Article | Published:

Impact of co-administration of oxycodone and smoked cannabis on analgesia and abuse liability

Neuropsychopharmacologyvolume 43pages20462055 (2018) | Download Citation


Cannabinoids combined with opioids produce synergistic antinociceptive effects, decreasing the lowest effective antinociceptive opioid dose (i.e., opioid-sparing effects) in laboratory animals. Although pain patients report greater analgesia when cannabis is used with opioids, no placebo-controlled studies have assessed the direct effects of opioids combined with cannabis in humans or the impact of the combination on abuse liability. This double-blind, placebo-controlled, within-subject study determined if cannabis enhances the analgesic effects of low dose oxycodone using a validated experimental model of pain and its effects on abuse liability. Healthy cannabis smokers (N = 18) were administered oxycodone (0, 2.5, and 5.0 mg, PO) with smoked cannabis (0.0, 5.6% Δ9 tetrahydrocannabinol [THC]) and analgesia was assessed using the Cold-Pressor Test (CPT). Participants immersed their hand in cold water (4 °C); times to report pain (pain threshold) and withdraw the hand from the water (pain tolerance) were recorded. Abuse-related effects were measured and effects of oxycodone on cannabis self-administration were determined. Alone, 5.0 mg oxycodone increased pain threshold and tolerance (p ≤ 0.05). Although active cannabis and 2.5 mg oxycodone alone failed to elicit analgesia, combined they increased pain threshold and tolerance (p ≤ 0.05). Oxycodone did not increase subjective ratings associated with cannabis abuse, nor did it increase cannabis self-administration. However, the combination of 2.5 mg oxycodone and active cannabis produced small, yet significant, increases in oxycodone abuse liability (p ≤ 0.05). Cannabis enhances the analgesic effects of sub-threshold oxycodone, suggesting synergy, without increases in cannabis’s abuse liability. These findings support future research into the therapeutic use of opioid-cannabinoid combinations for pain.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Nahin RL. Estimates of pain prevalence and severity in adults: United States, 2012. J Pain. 2015;16:769–80.

  2. 2.

    Daubresse M, Chang H-Y, Yu Y, Viswanathan S, Shah ND, Stafford RS, et al. Ambulatory diagnosis and treatment of non-malignant pain in the United States, 2000–2010. Med Care 2013;51:870–8.

  3. 3.

    Guy GP, Zhang K, Bohm MK, Losby J, Lewis B, Young R, et al. Vital signs: changes in opioid prescribing in the United States, 2006–2015. MMWR Morb Mortal Wkly Rep. 2017;66:697–4.

  4. 4.

    National Institute on Drug Abuse (2017). Overdose Death Rates. at

  5. 5.

    Edlund MJ, Martin BC, Russo JE, Devries A, Braden JB, Sullivan MD (2013). The role of opioid prescription in incident opioid abuse and dependence among individuals with chronic non-cancer pain: the role of opioid prescription. Clin J Pain.

  6. 6.

    Dunn KM. Opioid prescriptions for chronic pain and overdose: a cohort study. Ann Intern Med. 2010;152:85.

  7. 7.

    Bohnert, ASB. Association between opioid prescribing patterns and opioid overdose-related deaths. JAMA 305, 1315 (2011).

  8. 8.

    Dowell D, Haegerich TM, Chou R. CDC Guideline for Prescribing Opioids for Chronic Pain — United States, 2016. MMWR Recomm Rep. 2016;65:1–49.

  9. 9.

    Marijuana Policy Project (2017). State-by-state medical marijuana laws. at

  10. 10.

    Bonn-Miller MO, Boden MT, Bucossi MM, Babson KA. Self-reported cannabis use characteristics, patterns and helpfulness among medical cannabis users. Am J Drug Alcohol Abus. 2014;40:23–30.

  11. 11.

    Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S, Hernandez AV, et al. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA. 2015;313:2456.

  12. 12.

    Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14:162–73.

  13. 13.

    Nugent SM, Morasco BJ, O’Neil ME, Freeman M, Low A, Kondo K, et al. The effects of cannabis among adults with chronic pain and an overview of general harms: a systematic review. Ann Intern Med. 2017;167:319–31.

  14. 14.

    Bradford AC, Bradford WD. Medical marijuana laws may be associated with a decline in the number of prescriptions for medicaid enrollees. Health Aff. 2017;36:945–51.

  15. 15.

    Boehnke KF, Litinas E, Clauw DJ. Medical cannabis use is associated with decreased opiate medication use in a retrospective cross-sectional survey of patients with chronic pain. J Pain. 2016;17:739–44.

  16. 16.

