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Knockdown of hypocretin attenuates extended access of
cocaine self-administration in rats
Brooke E. Schmeichel1,2, Alessandra Matzeu1, Pascale Koebel 3, Leandro F. Vendruscolo2, Harpreet Sidhu1, Roxana Shahryari1,
Brigitte L. Kieffer 3,4, George F. Koob2, Rémi Martin-Fardon 1 and Candice Contet 1

The hypocretin/orexin (HCRT) neuropeptide system regulates feeding, arousal state, stress responses, and reward, especially under
conditions of enhanced motivational relevance. In particular, HCRT neurotransmission facilitates drug-seeking behavior in
circumstances that demand increased effort and/or motivation to take the drug. The present study used a shRNA-encoding adeno-
associated viral vector to knockdown Hcrt expression throughout the dorsal hypothalamus in adult rats and determine the role of
HCRT in cocaine self-administration. Chronic Hcrt silencing did not impact cocaine self-administration under short-access
conditions, but robustly attenuated cocaine intake under extended access conditions, a model that mimics key features of
compulsive cocaine taking. In addition, Hcrt silencing decreased motivation for both cocaine and a highly palatable food reward
(i.e., sweetened condensed milk; SCM) under a progressive ratio schedule of reinforcement, but did not alter responding for SCM
under a fixed ratio schedule. Importantly, Hcrt silencing did not affect food or water consumption, and had no consequence for
general measures of arousal and stress reactivity. At the molecular level, chronic Hcrt knockdown reduced the number of neurons
expressing dynorphin (DYN), and to a smaller extent melanin-concentrating hormone (MCH), in the dorsal hypothalamus. These
original findings support the hypothesis that HCRT neurotransmission promotes operant responding for both drug and non-drug
rewards, preferentially under conditions requiring a high degree of motivation. Furthermore, the current study provides compelling
evidence for the involvement of the HCRT system in cocaine self-administration also under low-effort conditions in rats allowed
extended access, possibly via functional interactions with DYN and MCH signaling.
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INTRODUCTION
Independently discovered in 1998 by de Lecea and Sakurai,
hypocretin/orexin peptides hypocretin-1 (HCRT-1, also ORX-A) and
hypocretin-2 (HCRT-2, also ORX-B), are derived from a common
precursor, prepro-HCRT. These HCRT neuropeptides are synthe-
sized in well-defined subregions of the dorsal hypothalamus:
lateral hypothalamus proper, dorsomedial hypothalamus, and
perifornical area [1–3]. HCRT projections are found throughout the
brain and in regions known for their involvement in arousal, stress,
and drug and non-drug reinforcement. These areas include, but
are not limited to, the central amygdala, nucleus accumbens,
ventral tegmental area, arcuate nucleus and paraventricular
nucleus of the hypothalamus [2, 4–6]. HCRT neuropeptides bind
two G-protein-coupled receptors, HCRT receptor 1 and receptor 2
(HCRT-R1 and HCRT-R2, respectively; [3]) that also are distributed
widely throughout the brain [7, 8]. Accordingly, the HCRT system is
involved in a multitude of physiological functions, such as the
regulation of feeding, arousal, sleep/wake states, stress responses,
energy homeostasis, and reward (for review, see refs. [9–12]).
An abundant body of literature demonstrates the critical

importance of HCRT transmission in the consumption and seeking

of various reinforcers, including cocaine [13–24], nicotine [25–28],
alcohol [29–35], heroin [36, 37], sucrose, and saccharin [35, 38, 39].
Importantly, HCRT receptor blockade generally does not influence
drug self-administration under continuous, low-effort reinforce-
ment, but rather blocks self-administration when the contingency
of reinforcement requires higher levels of motivation to acquire
the drug [40]. However, recent studies have indicated that acute
blockade of HCRT signaling reduces not only the appetitive aspect
but also the consummatory aspect of drug taking in dependent
animals [20, 33, 36].
The aim of the present study was to investigate the role of HCRT

neurotransmission in cocaine self-administration when rats are
given extended access to the drug. The extended access model
produces a gradual escalation of cocaine self-administration and
an increased motivation to obtain cocaine, along with increases in
brain self-stimulation thresholds during withdrawal, stress reactiv-
ity, resistance to punishment and reinstatement susceptibility
[41–50]. To examine the role of HCRT transmission in this model,
Hcrt expression was silenced long-term throughout the dorsal
hypothalamus of adult rats using a short hairpin RNA (shRNA)-
encoding adeno-associated viral (AAV) vector. To further
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investigate the function of HCRT in reward consumption and
potentially dissociate its role in regulating motivation for drug
versus food, the effects of Hcrt silencing on self-administration of a
highly palatable food reinforcer (sweetened condensed milk), as
well as for regular food pellets and water, were assessed. In
addition, given the modulatory role of HCRT in a multitude of
behavioral and physiological functions, locomotor activity,
anxiety-like behavior, and stress-induced analgesia and corticos-
terone response were measured to further evaluate the specificity
of the behavioral consequences of Hcrt knockdown. Finally,
molecular adaptations to prolonged reduction in HCRT signaling
were investigated by analyzing the expression of prodynorphin
(PDYN) and melanin-concentrating hormone (MCH), two neuro-
peptides also synthesized in the dorsal hypothalamus.

