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Structural similarity networks predict clinical outcome in
early-phase psychosis
Philipp Homan 1,2,3, Miklos Argyelan1,2,3, Pamela DeRosse1,2,3, Philip R. Szeszko4, Juan A. Gallego1,2,3, Lauren Hanna1,2,3,
Delbert G. Robinson1,2,3, John M. Kane 1,2,3, Todd Lencz1,2,3 and Anil K. Malhotra1,2,3

Despite recent advances, there is still a major need for prediction of treatment success in schizophrenia, a condition long
considered a disorder of dysconnectivity in the brain. Graph theory provides a means to characterize the connectivity in both
healthy and abnormal brains. We calculated structural similarity networks in each participant and hypothesized that the “hubness”,
i.e., the number of edges connecting a node to the rest of the network, would be associated with clinical outcome. This prospective
controlled study took place at an academic research center and included 82 early-phase psychosis patients (23 females; mean age
[SD]= 21.6 [5.5] years) and 58 healthy controls. Medications were administered in a double-blind randomized manner, and patients
were scanned at baseline prior to treatment with second-generation antipsychotics. Symptoms were assessed with the Brief
Psychiatric Rating Scale at baseline and over the course of 12 weeks. Nodal degree of structural similarity networks was computed
for each subject and entered as a predictor of individual treatment response into a partial least squares (PLS) regression. The model
fit was significant in a permutation test with 1000 permutations (P= 0.006), and the first two PLS regression components explained
29% (95% CI: 27; 30) of the variance in treatment response after cross-validation. Nodes loading strongly on the first PLS
component were primarily located in the orbito- and prefrontal cortex, whereas nodes loading strongly on the second PLS
component were primarily located in the superior temporal, precentral, and middle cingulate cortex. These data suggest a link
between brain network morphology and clinical outcome in early-phase psychosis.
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INTRODUCTION
Finding predictors of response to antipsychotic drug treatment is
of critical importance to improving outcomes for psychotic
disorders [1, 2]. A priori identification of patients who are not
likely to respond to a specific treatment strategy could reduce the
number and length of ineffective treatment trials. Moreover,
understanding the biological underpinnings of effective treat-
ments may lead to the detection of malleable central nervous
system targets for the development of new treatment strategies—
a current imperative because of the long-standing dearth of novel
antipsychotic treatments.
Although parallel group trials cannot determine treatment

response for individual patients in a definite manner, we have
previously applied rigorous a priori criteria to distinguish likely
responders from non-responders [3, 4] and have shown that
functional striatal connectivity was higher in non-responders
compared with responders [5] and normalized with antipsychotic
treatment [6].
The fact that we found that brain connectivity was related to

treatment outcome is not surprising. Schizophrenia has long been
considered a disorder involving dysconnectivity in the human
brain [7, 8], and graph theory has provided means to characterize
the connectivity in the healthy and abnormal human brain [9].

Briefly, graph theory describes brain networks abstractly as a set of
nodes and edges, and quantifies their patterns of connectivity [7].
Although normal brain graphs have typical properties (i.e., they
are more organized than random graphs), brain graphs of
schizophrenia patients may have specific abnormalities.
For example, highly connected nodes in the brain that are also

densely connected with one another, so-called rich clubs, are
present in schizophrenia but less prominent compared with healthy
controls [10]. Other structural imaging studies using graph theory
found evidence for less information integration and more clustering
of nodes across brain regions [10–12]. Similar findings have
emerged in other structural studies [13, 14], but studies based on
functional connectivity have not always converged with these
structural findings [15–17], and only a minority of studies have
demonstrated relevance of these graph metrics for clinical outcome.
Although two prior studies [18, 19] computed group-wise graph

metrics in responders and non-responders, we here tested how
individual network architecture relates to individual clinical
outcome. Previous work has shown that this can be achieved by
comparing, in each individual, the statistical similarity between
brain regions [20–22] or by assessing their correlations across
different imaging domains [23]. Although still speculative,
previous studies suggest that statistical similarity networks might
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capture biologically meaningful correlates of development, aging,
and brain disorders [24].
Statistical similarity between brain regions can be used to build