    Degenhardt L, Lintzeris N, Campbell G, Bruno R, Cohen M, Farrell M, et al. Experience of adjunctive cannabis use for chronic non-cancer pain: findings from the Pain and Opioids IN Treatment (POINT) study. Drug Alcohol Depend. 2015;147:144–50.

  17. 17.

    Lynch ME, Clark AJ. Cannabis reduces opioid dose in the treatment of chronic non-cancer pain. J Pain Symptom Manag. 2003;25:496–98.

  18. 18.

    Johnson JR, Burnell-Nugent M, Lossignol D, Ganae-Motan ED, Potts R, Fallon MT. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J Pain Symptom Manag. 2010;39:167–79.

  19. 19.

    Narang S, Gibson D, Wasan AD, Ross EL, Michna E, Nedeljkovic SS, et al. Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J Pain. 2008;9:254–64.

  20. 20.

    Portenoy RK, Ganae-Motan ED, Allende S, Yanagihara R, Shaiova L, Weinstein S, et al. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: a randomized, placebo-controlled, graded-dose trial. J Pain. 2012;13:438–49.

  21. 21.

    Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9 -tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153:199–15.

  22. 22.

    Mechoulam R, Shani A, Edery H, Grunfeld Y. Chemical basis of hashish activity. Science. 1970;169:611–12.

  23. 23.

    Cichewicz DL, Welch SP, Smith FL. Enhancement of transdermal fentanyl and buprenorphine antinociception by transdermal delta9-tetrahydrocannabinol. Eur J Pharmacol. 2005;525:74–82.

  24. 24.

    Cox ML, Haller VL, Welch SP. Synergy between delta9-tetrahydrocannabinol and morphine in the arthritic rat. Eur J Pharmacol. 2007;567:125–30.

  25. 25.

    Kazantzis NP, Casey SL, Seow PW, Mitchell VA, Vaughan CW. Opioid and cannabinoid synergy in a mouse neuropathic pain model: opioid-cannabinoid synergy in neuropathic pain. Br J Pharmacol. 2016;173:2521–31.

  26. 26.

    Pugh G, Smith PB, Dombrowski DS, Welch SP. The role of endogenous opioids in enhancing the antinociception produced by the combination of delta 9-tetrahydrocannabinol and morphine in the spinal cord. J Pharmacol Exp Ther. 1996;279:608–16.

  27. 27.

    Welch SP, Stevens DL. Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice. J Pharmacol Exp Ther. 1992;262:10–18.

  28. 28.

    Williams J, Haller VL, Stevens DL, Welch SP. Decreased basal endogenous opioid levels in diabetic rodents: effects on morphine and delta-9-tetrahydrocannabinoid-induced antinociception. Eur J Pharmacol. 2008;584:78–86.

  29. 29.

    Li J-X, McMahon LR, Gerak LR, Becker GL, France CP. Interactions between Δ9-tetrahydrocannabinol and μ opioid receptor agonists in rhesus monkeys: discrimination and antinociception. Psychopharmacology. 2008;199:199–8.

  30. 30.

    Maguire DR, Yang W, France CP. Interactions between opioid receptor agonists and cannabinoid receptor agonists in rhesus monkeys: antinociception, drug discrimination, and drug self-administration. J Pharmacol Exp Ther. 2013;345:354–62.

  31. 31.

    Maguire DR, France CP. Impact of efficacy at the -opioid receptor on antinociceptive effects of combinations of -opioid receptor agonists and cannabinoid receptor agonists. J Pharmacol Exp Ther. 2014;351:383–89.

  32. 32.

    Nielsen S, Sabioni P, Trigo JM, Ware MA, Betz-Stablein BD, Murnion B, et al. Opioid-sparing effect of cannabinoids: a systematic review and meta-analysis. Neuropsychopharmacology. 2017;42:1752–65.

  33. 33.

    Smith PA, Selley DE, Sim-Selley LJ, Welch SP. Low dose combination of morphine and delta9-tetrahydrocannabinol circumvents antinociceptive tolerance and apparent desensitization of receptors. Eur J Pharmacol. 2007;571:129–37.

  34. 34.

    Cichewicz DL. Modulation of oral morphine antinociceptive tolerance and naloxone-precipitated withdrawal signs by oral delta9-tetrahydrocannabinol. J Pharmacol Exp Ther. 2003;305:812–17.

  35. 35.

    Li J-X, Koek W, France CP. Interactions between Δ9-tetrahydrocannabinol and heroin: self-administration in rhesus monkeys. Behav Pharmacol. 2012;23:754–61.

  36. 36.