MATERIAL AND METHODS
Animals
Forty adult male Wistar rats (Charles River, Raleigh, NC), weighing
between 225–275 g at the beginning of the experiments, were
housed in groups of 2–3 per cage in a temperature-controlled (22
°C) vivarium on a 12/12 h light/dark cycle (lights on at 18:00 h)
with ad libitum access to food and water. The rats acclimated to
the animal facility for at least 7 days before surgery. All procedures
adhered to the National Institutes of Health Guide for the Care and
Use of Laboratory Animals and were approved by the Institutional
Animal Care and Use Committee of The Scripps Research Institute.

Viral vectors
Recombinant shRNA-encoding AAV vectors were produced using
an AAV helper-free system (Stratagene, France; as described in
[51]). In these vectors, the shRNA sequence is expressed under the
control of the mU6 promoter, while the enhanced green
fluorescent protein (GFP) is expressed under the control of the
cytomegalovirus promoter to label transduced cells. The shRNA
sequence targeting the Hcrt transcript (shHCRT; 5′-
GTCTTCTATCCCTGTCCTAGT-3′) was selected using the BLOCK-iT
RNAi Designer algorithm (ThermoFisher). A scrambled sequence
(shSCR; 5′-GCTTACTTTCGGCTCTCTACT-3′) was used as negative
control. Loop sequence was 5′-AGTCGACA-3′ for both. An
AAV2 serotype (titer of 7.4 × 1011 GU/mL) was used to characterize
the time-course of Hcrt knockdown, while AAV5 vectors (titers of
2.4 × 1012 for shHCRT and 2.6 × 1012 GU/mL for shSCR) were used
for all behavioral experiments.

AAV injections
Rats were anesthetized with isoflurane (1–3%), mounted in a
stereotaxic frame (Kopf Instruments, Tujiunga, CA). A stainless steel
30-gauge double injector was used to inject viral vectors at two
mediolateral levels (AP −2.9mm and ML ± 0.5/1.75 mm from
bregma, and DV −8.7mm from dura; [52]). Unilateral injections
of AAV2-shHCRT were performed for Hcrt knockdown time-course
characterization, with brains collected 2 weeks (n= 3), 4 weeks (n
= 2), or 6 weeks (n= 3) after AAV2 injection (see Supplementary
Figure S1). Bilateral injections of AAV5-shSCR or AAV5-shHCRT were
performed for all behavioral experiments. Injections were made
using a micro-infusion pump (Harvard 22 Syringe Pump, Holliston,
MA) with a flow rate of 0.5 μl/min over 4min (2 μl/site). Injectors
remained in place for 10min to assure adequate diffusion of the
solution and prevent backflow along the injector track.

Experimental design
Three distinct cohorts were used to test the effect of long-term
Hcrt silencing on cocaine self-administration under short- and
long-access schedules (n= 8 each shSCR and shHCRT, three rats
were excluded from each group due to misplaced injections and/
or catheter patency failures), SCM self-administration (n= 6 each
shSCR and shHCRT, one rat was excluded from each group due to

misplaced injections), and general behavior (n= 6 each shSCR and
shHCRT, one rat was excluded from each group due to misplaced
injections. General behavioral testing included food/water self-
administration, locomotor activity, anxiety-like behavior, and
stress-induced analgesia and corticosterone response). The time-
line of all behavioral testing in each cohort is shown in
Supplementary Figure S2. Behavioral testing resumed 2–3 weeks
after AAV5 injection and was conducted during the dark phase of
the circadian cycle, unless otherwise noted.

Cocaine self-administration
Rats were surgically prepared with indwelling jugular vein
catheters (Dow Corning, Midland, MI) and intravenous self-
administration sessions were conducted as previously described
([53, 54]; Supplementary Methods). Briefly, rats were trained to
press one of the two levers on a fixed ratio 1 (FR1) schedule of
reinforcement to obtain 0.1 ml of cocaine (0.50 mg/kg/infusion)
per response in 1 h sessions. After the acquisition of cocaine self-
administration, rats were injected with AAV vectors and allowed to
recover for ~2 weeks (Figure S1A). Rats were then given short
access (ShA; 1 h) to cocaine self-administration for 11 sessions and
then transitioned to long access (LgA; 6 h) to cocaine for an
additional 14 sessions (Figure S2A). Testing under a progressive
ratio (PR; see Supplementary Methods) schedule of reinforcement
occurred following LgA sessions.