similarity matrices across the whole brain for each individual from
which a binary graph of nodes and edges can be constructed. This
gives a similarity network (or connectome) for each participant,
which can then serve as a predictor for individual treatment
outcome. This was the approach we used in the current study
(Fig. 1). Based on ample evidence that schizophrenia brain
abnormalities are primarily located in highly connected nodes in
the human connectome [25], we focused our analysis on the
hubness (or nodal degree) graph metric, which can be computed
from the similarity networks. We hypothesized that the hubness of
cortical nodes would be associated with individual treatment
outcome in two concatenated early psychosis cohorts. Treatment
outcome of positive symptoms was computed using mixed
models [26–30].

MATERIALS AND METHODS
Participants
We used two early-phase psychosis cohorts from two separate 12-
week clinical trials on second-generation antipsychotics with a
similar design and similar treatment effects (Fig. S1). Details have
been published previously [31] and are summarized in Table 1, as
well as in the Supplementary Information. Importantly, there were
no significant differences between studies in duration of
untreated psychosis (t (62.48)= 0.72, P= 0.473) and in the
proportion of medication naive participants (χ2 (1)= 2.66,
P= 0.103). Written informed consent was obtained from adult
participants and the legal guardians of participants younger than
18 years. All participants under the age of 18 provided written
informed assent. The study was approved by the Institutional
Review Board (IRB) of Northwell Health, which served as the
central IRB for all clinical sites. To replicate previously reported
group differences in cortical thickness [32], we also included a
sample of 58 healthy controls (Table 1). Healthy controls were
recruited at the Zucker Hillside Hospital during the CIDAR trial.
Patients had a current DSM-IV-defined diagnosis of schizo-

phrenia, schizophreniform, schizoaffective disorder, or psychotic
disorder not otherwise specified, and bipolar disorder with
psychotic features and could have had up to 2 years of
antipsychotic treatment. Many but not all subjects were first-
episode patients. Note that excluding the patients with a
diagnosis of bipolar disorder with psychotic features (N= 3) did
not alter the results.
Symptom assessments using the anchored version of the Brief

Psychiatric Rating Scale (BRPS-A) were done at baseline, weekly for
4 weeks, every 2 weeks until week 12. To obtain a measure of
positive symptoms, we defined thought disturbance [3] as the
sum of the following items: conceptual disorganization, grandios-
ity, hallucinatory behavior, and unusual thought content.

Structural magnetic resonance imaging and analysis
Magnetic resonance imaging (MRI) exams were conducted on a 3-
T scanner (GE Signa HDx). All participants were measured on the
same scanner. We acquired anatomical scans in the coronal plane
using an inversion-recovery prepared 3D fast spoiled gradient
sequence (TR= 7.5 ms, TE= 3ms, TI= 650 ms matrix= 256 × 256,
FOV= 240mm), which produced 216 contiguous images (slice
thickness= 1mm) through the whole brain. Image processing and
segmentation were conducted with the Freesurfer 5.1.0 recon-all
pipeline and the Desikan-Killiany cortical atlas [33]. All image
processing, parcellation, and quality control procedures were
conducted while blinded to participants’ demographic and clinical
characteristics. Visual inspections for quality assurance were
conducted and no manual interventions were necessary. Details

on the processing pipeline can be found in the Supplementary
Information. We then tested for group differences in cortical
thickness for each of the 68 regions as derived from the Freesurfer
recon-all pipeline and adjusted this analysis for age, sex, and
intracranial volume.

Individual treatment response estimation
Rather than categorizing participants to responders and non-
responders, which is statistically inefficient [29], we focused on
treatment response as a continuous measure and used mixed
models to make efficient use of the full sample and the repeated
measures [26, 30, 34, 35].
Individual response was estimated using mixed models with

restricted maximum likelihood and used as outcome measure in
subsequent analyses. With mixed models, individual responses are
estimated to be closer to the average treatment response, an
effect that is well known as partial pooling or shrinkage [36]. The
partial pooling effect for the two psychosis cohorts can be
visualized by showing how individual treatment effects are pulled
toward the average treatment effect (Fig. 2). Partial pooling makes
the analysis less susceptible to individual outliers by attenuating
the impact of participants with only few assessments (Fig. 2),
which is of particular importance in estimating treatment
response in relatively small samples. Although only 82 participants
had MRI baseline data available, the full sample of 248 participants
was used to obtain more precise estimates of the individual
treatment response slopes. A more detailed description can be
found in the Supplementary Information.

