Article | Published:

Mu opioid receptors in the medial habenula contribute to naloxone aversion

Neuropsychopharmacology (2019) | Download Citation

Abstract

The medial habenula (MHb) is considered a brain center regulating aversive states. The mu opioid receptor (MOR) has been traditionally studied at the level of nociceptive and mesolimbic circuits, for key roles in pain relief and reward processing. MOR is also densely expressed in MHb, however, MOR function at this brain site is virtually unknown. Here we tested the hypothesis that MOR in the MHb (MHb-MOR) also regulates aversion processing. We used chnrb4-Cre driver mice to delete the Oprm1 gene in chnrb4-neurons, predominantly expressed in the MHb. Conditional mutant (B4MOR) mice showed habenula-specific reduction of MOR expression, restricted to chnrb4-neurons (50% MHb-MORs). We tested B4MOR mice in behavioral assays to evaluate effects of MOR activation by morphine, and MOR blockade by naloxone. Locomotor, analgesic, rewarding, and motivational effects of morphine were preserved in conditional mutants. In contrast, conditioned place aversion (CPA) elicited by naloxone was reduced in both naïve (high dose) and morphine-dependent (low dose) B4MOR mice. Further, physical signs of withdrawal precipitated by either MOR (naloxone) or nicotinic receptor (mecamylamine) blockade were attenuated. These data suggest that MORs expressed in MHb B4-neurons contribute to aversive effects of naloxone, including negative effect and aversive effects of opioid withdrawal. MORs are inhibitory receptors, therefore we propose that endogenous MOR signaling normally inhibits chnrb4-neurons of the MHb and moderates their known aversive activity, which is unmasked upon receptor blockade. Thus, in addition to facilitating reward at several brain sites, tonic MOR activity may also limit aversion within the MHb circuitry.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Aizawa H, Amo R, Okamoto H. Phylogeny and ontogeny of the habenular structure. Front Neurosci. 2011;5:138.

  2. 2.

    Boulos LJ, Darcq E, Kieffer BL. Translating the habenula-from rodents to humans. Biol Psychiatry. 2017;81:296–305.

  3. 3.

    Beretta CA, Dross N, Guiterrez-Triana JA, Ryu S, Carl M. Habenula circuit development: past, present, and future. Front Neurosci. 2012;6:51.

  4. 4.

    McLaughlin I, Dani JA, De Biasi M. The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation. J Neurochem. 2017;142(Suppl 2):130–43.

  5. 5.

    Soria-Gomez E, Busquets-Garcia A, Hu F, Mehidi A, Cannich A, Roux L, et al. Habenular CB1 receptors control the expression of aversive memories. Neuron. 2015;88:306–13.

  6. 6.

    Zhao-Shea R, DeGroot SR, Liu L, Vallaster M, Pang X, Su Q, et al. Increased CRF signalling in a ventral tegmental area-interpeduncular nucleus-medial habenula circuit induces anxiety during nicotine withdrawal. Nat Commun. 2015;6:6770.

  7. 7.

    Fowler CD, Kenny PJ. Nicotine aversion: neurobiological mechanisms and relevance to tobacco dependence vulnerability. Neuropharmacology. 2014;76(Pt B):533–44.

  8. 8.

    Shih PY, Engle SE, Oh G, Deshpande P, Puskar NL, Lester HA, et al. Differential expression and function of nicotinic acetylcholine receptors in subdivisions of medial habenula. J Neurosci. 2014;34:9789–802.

  9. 9.

    Slimak MA, Ables JL, Frahm S, Antolin-Fontes B, Santos-Torres J, Moretti M, et al. Habenular expression of rare missense variants of the beta4 nicotinic receptor subunit alters nicotine consumption. Front Hum Neurosci. 2014;8:12.

  10. 10.

    Fowler CD, Kenny PJ. Habenular signaling in nicotine reinforcement. Neuropsychopharmacology. 2012;37:306–7.

  11. 11.

    Harrington L, Vinals X, Herrera-Solis A, Flores A, Morel C, Tolu S, et al. Role of beta4* nicotinic acetylcholine receptors in the habenulo-interpeduncular pathway in nicotine reinforcement in mice. Neuropsychopharmacology. 2016;41:1790–802.

  12. 12.

    Salas R, Pieri F, De Biasi M. Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit. J Neurosci. 2004;24:10035–9.

  13. 13.

    Salas R, Sturm R, Boulter J, De Biasi M. Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J Neurosci. 2009;29:3014–8.

  14. 14.

    Frahm S, Slimak MA, Ferrarese L, Santos-Torres J, Antolin-Fontes B, Auer S, et al. Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron. 2011;70:522–35.

  15. 15.