Sweetened condensed milk (SCM) self-administration
SCM (Nestlé USA, Inc., Solon, OH) self-administration training
occurred in daily 30-min sessions on a FR1 TO20 schedule of
reinforcement, prior to AAV5 injection. Sessions were initiated by
the extension of both levers into the operant chamber, and
responses on the active lever resulted in the delivery of SCM (0.1
ml; 2:1 v/v in water) into a drinking receptacle. Responses on the
inactive lever were recorded but had no scheduled consequences.
Following AAV injection, the rats were allowed to recover for
3 weeks after which SCM self-administration resumed in 24 daily
30-min sessions (Figure S2B). The rats were then tested on a PR
schedule of reinforcement using the same ratio described for
cocaine.

Food/water self-administration
Rats underwent three food/water self-administration sessions (22
h/day, 11 h dark/11 h light), preceded by two days of habituation.
Operant boxes (22 × 22 × 35 cm) were equipped with two holes.
Rats were allowed to make nose poke responses in order to obtain
food pellets (MLab Rodent Tablet 45 mg, TestDiet) from the pellet
dispenser (hole on right wall; FR3) or 0.1 ml water from the water
dispenser (hole on left wall; FR1). Responses were detected by
photobeams mounted in the holes and recorded automatically.
Between sessions, animals stayed in their home cage. Food/water
self-administration was examined before and after AAV5 injection
(Figure S2C).

Locomotor activity
Locomotor activity was tested in photocell-equipped wire mesh
cages holding two photobeams along the lateral walls. Locomotor
activity was recorded for three consecutive days (22 h/day). Food
and water were available ad libitum. Computer-recorded photo-
beam breaks were analyzed as a measure of locomotor activity.
Crossovers were defined as two consecutive photobeam breaks as
the rat moved from front to rear of cage, or vice versa. Detailed
descriptions of procedures are provided in the Supplementary
Methods. Locomotor activity was monitored before and after
AAV5 injection (Figure S2C).

Elevated plus maze
The elevated plus maze apparatus (Kinder Scientific, Poway, CA)
comprised four arms (two closed and two open arms). At the
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beginning of the test, each rat was placed in the center of the
maze facing a closed arm and behavior was video recorded for 5
min. Between rats, the apparatus was cleaned with water and
dried. Detailed descriptions of procedures are provided in
the Supplementary Methods. Time (seconds) spent in each arm
was recorded. Elevated plus maze testing was conducted only
after AAV5 injection (Figure S2C).

Stress-induced analgesia testing
Stress-induced analgesia testing was conducted as previously
described ([55]; detailed descriptions of procedures are provided
in the Supplementary Methods). Briefly, each rat was placed
individually on a hot plate set to 54 °C. Time (s) to hind-paw lick
was recorded, with a cut-off time of 60 s. One hot plate test was
conducted before the forced swim test (PRE) and one test 10min
following forced swim (POST). For forced swim, rats were individually
placed in a Plexiglas cylinder filled with water for 5min. Water was
replaced between subjects. Rats underwent stress-induced analgesia
testing only after AVV5 injection (Figure S2C).

Plasma corticosterone
Two hours following elevated plus maze testing (pre-swim
condition) and 20min after the forced swim test (post-swim
condition) blood samples were collected for corticosterone
measurements (Figure S2C). In brief, rats were restrained and tail
blood (~0.2 ml) was collected into tubes coated with a 10%
ethylenediaminetetraacetic acid solution and centrifuged imme-
diately. Plasma was isolated and stored at −80 °C. Plasma
corticosterone concentrations were determined using a Corticos-
terone Enzyme Assay Kit (Arbor Assays, Ann Arbor, MI) according
to the manufacturer’s protocol.

Immunohistochemistry
Detailed descriptions of immunohistochemical procedures and cell
counting are provided in the Supplementary Methods. Briefly, rats
were transcardially perfused with paraformaldehyde, brains were

post-fixed, and six series of 40 μm coronal sections were collected
in vials. For each behavioral cohort, two series were processed for
immunohistochemistry using antibodies directed against GFP
(Abcam; 1:10,000) and preproHCRT (EMD Millipore; 1:1000). In the
cohort used for general behavior testing, a third series was used to
analyze MCH immunoreactivity (Santa Cruz Biotechnology; 1:1000).
GFP immunoreactivity was used to evaluate the location and
extent of viral transduction in each rat at the end of the
experiment and was consistently identified throughout the HCRT
neuronal field (dorsal hypothalamus). HCRT-positive and MCH-
positive cells were counted manually at 20x magnification.