Graph theoretic analysis
Individual network graphs were computed following a new
method that estimates statistical similarity across brain regions
in each individual participant [20, 21]. The analysis flowchart is
shown in Fig. 1. After cortical parcellation into 68 brain regions
through the Freesurfer recon-all pipeline, statistical similarity
between all pair-wise brain regions was computed in each
individual. First, probability density functions were estimated for
the cortical thickness distribution in each region, using a Gaussian
kernel and 512 sampling points. We followed the comprehensive
characterization of structural similarity networks by Wang and
colleagues [22] who also investigated the diminishing influence of
increasing numbers of sampling points for the probability density
function estimation. We then chose a more conservative resolu-
tion that the one used by Wang and colleagues [22] of
512 sampling points. This resulted in probability distributions for
each of the 68 brain regions. Statistical similarity between each
possible pair of distributions was then computed by calculating
the Kullback–Leibler (KL) divergence between them [20–22]. The
KL divergence measures the difference between two probability
distributions (i.e., the loss of information when one distribution is
used to approximate another). The KL divergence is thus defined
as

DKL PkQð Þ ¼
Xn

i¼1
P ið Þ log P ið Þ

Q ið Þ (1)

with P and Q being two probability distribution functions and n
the number of sample points. Since DKL(P|Q) is not equal to DKL(Q|
P), a symmetric variation of the KL divergence can be derived as
follows:

DKL P;Qð Þ ¼
Xn

i¼1
P ið Þ log P ið Þ

Q ið Þ þ Q ið Þ logQ ið Þ
P ið Þ

� �
: (2)

Finally, the following transformation was used to limit the
measure to a range from 0 to 1:

KLS P;Qð Þ ¼ e�DKL P;Qð Þ: (3)
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We thus computed the KLS values for all possible pairs of
brain regions in each individual participant, resulting in a
68 × 68 similarity matrix Sij for each subject (Fig. 1). Individual
similarity matrices were then binarized by employing a sparsity
threshold τ (number of actual edges divided by the maximum
possible number of edges in a network), which ensured the same
number of nodes and edges for the networks across participants.
This resulted in a binary adjacency matrix Aij [22]:

Ai j ¼ aij
� � ¼ 1; if sij > KLSth;

0; otherwise;

�
(4)

with KLSth being a subject-specific KLS threshold that ensured that
all networks had the same number of nodes and edges across
participants. Following previous work [23], we chose a sparsity
threshold of τ= 0.1 for our analysis but also repeated calculations
for a range of thresholds (0.1–0.7, with intervals of 0.05). The
binary matrices allowed us to construct graphs of nodes and
edges.

The graph theoretic measure of primary interest was nodal
degree or hubness. The degree, k(i), of a node is the number of
edges connecting the i-th region to the rest of the network:

k ið Þ ¼
Xn

i¼1
Aij; (5)

where Aij is the binary adjacency matrix, which was computed by
thresholding the similarity matrix, Sij.

Statistical analyses
We used multivariate partial least squares (PLS) regression to test
the relationship between nodal degree and individual treatment
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Fig. 1 Analysis flowchart. Computation of similarity networks in each participant by calculating the statistical similarity between brain regions.
First, Freesurfer cortical parcellation was conducted for each individual participant. Cortical thickness was extracted for each vertex within
each region and used to estimate the probability distribution function. The similarity between any pair of region was then estimated by
calculating the KL divergence of their probability distributions, resulting in a 68 × 68 similarity matrix. The KL divergence computes the loss of
information when one distribution is used to approximate another. The similarity matrix was then thresholded into a binary matrix to create a
network graph. Graph-based degree (or hubness) for each node was then calculated for each individual participant. Nodal degrees were then
entered as predictors into a partial least squares regression, using individual treatment response slopes as outcome measure. KL
Kullback–Leibler divergence, PLS partial least squares regression, RMSEP root mean square error of prediction