    Antolin-Fontes B, Ables JL, Gorlich A, Ibanez-Tallon I. The habenulo-interpeduncular pathway in nicotine aversion and withdrawal. Neuropharmacology. 2015;96:213–22.

  16. 16.

    Baldwin PR, Alanis R, Salas R. The role of the habenula in nicotine addiction. J Addict Res Ther. 2011;S1. https://www.frontiersin.org/articles/10.3389/fnhum.2014.00174/full.

  17. 17.

    Leslie FM, Mojica CY, Reynaga DD. Nicotinic receptors in addiction pathways. Mol Pharmacol. 2013;83:753–8.

  18. 18.

    Velasquez KM, Molfese DL, Salas R. The role of the habenula in drug addiction. Am J Addict. 2014;8:174.

  19. 19.

    Gardon O, Faget L, Chu Sin Chung P, Matifas A, Massotte D, Kieffer BL. Expression of mu opioid receptor in dorsal diencephalic conduction system: new insights for the medial habenula. Neuroscience. 2014;277:595–609.

  20. 20.

    Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature. 1996;383:819–23.

  21. 21.

    Ben Hamida S, Boulos LJ, McNicholas M, Charbogne P, Kieffer BL. Mu opioid receptors in GABAergic neurons of the forebrain promote alcohol reward and drinking. Addict Biol. 2017;24:28–39.

  22. 22.

    Moles A, Kieffer BL, D’Amato FR. Deficit in attachment behavior in mice lacking the mu-opioid receptor gene. Science. 2004;304:1983–6.

  23. 23.

    Rabiner EA, Beaver J, Makwana A, Searle G, Long C, Nathan PJ, et al. Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans. Mol Psychiatry. 2011;16:826–35.

  24. 24.

    Fields HL, Margolis EB. Understanding opioid reward. Trends Neurosci. 2015;38:217–25.

  25. 25.

    Le Merrer J, Becker JA, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev. 2009;89:1379–412.

  26. 26.

    Darcq E, Kieffer BL. Opioid receptors: drivers to addiction? Nat Rev Neurosci. 2018;19:499–514.

  27. 27.

    Shoblock JR, Maidment NT. Constitutively active micro opioid receptors mediate the enhanced conditioned aversive effect of naloxone in morphine-dependent mice. Neuropsychopharmacology. 2006;31:171–7.

  28. 28.

    Shoblock JR, Maidment NT. Enkephalin release promotes homeostatic increases in constitutively active mu opioid receptors during morphine withdrawal. Neuroscience. 2007;149:642–9.

  29. 29.

    Frenois F, Le Moine C, Cador M. The motivational component of withdrawal in opiate addiction: role of associative learning and aversive memory in opiate addiction from a behavioral, anatomical and functional perspective. Rev Neurosci. 2005;16:255–76.

  30. 30.

    Lucas M, Frenois F, Cador M, Le Moine C. Remodeling of the neuronal circuits underlying opiate-withdrawal memories following remote retrieval. Neurobiol Learn Mem. 2012;97:47–53.

  31. 31.

    Matsui A, Jarvie BC, Robinson BG, Hentges ST, Williams JT. Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron. 2014;82:1346–56.

  32. 32.

    Goeldner C, Lutz PE, Darcq E, Halter T, Clesse D, Ouagazzal AM, et al. Impaired emotional-like behavior and serotonergic function during protracted abstinence from chronic morphine. Biol Psychiatry. 2011;69:236–44.

  33. 33.

    Lutz PE, Ayranci G, Chu-Sin-Chung P, Matifas A, Koebel P, Filliol D, et al. Distinct mu, delta, and kappa opioid receptor mechanisms underlie low sociability and depressive-like behaviors during heroin abstinence. Neuropsychopharmacology. 2014;39:2694–705.

  34. 34.

    Erbs E, Faget L, Scherrer G, Matifas A, Filliol D, Vonesch JL, et al. A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct Funct. 2015;220:677–702.

  35. 35.

    Weibel R, Reiss D, Karchewski L, Gardon O, Matifas A, Filliol D, et al. Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice. PLoS One. 2013;8:e74706.

  36. 36.

    Proulx CD, Hikosaka O, Malinow R. Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci. 2014;17:1146–52.

  37. 37.

    Visel A, Carson J, Oldekamp J, Warnecke M, Jakubcakova V, Zhou X, et al. Regulatory pathway analysis by high-throughput in situ hybridization. PLoS Genet. 2007;3:1867–83.

  38. 38.

    Boulos LJ, Nasseef MT, McNicholas M, Mechling A, Harsan LA, Darcq E, et al. Touchscreen-based phenotyping: altered stimulus/reward association and lower perseveration to gain a reward in mu opioid receptor knockout mice. Sci Rep. 2019;9:4044.

