA
signals in susceptible populations.
Cue-evoked DA signals are known to influence cue-initiated

cocaine taking [10, 11, 16]. Indeed, the magnitude of cue-evoked
DA signals positively correlate with the vigor of cue-elicited cocaine
seeking [11], and disrupting DA signaling in the NAc suppresses
cocaine seeking [61]. Given that we found elevations in the rapidity
of development and the magnitude of persistent cue-evoked DA
signals in susceptible rats, we predicted that these rats would
rapidly develop cocaine self-administration behaviors. We found
that susceptible rats displayed increases in the rate of cocaine self-
administration acquisition, and that susceptible rats transitioned to
excessive cocaine taking more readily than control and resilient rats.
Using a similar model, others have demonstrated that susceptible
rats show increases in cue-induced reinstatement of cocaine

seeking [20], and together with our current data this suggests that
susceptible rats may express a generally heightened sensitivity to
cocaine-paired cues. It is important to note, however, that the
behavioral contribution of heightened cue sensitivity versus more
general changes in DA system activity and cocaine pharmacology
remain unclear. Ongoing studies seek to parse the distinct influence
that each of these features imparts on cocaine use vulnerability
following trauma.
The finding that susceptible rats rapidly transition to excessive

cocaine taking is particularly interesting and may appear to
contradict our previous finding that susceptible rats exhibit a
reduction in cocaine consumption at null cost [18]. It should be
noted, however, that rats in our earlier studies were trained under
conditions that do not promote escalation of cocaine taking
[18, 62], whereas rats in the current work self-administered
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cocaine under conditions that do promote escalation [45, 63].
With this consideration, it is likely that susceptible rats express a
reduction in cocaine consumption on initial usage but are
nevertheless more likely to escalate cocaine taking. Indeed, others
have found that that low initial levels of cocaine consumption
predict a heightened propensity to escalate cocaine taking [64].
Together, these observations support the hypothesis that
susceptible rats express a drug-use vulnerable phenotype in
which enhanced cocaine sensitivity on initial usage predicts early
acquisition of self-administration and the rapid transition to
excessive cocaine taking.
The degree to which the dopaminergic and cocaine use

vulnerability profile observed in susceptible subjects is directly
related to trauma exposure remains unknown. While stress has
been demonstrated to directly increase DA neuron excitability,
mesolimbic DA system output, and cocaine sensitivity [65–71],
other evidence indicates that susceptibility can be attributed to
inherent, preexisting features that coincide with susceptibility.
Indeed, pre-existing genetic [72], hormonal [73–75], pharmacolo-
gical [76, 77], and physiological [78] indices can predict suscept-
ibility versus resilience to stress. Thus, while some forms of stress
may directly alter DA signaling, it is nevertheless possible that, in
our model, pre-existing mesolimbic DA system hyperactivity
coincides with or contributes to stress susceptibility.
Overall, we provide evidence that susceptible rats express

heightened DA system activity with an enhanced DA response to
the pharmacological effects of cocaine, and that these adaptations
in DA system function may participate in the rapid development
of persistent cue-evoked DA signals. As expected, this dopami-
nergic phenotype corresponded with increases in the develop-
ment of excessive cocaine-taking behaviors. Together, our
findings suggest that trauma-associated differences in DA system
function participate in the cocaine use vulnerability observed in
PTSD populations and contribute to our understanding of the
dopaminergic factors underlying cocaine use vulnerability.
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