Table 1. Sample characteristics

Characteristic PSY Mean SD HC Mean SD

Males 59 25

Females 23 33

Age, years 82 21.6 5.5 58 28.1 11.9

Schizophrenia 57

Schizophreniform disorder 15

Psychotic disorder NOS 5

Schizoaffective disorder 2

Bipolar I disorder (with psychotic
features)

3

Prior medication exposure 75 8.4 29.4

Medication naive 28

Medication 2 weeks or less 71

Education, years 77 12.2 2.2 58 13.7 2.9

IQ 69 97.9 13.2 49 102.2 10

BPRS total 82 42.7 7.5 0

BPRS TD 82 14.3 3.1 0

DUP, weeks 77 110.9 176.2 0

PSY patients with early psychosis, HC healthy controls, BPRS Brief Psychiatric
Rating Scale, BPRS TD Brief Psychiatric Rating Scale Thinking Disturbance,
DUP duration of untreated psychosis, NOS not otherwise specified, IQ
intelligence quotient
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response. This method is particularly suited for a set of highly
correlated predictors. In PLS, the optimal low-dimensional solution
for a relationship between a set of correlated predictor variables
and a response variable is computed. The 82 × 68 predictor
variable matrix comprised estimates of degree (calculated at 10%
connection density) for each of 68 nodes in each of 82
participants.
The (82 × 1) response vector comprised individual treatment

response slopes. To account for unspecific inter-individual
differences, the predictor matrix and the response vector were
regressed on potential confounds, including study cohort (CIDAR,
OMEGA3), baseline value of thinking disturbance, intracranial

volume, age, gender, and age × gender interaction. Residuals of
this regression were then used in the actual PLS analysis.
To rank each cerebral node according to its correlation with

each PLS component, we used bootstrapping, i.e., drawing 1000
samples with replacement of the 82 individual participants, to
compute the error on the PLS weights. A similar procedure has
been used in recent graph theoretic work [23, 37, 38].
All analyses were conducted with R version 3.3.2 (2016-10-31)

[39]. Mixed models were estimated using the lme4 library [40], PLS
regression were computed with the pls library [41], bootstrapping
was performed with the boot library [42], and brain graph metrics
were computed with the brainGraph [43] and igraph [44] libraries.
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Fig. 2 Partial pooling to regularize individual response slopes. a Individual time courses for all participants from the first schizophrenia cohort.
A log-linear relationship between time as measured in days from baseline and thinking disturbance symptoms was evident. Partial pooling
regularized the individual slopes, i.e., the influence of outliers with only few assessments was attenuated. b The partial pooling effect is
demonstrated by the individual responses being pulled toward the average treatment effect. As a consequence, outliers are less influential, as
is particularly striking for those participants with few assessments. c, d The same is shown for the second schizophrenia cohort. Dotted ellipses
indicate confidence regions for the average treatment effect (10, 30, 50, 70, 90%, respectively)
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Python 2.7.15rc1 and pysurfer (0.8.0) were used for visualizing the
imaging results.

RESULTS
Nodal degree predicts treatment response
The first two PLS regression components explained 29% (95%
confidence interval (CI): 27, 30) of the variance in treatment
response after cross-validation, with 1000 sets of five participants
held out from the sample. This model fit was significant in a
permutation test with 1000 permutations (P= 0.006). Notably,
statistical significance (P < 0.05) was maintained when repeating
the PLS regression across connection densities (0.1–0.7). The PLS
components were positively correlated with treatment response
slopes (first PLS component: r= 0.66, P < 0.001; second PLS
component: r= 0.4, P < 0.001; Fig. 3). To assess their contribution,
we ranked the 68 nodes of the individual networks according to
their bootstrap standardized weight on each PLS component [23,
37, 38]. Most importantly, since the sign of the correlation
between PLS components and treatment response slopes was
positive (Fig. 3), nodes that correlated strongly with PLS scores
had a negative relationship with treatment response. We found
that they were primarily located in the orbito- and prefrontal
cortices and posterior cingulate cortex for the first PLS component
and in the superior temporal, precentral, and middle cingulate
brain areas for the second PLS component (Fig. 3).
In summary, these findings suggest that individual differences