  39. 39.

    Sakoori K, Murphy NP. Maintenance of conditioned place preferences and aversion in C57BL6 mice: effects of repeated and drug state testing. Behav Brain Res. 2005;160:34–43.

  40. 40.

    Frenois F, Cador M, Caille S, Stinus L, Le Moine C. Neural correlates of the motivational and somatic components of naloxone-precipitated morphine withdrawal. Eur J Neurosci. 2002;16:1377–89.

  41. 41.

    Azar MR, Jones BC, Schulteis G. Conditioned place aversion is a highly sensitive index of acute opioid dependence and withdrawal. Psychopharmacology. 2003;170:42–50.

  42. 42.

    Gomez-Milanes I, Almela P, Garcia-Carmona JA, Garcia-Gutierrez MS, Aracil-Fernandez A, Manzanares J, et al. Accumbal dopamine, noradrenaline and serotonin activity after naloxone-conditioned place aversion in morphine-dependent mice. Neurochem Int. 2012;61:433–40.

  43. 43.

    Le Merrer J, Befort K, Gardon O, Filliol D, Darcq E, Dembele D, et al. Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network. Addict Biol. 2012;17:1–12.

  44. 44.

    Panchal V, Taraschenko OD, Maisonneuve IM, Glick SD. Attenuation of morphine withdrawal signs by intracerebral administration of 18-methoxycoronaridine. Eur J Pharmacol. 2005;525:98–104.

  45. 45.

    Darcq E, Befort K, Koebel P, Pannetier S, Mahoney MK, Gaveriaux-Ruff C, et al. RSK2 signaling in medial habenula contributes to acute morphine analgesia. Neuropsychopharmacology. 2012;37:1288–96.

  46. 46.

    Skoubis PD, Matthes HW, Walwyn WM, Kieffer BL, Maidment NT. Naloxone fails to produce conditioned place aversion in mu-opioid receptor knock-out mice. Neuroscience. 2001;106:757–63.

  47. 47.

    Kirkpatrick SL, Bryant CD. Behavioral architecture of opioid reward and aversion in C57BL/6 substrains. Front Behav Neurosci. 2014;8:450.

  48. 48.

    Valero E, Gomez-Milanes I, Almela P, Ribeiro Do Couto B, Laorden ML, Milanes MV, et al. The involvement of CRF1 receptor within the basolateral amygdala and dentate gyrus in the naloxone-induced conditioned place aversion in morphine-dependent mice. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84:102–14.

  49. 49.

    Ju YY, Long JD, Liu Y, Liu JG. Formation of aversive memories associated with conditioned drug withdrawal requires BDNF expression in the amygdala in acute morphine-dependent rats. Acta Pharmacol Sin. 2015;36:1437–43.

  50. 50.

    Wang J, Li M, Wang P, Zha Y, He Z, Li Z. Inhibition of the lateral habenular CaMK abolishes naloxone-precipitated conditioned place aversion in morphine-dependent mice. Neurosci Lett. 2017;653:64–70.

  51. 51.

    Neugebauer NM, Einstein EB, Lopez MB, McClure-Begley TD, Mineur YS, Picciotto MR. Morphine dependence and withdrawal induced changes in cholinergic signaling. Pharmacol Biochem Behav. 2013;109:77–83.

  52. 52.

    Rasmussen K. The role of the locus coeruleus and N-methyl-D-aspartic acid (NMDA) and AMPA receptors in opiate withdrawal. Neuropsychopharmacology. 1995;13:295–300.

  53. 53.

    Van Bockstaele EJ, Menko AS, Drolet G. Neuroadaptive responses in brainstem noradrenergic nuclei following chronic morphine exposure. Mol Neurobiol. 2001;23:155–71.

  54. 54.

    Fakhari M, Azizi H, Semnanian S. Central antagonism of orexin type-1 receptors attenuates the development of morphine dependence in rat locus coeruleus neurons. Neuroscience. 2017;363:1–10.

  55. 55.

    Haghparast A, Khani A, Naderi N, Alizadeh AM, Motamedi F. Repeated administration of nicotine attenuates the development of morphine tolerance and dependence in mice. Pharmacol Biochem Behav. 2008;88:385–92.

  56. 56.

    Jackson KJ, Muldoon PP, De Biasi M, Damaj MI. New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology. 2015;96:223–34.

  57. 57.

    Curtis K, Viswanath H, Velasquez KM, Molfese DL, Harding MJ, Aramayo E, et al. Increased habenular connectivity in opioid users is associated with an alpha5 subunit nicotinic receptor genetic variant. Am J Addict. 2017;26:751–9.