In situ hybridization
Brains were snap-frozen in isopentane and ten series of 20 μm
coronal cryostat sections were collected on Superfrost Plus slides.
Three series were processed for in situ hybridization with probes
directed against GFP, preproHCRT (Hcrt), and prodynorphin (Pdyn)
mRNAs. Plasmids containing the rat Hcrt and Pdyn cDNAs were
kindly donated by Dr. Joel Elmquist at UT Southwestern [3, 56].
Digoxigenin (DIG)-labeled riboprobes were synthesized using a kit
(Roche, Indianapolis, IN). Chromogenic in situ hybridization was
conducted as described in [57]. The GFP signal was used to define
the boundaries of viral transduction in each brain section.
Numbers of Hcrt-positive and Pdyn-positive cells in adjacent
sections were then counted within the transduced area manually
at ×20 magnification.

Statistical analysis
Statistical analyses were performed using Prism 7 (GraphPad
Software, La Jolla, CA). All data are expressed as means and
standard errors of the mean (+SEM). Cell counts from the
knockdown time-course experiment were normalized to the
non-injected control side and analyzed by two-way ANOVA, with
brain hemisphere (shHCRT-injected versus contralateral) as within-
subjects factor and time (2, 4 and 6 weeks) as between-subjects
factor. Fixed ratio self-administration, locomotor activity, hot plate,
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Fig. 1 Histological characterization of viral transduction and quantification of Hcrt knockdown. Rats received double bilateral injections of
AAV5-shHCRT (n= 5) or AAV5-shSCR (n= 5) and were then subjected to behavioral testing. Brains were collected at the end of each
experiment for verification of viral transduction by GFP immunohistochemistry (a, brown precipitate). The area of GFP expression consistently
encompassed the entire hypothalamus, including areas known to contain HCRT neurons (i.e., lateral hypothalamus proper, perifornical area,
and dorsomedial hypothalamus). Adjacent sections were processed for prepro-HCRT immunolabeling (b–c, blue-gray precipitate) to count
HCRT neurons in each rat (b, rat injected with AAV5-shHCRT; c, rat injected with AAV5-shSCR). a–c Images were captured at a 5x magnification,
scale bar= 250 μm. Ventral-most end of injector track is indicated with arrows. fx, fornix; V3, third ventricle. d–f shHCRT reduced the number
of HCRT neurons by more than 80% in all three cohorts. Bars represent the mean (+SEM) number of preproHCRT-immunoreactive (HCRT-ir)
neurons (left axis) and the percentage of the control group (shSCR; right axis) across three coronal sections. **p < 0.01 versus shSCR
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and corticosterone data were analyzed using a repeated-measures
two-way analysis of variance (ANOVA), with viral vector treatment
(shHCRT and shSCR) as the between-subjects factor and time as
the within-subjects factor. When appropriate, post hoc compar-
isons were performed using Sidak’s multiple-comparison test. Cell
counts in behavioral cohorts and elevated plus maze data were
analyzed using an unpaired, two-tailed Student’s t test. Progres-
sive ratio self-administration data were analyzed using a Mann-
Whitney U Test. P < 0.05 was considered statistically significant for
all tests.

RESULTS
Characterization of Hcrt knockdown
The AAV5 transduction spread and knockdown efficiency were
verified in each rat at the end of each behavioral experiment. GFP
immunoreactivity was consistently identified throughout the
HCRT neuronal field (Fig. 1a). Bilateral injections of AAV5-shHCRT
robustly silenced HCRT expression (Fig. 1b, c). The number of
HCRT cells was reduced by more than 80% compared to shSCR
rats in each behavioral cohort (Fig. 1d, t(8)= 6.42, p < 0.001; Fig. 1e,
t(8)= 5.10, p < 0.001; Fig. 1f, t(8)= 4.13, p < 0.01).