in the configuration of structural similarity networks explain a
significant proportion of the variance in treatment response.
We then also tested for group differences in nodal degree

between psychosis patients and a cohort of healthy controls.
Using permutation tests with 1000 permutations for each of the
68 nodes, we found a significant increase in nodal degree in the
left orbitofrontal cortex (P < 0.05; Fig. S2).

Validation of results
To verify that our findings held up when using a different cortical
parcellation scheme, we repeated the analysis using the Destrieux
atlas [45], which comprises 148 nodes. We again found that the
first two PLS components explained 30% (95% CI: 28, 31) of the
variance in treatment response after cross-validation. In addition,
excluding the patients with a diagnosis of bipolar disorder with
psychotic features (N= 3) did not alter the results.

Group differences in cortical thickness
For completeness, we also assessed how the psychosis cohorts
differed from the control cohort in terms of cortical thickness in all
68 cortical nodes. Confirming previous reports [32], cortical
thickness was reduced in patients compared with controls most
prominently in the left paracentral and parahippocampal gyrus
and increased in the right rostral anterior cingulate cortex (Fig. S3).
However, these alterations did not survive correction for multiple
comparisons using false discovery rate (q < 0.05).

DISCUSSION
Here we showed that individual differences in structural similarity
networks predicted treatment response in early-phase psychosis.
The importance of this finding is twofold. First, we used the
continuous scale to define treatment response, thereby increasing
statistical sensitivity and avoiding power loss through dichotomi-
zation [29]. Second, and related, we computed networks for each
participant, which allowed us to predict treatment response on
the individual level.
We focused our analysis on a specific graph theoretic

parameter, namely nodal degree or hubness. The rationale for
this decision was that brain networks contain only a minority of
highly connected nodes acting as hubs. Hubs are considered to be

functionally valuable by supporting information integration [25]
but their value comes at a high biological cost due to increased
metabolic demand and long-distance connections. Their promi-
nent role suggests that schizophrenia-relevant brain abnormalities
should be concentrated in hubs, a prediction that was indeed
supported by a large body of meta-analytic evidence [25], where
schizophrenia lesions were found most dominantly in frontal and
temporal cortical hubs. In line with this notion, we found that
nodal degree in orbito- and prefrontal areas contributed most
strongly to the prediction of treatment response, with additional
contributions from superior temporal regions. Importantly, nodes
in the right orbitofrontal cortex have showed reduced degree
compared with controls in functional networks in schizophrenia
[15]. Our work extends this finding by showing that orbitofrontal
nodes appear to impact clinical outcome in early-phase psychosis.
Although previous studies indicated the usefulness of brain

morphology and machine learning in predicting response to
treatment [46, 47], only one study has investigated the relation-
ship between anatomical networks and clinical outcome [48]. That
study used structural covariance of cortical folding to predict
treatment response in first-episode psychosis, and found higher
segregation, poorer integration, and vulnerable gyrification
covariance in non-responders. Specifically, non-responders
showed reduced centrality of the left insula and anterior cingulate
cortex. In addition, they were also more vulnerable to simulated
lesions, i.e., covariance disintegrated after removal of high-degree
hubs, supporting the relevance of nodal degree for treatment
response [48]. A comparable study that used resting state
functional connectivity found reduced global efficiency and
increased clustering in patients with schizophrenia that normal-
ized with response to antipsychotic treatment [19].
What is the biological meaning of structural similarity networks?