  58. 58.

    Hennigan K, D’Ardenne K, McClure SM. Distinct midbrain and habenula pathways are involved in processing aversive events in humans. J Neurosci. 2015;35:198–208.

  59. 59.

    D’Souza MS. Neuroscience of nicotine for addiction medicine: novel targets for smoking cessation medications. Prog Brain Res. 2016;223:191–214.

  60. 60.

    Erlich PM, Hoffman SN, Rukstalis M, Han JJ, Chu X, Linda Kao WH, et al. Nicotinic acetylcholine receptor genes on chromosome 15q25.1 are associated with nicotine and opioid dependence severity. Hum Genet. 2010;128:491–9.

  61. 61.

    Charbogne P, Gardon O, Martin-Garcia E, Keyworth HL, Matsui A, Mechling AE, et al. Mu opioid receptors in gamma-aminobutyric acidergic forebrain neurons moderate motivation for heroin and palatable food. Biol Psychiatry. 2017;81:778–88.

  62. 62.

    Laurent V, Leung B, Maidment N, Balleine BW. Mu- and delta-opioid-related processes in the accumbens core and shell differentially mediate the influence of reward-guided and stimulus-guided decisions on choice. J Neurosci. 2012;32:1875–83.

  63. 63.

    Olmstead MC, Ouagazzal AM, Kieffer BL. Mu and delta opioid receptors oppositely regulate motor impulsivity in the signaled nose poke task. PLoS ONE. 2009;4:e4410.

  64. 64.

    Kobayashi Y, Sano Y, Vannoni E, Goto H, Suzuki H, Oba A, et al. Genetic dissection of medial habenula-interpeduncular nucleus pathway function in mice. Front Behav Neurosci. 2013;7:17.

  65. 65.

    Baker PM, Jhou T, Li B, Matsumoto M, Mizumori SJ, Stephenson-Jones M, et al. The lateral habenula circuitry: reward processing and cognitive control. J Neurosci. 2016;36:11482–8.

  66. 66.

    Charbogne P, Kieffer BL, Befort K. 15 years of genetic approaches in vivo for addiction research: opioid receptor and peptide gene knockout in mouse models of drug abuse. Neuropharmacology. 2014;76(Pt B):204–17.

  67. 67.

    Volman SF, Lammel S, Margolis EB, Kim Y, Richard JM, Roitman MF, et al. New insights into the specificity and plasticity of reward and aversion encoding in the mesolimbic system. J Neurosci. 2013;33:17569–76.

Download references

Acknowledgements

We thank the staff at the animal facility of the Neurophenotyping Center Douglas Research Center (Montréal, Canada), as well as Aude Villemain, Eujin Kim, Annie Salesse, Karine Lachapelle, Aimee Lee Luco, and DaWoon Park for animal care and genotyping. We thank the National Institute of Drug Abuse (NIDA) Drug Supply Program for providing us Morphine and the Molecular and Cellular Microscopy Platform (MCMP) of the Douglas Research center.

Author information

Affiliations

  1. McGill University, Faculty of Medicine, Douglas Research Centre, Montreal, Canada

    • L. J. Boulos
    • , S. Ben Hamida
    • , J. Bailly
    • , M. Maitra
    • , A. T. Ehrlich
    • , E. Darcq
    •  & B. L. Kieffer
  2. Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, Strasbourg, France

    • L. J. Boulos
    • , S. Ben Hamida
    • , A. T. Ehrlich
    • , C. Gavériaux-Ruff
    •  & B. L. Kieffer
  3. Université de Strasbourg, Illkirch, France

    • L. J. Boulos
    • , S. Ben Hamida
    • , A. T. Ehrlich
    • , C. Gavériaux-Ruff
    •  & B. L. Kieffer
  4. Centre National de la Recherche Scientifique, UMR7104, Illkirch, France

    • L. J. Boulos
    • , S. Ben Hamida
    • , A. T. Ehrlich
    • , C. Gavériaux-Ruff
    •  & B. L. Kieffer
  5. Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France

    • L. J. Boulos
    • , S. Ben Hamida
    • , A. T. Ehrlich
    • , C. Gavériaux-Ruff
    •  & B. L. Kieffer

Authors

  1. Search for L. J. Boulos in:

  2. Search for S. Ben Hamida in:

  3. Search for J. Bailly in:

  4. Search for M. Maitra in:

  5. Search for A. T. Ehrlich in:

  6. Search for C. Gavériaux-Ruff in:

  7. Search for E. Darcq in:

  8. Search for B. L. Kieffer in:

Competing interests

The authors declare no competing interest.

Corresponding author

Correspondence to B. L. Kieffer.

Supplementary information

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41386-019-0395-7

Further reading