Hcrt knockdown reduces low-effort cocaine self-administration
selectively in dependent rats
There was no significant difference between shHCRT and shSCR (n
= 5, each) rats in ShA cocaine self-administration under an
FR1 schedule (Fig. 2a; Group: F(1,9)= 2.43, p= 0.15.; Session: F(10,90)
= 0.70, p= 0.72; Group×session: F(10,90)= 0.47, p= 0.91). However,
upon LgA to cocaine self-administration, shHCRT significantly
attenuated cocaine self-administration under both an
FR1 schedule (Fig. 2b; Group: F(1,8)= 6.24, p < 0.05; Session:
F(13,104)= 1.07, p= 0.39; Group×session: F(13,104)= 1.09, p= 0.38)
and a PR schedule of reinforcement (Fig. 2c; U(8)= 0, Z= 2.51, p <
0.05). These results indicate that HCRT transmission contributes to
cocaine self-administration under low-effort conditions in
extended access rats, but not in limited access rats.

Hcrt knockdown reduces SCM self-administration under PR
reinforcement
There was no significant difference between shHCRT and shSCR (n
= 5, each) rats in SCM self-administration under an FR1 schedule
(Fig. 3a; Group: F(1,8)= 1.07, p= 0.33; Session: F(11,88)= 1.71, p=
0.08; Group×session: F(11,88)= 0.50, p= 0.90). In contrast, Hcrt
knockdown significantly attenuated responding for SCM under a
PR schedule of reinforcement (Fig. 3b; U(8)= 2.50, Z= 1.98, p <
0.05). These results indicate that the influence of HCRT on the self-
administration of palatable food by sated rats is restricted to high-
effort conditions.

Hcrt knockdown has no effect on general behavior
There was no significant difference between shHCRT and shSCR (n
= 5, each) rats in body weight or food pellet self-administration
under an FR3 schedule (Fig. 4a,b; Body weight: Group: F(1,8)= 0.63,
p= 0.45; Time: F(5,40)= 159.1, p < 0.001; Group×time: F(5,40)= 0.46,
p= 0.79; Food: Group: F(1,8)= 3.48, p= 0.10; Time: F(1,8)= 130.50,
p < 0.001; Group×time: F(1,8)= 0.003, p= 0.96). Similarly, there was
no significant difference between shHCRT- and shSCR-treated rats
in water self-administration under an FR1 schedule (Fig. 4c; Group:
F(1,8)= 1.16, p= 0.31; Time: F(1,8)= 118.20, p < 0.001; Group x time:
F(1,8)= 1.30, p= 0.29). There was also no significant effect of
shHCRT injection on the number of crossovers in the activity box
compared to shSCR-treated control rats (Fig. 4d; Group: F(1,8)=
2.20, p= 0.18; Condition: F(3,24)= 30.53, p < 0.001; Group×condi-
tion: F(3,24)= 0.002, p= 0.96) or on the percentage of time spent in
the open arms of the elevated plus maze (Fig. 4e; t(8)= 0.46, p=
0.66). Additionally, shHCRT rats showed no significant difference in
latency to thermal nociception on the hot plate test prior to forced

swim stress compared to shSCR rats, and stress produced an
equivalent analgesic effect in shHCRT and shSCR rats (Fig. 4f;
Group: F(1,8)= 0.31, p= 0.59; Condition: F(1,8)= 86.45, p < 0.001;
Group×condition: F(1,8)= 1.21, p= 0.30). Finally, there was no
significant effect of Hcrt knockdown on basal and stress-
stimulated corticosterone release (Fig. 4g; Group: F(1,8)= 0.45, p
= 0.52; Condition: F(1,8)= 11.97, p < 0.01; Group×condition: F(1,8)=
0.92, p= 0.37). Altogether, these data indicate that there is no
effect of shHCRT on food/water intake, locomotion, or on
measures of anxiety or stress responses in the absence of cocaine.
These results demonstrate that the effects of Hcrt knockdown on
cocaine and SCM self-administration cannot be attributed to a
non-specific disruption of behavioral performance or basal stress
sensitivity.