It has been hypothesized that brain regions that grow together
should display strong structural covariance across individuals [48,
49]. In line with this hypothesis, previous work has shown that
structural networks of regions that grow together shared similar
global and nodal topological properties [50]. Thus, a likely
interpretation is that structural similarity networks reflect “syn-
chronized developmental change in distributed cortical regions”
[50]. Accordingly, structural covariance networks show reorganiza-
tion during normal development [24, 49, 51], aging [21, 52–54],
and disease [12, 55, 56]. This suggests that structural similarity
networks capture biologically meaningful correlates of develop-
ment, aging, and brain disorders. Speculatively, then, these
processes may impact distributed and treatment-relevant brain
areas.
How can brain regions, similar in their thickness patterns and

potentially growing synchronously, influence treatment outcome?
Although still speculative, a potential mechanism is through the
relationship with cognition. We have previously shown that higher
scores in general cognition and reasoning capacity in particular
were positive predictors of treatment response [4]. However, since
that study did not include any brain imaging data, we could not
characterize a potential neural correlate of this effect. Since brain
network properties have been shown to be positively correlated
with cognition [57], it is possible that they are the biological
correlate underlying both cognition and improved treatment
outcome.
An important difference between our study and previous

attempts to characterize individual treatment response is that we
did not dichotomize our sample into responders and non-
responders. Although such dichotomization may be appealing
and particularly relevant to clinicians, it is statistically inefficient to
binarize a continuous measure [29, 58, 59]. The argument that
binary decisions are what clinicians ultimately need to make, and
therefore research should provide them with binary classifications,
can easily be refuted. Indeed, if a binary decision must be made, it
must be made at the point of actual clinical care, when all costs
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and potential benefits are known [59]. For example, the clinician
may decide that a probable non-responder may still undergo
treatment if the potential benefit outweighs the risk for that
particular case. Furthermore, it is generally under-appreciated that
it is often difficult to determine whether or not an individual
patient responded to the treatment. The reason for this is that one
does not know how the patient would have done under placebo.
This is often overlooked and can limit attempts at classifying
patients based on observed response. Thus, treatment response
prediction based on a single-criterion classification in responders
and non-responders should be treated with caution [75].
What is thus the potential clinical meaning and application of

the current study’s findings? With an approach such as this, the
ultimate goal is to provide the clinician with an estimate of
response probability for a given patient. As we have just shown,
this is different from classifying the patient as a responder or non-
responder. After taking all available information into account, it is
the clinician (and not the researcher) who ultimately decides
whether to treat even a likely non-responder. A study such as this
can thus inform the clinician’s decision process by providing
individual predictions of treatment response.
The mixed model approach employed in this study is one way

to address this problem; it separates random variation from actual
treatment variation in each participant [29, 30]. In addition,
individual treatment response is estimated more efficiently by
utilizing the full data set and more conservatively by applying
shrinkage [34, 36].
A few limitations merit comment. First, we did not include a

placebo control group, which would have allowed us to compare
the overall variability in response between the treatment and the

control groups. In principle, such a comparison would need to
show that the variability in the treatment arm is higher than the
one in the placebo arm, and that the difference is clinically
relevant [60, 75]. However, placebo-controlled trials in early-phase
psychosis have rarely been conducted. In addition, since the
neurobiological underpinnings of graph metrics are still unknown,
pathophysiological inferences must be made with caution. Next,
we did not include functional connectivity [5] or other potentially
predictive data in this study, which means that our findings may
not be predictive when other predictors are included in the
model. Finally, graph metrics may also vary depending on the
parcellation scheme. However, in this study we repeated our
analysis with an additional atlas of 148 nodes and found
essentially the same results.
In conclusion, this study showed that advanced statistical

modeling of treatment response and a relatively novel [20]
computation of structural similarity networks established a
potential link between brain network morphology and clinical
outcome in early-phase psychosis.
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Fig. 3 Correlations of partial least squares (PLS) scores with individual treatment response and contribution of cortical nodes in the psychosis
cohort (N= 82). Nodal degree for each of the 68 was entered into a PLS regression, with individual treatment response slopes as outcome
measure. The first two PLS components explained a significant proportion of variance in treatment response. a, b The first PLS component
correlated most strongly with nodal degree of orbito- and prefrontal cortices and posterior cingulate cortex. Note that more negative slopes
meant better treatment response. c, d The second PLS component correlated most strongly with superior temporal, precentral, and middle
cingulate brain areas
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