Adaptations in local neuropeptide expression
Molecular adaptations to chronic Hcrt knockdown were investi-
gated by examining two other neuropeptides showing prominent
expression in the dorsal hypothalamus, PDYN and MCH (Fig. 5).
Cellular co-localization of PDYN and HCRT in the rodent lateral
hypothalamus is virtually complete, with nearly all neurons
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Fig. 2 Long-term Hcrt knockdown reduces cocaine self-
administration in dependent rats. a, b Symbols represent mean
number of cocaine rewards (+SEM) per session. AAV5-shHCRT (n=
5) had no effect on cocaine intake over 11 sessions of short access
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expressing HCRT mRNA or peptide also expressing PDYN mRNA or
peptide, and vice versa [18, 58]. In contrast, MCH neurons are
intermingled with HCRT neurons with no overlap between the two
populations [59, 60]. Pdyn mRNA expression in the dorsal (i.e.,
dorsomedial hypothalamus and lateral hypothalamic area) and
ventral (i.e., ventromedial hypothalamus and arcuate nucleus)
parts of the hypothalamus was examined in brain sections
adjacent to those analyzed for the time-course of Hcrt knockdown
(Fig. 5a). Long-term Hcrt knockdown significantly reduced Pdyn
expression in the dorsal part of the hypothalamus where Pdyn is
expressed by HCRT neurons (Fig. 5b; Group: F(1,5)= 9.91, p < 0.05.;
Time: F(2,5)= 0.22, p= 0.12; Group x time: F(2,5)= 0.15, p= 0.86),
but not in the ventral part of the hypothalamus where there are
no HCRT neurons (Fig. 5c; Group: F(1,5)= 0.56, p= 0.41.; Time: F(2,5)
= 0.03, p= 0.97; Group×time: F(2,5)= 0.05, p= 0.95). MCH immu-
noreactivity was examined in brain sections from the third,
general behavior cohort (Fig. 5d, e). There was a non-significant
trend for a reduction in the number of MCH-positive neurons
within the dorsal hypothalamus following long-term Hcrt knock-
down (Fig. 5e, t(8)= 1.98, p= 0.08).
To further evaluate whether the reduction in Pdyn mRNA and

MCH protein expression resulted from compensatory adaptations
to prolonged Hcrt knockdown rather than a direct off-target effect
of shHCRT, we examined the influence of shHCRT on HCRT, PDYN
and PMCH expression in transfected HEK293 cells (Supplementary
Methods and Figure S4). shHCRT reduced HCRT production (p <
0.01 compared to shSCR) but did not alter PDYN and PMCH levels
(Figure S4B).

DISCUSSION
The HCRT system has been implicated in the motivation to
consume and seek drugs of abuse, but its role in extended access

drug taking associated with compulsive-like cocaine use is poorly
understood. Here, a genetic approach was used to probe the role
of HCRT neurotransmission in extended access cocaine self-
administration. Efficient, long-lasting knockdown of Hcrt expres-
sion throughout the rat dorsal hypothalamus was achieved by
virally mediated RNA interference, circumventing the need to
chronically administer HCRT receptor antagonists. Our results
confirm previous pharmacological evidence that HCRT neuro-
transmission promotes operant responding for both drug and
non-drug rewards under motivationally salient, high-effort condi-
tions [40, 61]. Furthermore, the present study demonstrates that
HCRT neurotransmission contributes to cocaine intake even under
a low-effort contingency when access to cocaine self-
administration is extended. Altogether, these data provide novel
insights into the role of HCRT in drug use under conditions of
pathologic motivation, and validates virally mediated Hcrt
silencing as a valuable approach to investigate the behavioral
relevance of HCRT neurotransmission in rodent models.

A role for HCRT in the transition to cocaine addiction-like behavior
Our finding that Hcrt knockdown did not affect cocaine self-
administration under low-effort conditions (FR1 schedule of
reinforcement) in rats offered 1 h daily access to the drug
corroborates previous pharmacological studies. HCRT-R1 antago-
nists show no or minimal effects on low-effort, FR1 responding for
cocaine self-administration in animals allowed limited access to
cocaine [14, 20, 21]. Likewise, intracerebral injection of HCRT-1
does not affect FR1 responding for cocaine [13, 62]. Furthermore,
the lack of effect on FR1 responding under short-access conditions
we observed here is unlikely to result from inefficient Hcrt
silencing at the time of testing (i.e., 2–3 weeks post-injection) as
we confirmed a nearly 85% knockdown of Hcrt as early as two
weeks following AAV injection (Figure S1). Altogether, the genetic
approach used in the present study lends further support to the
hypothesis that HCRT transmission is not necessary for the primary
rewarding effects of the drug under conditions of low incentive
motivation.
In contrast, Hcrt silencing strongly reduced FR1 cocaine

responding in extended access rats. This finding suggests that
HCRT neurotransmission may contribute to the activation of stress
systems and dampening of reward systems, which are associated
with extended access to cocaine self-administration and are
hypothesized to drive excessive, compulsive-like cocaine taking in
addiction (for review, [63]). In support of this hypothesis, central
infusion of HCRT-1 peptide reduces brain reward sensitivity [13,
64], suggesting an inhibitory action on reward systems. Further-
more, central HCRT-1 administration reinstates previously extin-
guished drug-seeking, whereas HCRT-R1 antagonism readily
blocks stress-induced reinstatement of cocaine-seeking [13, 20,
23, 24, 65–67]. Both preclinical and clinical work has established a
role for HCRT in stress responses to anxiety- and panic-associated
behaviors [11, 65, 68, 69]. However, whether HCRT-mediated stress
reactivity is sensitized under conditions of chronic cocaine
exposure, promoting the hyper-aroused state required for drug
taking, has yet to be determined. Additionally, it will be of interest
to examine the effect of Hcrt knockdown on stress-induced
reinstatement cocaine-seeking in future studies.
The present results extend our understanding of HCRT signaling

participation in cocaine reinforcement, such that HCRT contributes
not only to high-effort but also to low-effort responding under
extended access conditions. Furthermore, our findings suggest
the feasibility of normalizing compulsive cocaine intake in
addicted individuals via sustained inhibition of HCRT signaling.

HCRT in reward-based feeding
Hcrt knockdown also decreased the motivation to obtain palatable
food (SCM) under a PR schedule of reinforcement, which suggests
a role for HCRT in food-seeking under high-effort conditions, as
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well as during the consumption of highly palatable foods. This
finding is consistent with the existing literature (for review, [40]).
HCRT was initially reported to regulate general feeding behavior
by demonstrating that central administration of HCRT-1 and HCRT-
2 stimulates feeding [3], whereas blockade of HCRT signaling with
an HCRT-R1 antagonist, an anti-HCRT antibody, or genetic

inactivation of Hcrt reduces food intake [70–72]. Subsequent
studies revealed that the modulation of feeding by HCRT is
restricted to the light phase of the circadian cycle [73, 74]. Our
observations are consistent with the latter findings, as Hcrt
silencing did not significantly affect responding for regular food
pellets overall, but there was a trend for reduced food self-
administration during the light phase. HCRT is also likely to play an
important part in the hedonic aspect of feeding (i.e., feeding
beyond caloric needs; [75]). Consistent with this hypothesis,
central administration of HCRT-1 increases the motivation for
palatable food, whereas blockade of HCRT signaling with an HCRT-
R1 antagonist attenuates this reward-based feeding [61, 76, 77].
Therefore, together with these studies, our data support the
hypothesis that HCRT signaling mediates motivation to obtain
palatable food.

HCRT modulation of arousal-dependent behavior
The present study showed that Hcrt knockdown did not affect
food or water self-administration, locomotor activity, or sensitivity
to tests of anxiety-like behavior and stress-induced analgesia or
corticosterone release. At first glance, these results may be
surprising considering the established role of HCRT in a multitude
of arousal-dependent behaviors and physiological functions
including energy homeostasis, sleep/wake state, response to
stress, and reinforcer-motivated behavior (for review, see refs. [9–
12]). It is possible that the lack of significant behavioral alterations
following virally mediated Hcrt silencing resulted from compensa-
tory activity of the few remaining HCRT-positive neurons, which
may have been sufficient to modulate relevant arousal-dependent
behaviors. In addition, the fact that Hcrt expression was silenced in
adult animals may explain the discrepancy with results obtained
upon constitutive deletion of Hcrt in knockout mice, whose
phenotype may partially result from developmental compensa-
tions (for review, see ref. [78]).
In the present study, shHCRT-treated rats maintained normal

body weights, levels of food and water consumption, and
locomotor activity. In particular, there was no detectable effect
of Hcrt silencing on these measures during the dark phase of the
circadian cycle, when cocaine and SCM self-administration
sessions were conducted. This rules out performance disruption
as a potential explanation for the reduction in operant responding
for cocaine and SCM.
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In addition, Hcrt knockdown did not produce a significant
blunting of stress sensitivity in the absence of cocaine, as
measured by anxiety-like behavior in the elevated plus maze
and thermal analgesia or plasma corticosterone elevation follow-
ing forced swim stress. This suggests that HCRT neurotransmission
does not indiscriminately contribute to all responses to psycho-
logical or physiological stressors and that the implication of HCRT
signaling in extended access cocaine self-administration is specific
to homeostasis and affective state dysregulation associated with
withdrawal from chronic, excessive cocaine intake.

Molecular neuroadaptations following virally mediated Hcrt
knockdown in the rat
To date, physiological functions of the HCRT neuropeptide system
have mainly been investigated using acute pharmacological
manipulation or constitutive gene deletion. A limited number of
studies have used alternative approaches such as local infusions of
small interfering RNAs or antisense morpholinos for the transient
knockdown of HCRT [79–82], or local injection of shRNA-encoding
viral vectors for the long-term knockdown of HCRT, HCRT-R1 or
HCRT-R2 [83–87]. Here we report virally mediated knockdown of
HCRT in adult rats. Thus, the novelty of our approach warranted
further examination of molecular adaptations potentially elicited
by sustained silencing of Hcrt expression in the adult brain.
In the dorsal hypothalamus, DYN and HCRT are expressed by

the same neurons and packaged in the same vesicles [18, 58].
Furthermore, these neurons synapse onto each other and local
release of DYN tonically inhibits neighboring HCRT neurons [88].
We found that Hcrt knockdown was accompanied by a ~34–53%
reduction in the number of Pdyn-positive cells in the HCRT
neuronal field (i.e., dorsal hypothalamus). Importantly, the shHCRT
vector had no effect on Pdyn expression in more ventral regions of
the hypothalamus, thereby ruling out an off-target effect of the
shRNA sequence on Pdyn mRNA, or a neurotoxic effect of viral
transduction or GFP expression. This observation suggests that
Pdyn downregulation is a compensatory adaptation that occurs
downstream of Hcrt knockdown. Follow-up experiments in
transfected cells confirmed that shHCRT does not directly reduce
PDYN levels, further corroborating this interpretation.
DYN has been shown to balance the effects of HCRT on

neuronal excitability in a subset of ventral tegmental area
dopaminergic neurons [18, 89]. Thus, in shHCRT-treated rats, the
reduced need to control the activity of dopaminergic neurons in
the absence of excitatory HCRT transmission could have triggered
Pdyn downregulation. At the behavioral level, intraventricular
administration of HCRT-1 or systemic activation of kappa opioid
receptors (KOR) both elevate intracranial self-stimulation thresh-
olds [13, 90], but concomitant blockade of HCRT-R1 and KOR
revealed that HCRT and DYN actually exert opposing influences on
cocaine self-administration, brain reward, impulsivity and cocaine-
seeking behavior [18, 91]. It is therefore possible that the
downregulation of Pdyn associated with Hcrt knockdown may
have potentiated, or conversely attenuated, the amplitude of
phenotypic changes observed in shHCRT rats. The potential role of
HCRT-DYN interaction in extended access cocaine self-
administration is an important topic for future studies.
Additionally, we observed that Hcrt knockdown induced a

moderate, although not statistically significant, decrease in the
number of MCH-positive cells (~36% reduction; p= 0.08). MCH
neurons are intermingled with HCRT neurons [59, 60] and several
studies have indicated a direct connectivity between these two
cell types, whereby HCRT excites MCH neurons and MCH counters
the activation of HCRT neurons [92–96]. The inhibitory tone
exerted by MCH on HCRT neurons could explain how MCH
downregulation may represent a network adaptation to sustained
inhibition of HCRT transmission. A recent study also revealed that
HCRT neurons inhibit MCH neurons via a local microcircuit
involving HCRT-induced GABA release [97]. It is therefore possible

that MCH was downregulated to compensate for the loss of HCRT-
driven inhibition of MCH neurons in shHCRT rats. As for DYN,
heterologous expression analysis indicated that shHCRT does not
directly reduce the expression of PMCH, which suggests that MCH
downregulation in rats injected with the AAV5-shHCRT vector
indeed resulted from compensatory adaptations. At the beha-
vioral level, blocking MCH signaling attenuates cocaine self-
administration, as well as cue- and drug-induced reinstatement
[98]. Similar effects were reported for alcohol [99]. Thus, MCH
downregulation may have contributed to decreasing cocaine
intake in shHCRT rats, but this would need to be directly tested in
future studies.
Finally, the adaptations elicited by sustained inhibition of HCRT

signaling in adulthood may differ from developmental compensa-
tions elicited by constitutive gene knockout or genetic ablation of
neurons (e.g., [87]). Notably, Pdyn expression in the dorsal
hypothalamus is unchanged in Hcrt knockout mice and MCH
neurons are not affected in mice that have lost HCRT neurons shortly
after birth [58, 70]. Although counterintuitive, these observations
combined with our findings suggest that late-onset downregulation
of HCRT signaling is more prone to elicit perturbations in cross-
talking neuropeptide systems than the life-long absence of HCRT. An
important implication of this interpretation is that chronic adminis-
tration of a HCRT receptor antagonist in adult subjects would be
expected to produce similar reductions in hypothalamic PDYN and
MCH expression, which may in turn enhance the therapeutic efficacy
of this approach in the treatment of cocaine use disorder.

CONCLUSION
In summary, long-term Hcrt silencing via virally mediated RNA
interference yielded novel insights into the role of HCRT
transmission in cocaine and palatable food reinforcement without
affecting general activity, operant performance, or stress reactivity.
Hcrt knockdown attenuated cocaine and SCM self-administration
selectively under high-effort conditions and reduced cocaine
intake under conditions of high motivation associated with
extended access. These findings suggest a specific functional role
for HCRT signaling in compulsive-like cocaine self-administration,
as well as in reward-based feeding behavior.
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