    CDC (2017). Overview of an epidemic. at

  37. 37.

    Abrams DI, Couey P, Shade SB, Kelly ME, Benowitz NL. Cannabinoid–opioid interaction in chronic pain. Clin Pharmacol Ther. 2011;90:844–51.

  38. 38.

    Naef M, Curatolo M, Petersen-Felix S, Arendt-Nielsen L, Zbinden A, Brenneisen R. The analgesic effect of oral delta-9-tetrahydrocannabinol (THC), morphine, and a THC-morphine combination in healthy subjects under experimental pain conditions. Pain. 2003;105:79–88.

  39. 39.

    Roberts JD, Gennings C, Shih M. Synergistic affective analgesic interaction between delta-9-tetrahydrocannabinol and morphine. Eur J Pharmacol. 2006;530:54–58.

  40. 40.

    Conley KM, Toledano AY, Apfelbaum JL, Zacny JP. Modulating effects of a cold water stimulus on opioid effects in volunteers. Psychopharmacology. 1997;131:313–20.

  41. 41.

    Kowalczyk WJ, Evans SM, Bisaga AM, Sullivan MA, Comer SD. Sex differences and hormonal influences on response to cold pressor pain in humans. J Pain. 2006;7:151–60.

  42. 42.

    Zacny JP, Coalson DW, Young CJ, Klafta JM, Lichtor JL, Rupani G, et al. Propofol at conscious sedation doses produces mild analgesia to cold pressor-induced pain in healthy volunteers. J Clin Anesth. 1996;8:469–74.

  43. 43.

    Compton P, Kehoe P, Sinha K, Torrington MA, Ling W. Gabapentin improves cold-pressor pain responses in methadone-maintained patients. Drug Alcohol Depend. 2010;109:213–19.

  44. 44.

    Webb J, Kamali F. Analgesic effects of lamotrigine and phenytoin on cold-induced pain: a crossover placebo-controlled study in healthy volunteers. Pain. 1998;76:357–63.

  45. 45.

    Mariani JJ, Brooks D, Haney M, Levin FR. Quantification and comparison of marijuana smoking practices: blunts, joints, and pipes. Drug Alcohol Depend. 2011;113:249–51.

  46. 46.

    Foltin RW, Brady JV, Fischman MW, Emurian CS, Dominitz J. Effects of smoked marijuana on social interaction in small groups. Drug Alcohol Depend. 1987;20:87–93.

  47. 47.

    Cooper ZD, Comer SD, Haney M. Comparison of the analgesic effects of dronabinol and smoked marijuana in daily marijuana smokers. Neuropsychopharmacology. 2013;38:1984–92.

  48. 48.

    Haney M, Ward AS, Comer S, Foltin R, Fischman M. Abstinence symptoms following smoked marijuana in humans. Psychopharmacology. 1999;14:395–4.

  49. 49.

    Hefner K, Sofuoglu M, Rosenheck R. Concomitant cannabis abuse / dependence in patients treated with opioids for non-cancer pain. Am J Addict. 2015;24:538–45.

  50. 50.

    Haney M. Opioid antagonism of cannabinoid effects: differences between marijuana smokers and nonmarijuana smokers. Neuropsychopharmacology. 2007;32:1391–403.

  51. 51.

    Tramèr MR, Carroll D, Campbell FA, Reynolds DJ, Moore RA, McQuay HJ. Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review. BMJ. 2001;323:16–21.

  52. 52.

    Schauer GL, King BA, Bunnell RE, Promoff G, McAfee TA. Toking, vaping, and eating for health or fun. Am J Prev Med. 2016;50:1–8.

  53. 53.

    Tashkin DP. Smoked marijuana as a cause of lung injury. Monaldi Arch Chest Dis Arch Monaldi Mal Torace. 2005;63:93–100.

  54. 54.

    Moir D, Rickert WS, Levasseur G, Larose Y, Maertens R, White P, et al. A comparison of mainstream and sidestream marijuana and tobacco cigarette smoke produced under two machine smoking conditions. Chem Res Toxicol. 2008;21:494–2.

  55. 55.

    Singh R, Sandhu J, Kaur B, Juren T, Steward WP, Segerbäck D, et al. Evaluation of the DNA damaging potential of cannabis cigarette smoke by the determination of acetaldehyde derived N2-ethyl-2’-deoxyguanosine adducts. Chem Res Toxicol. 2009;22:1181–88.

  56. 56.

    Klieger SB, Gutman A, Allen L, Pacula RL, Ibrahim JK, Burris S. Mapping medical marijuana: state laws regulating patients, product safety, supply chains and dispensaries, 2017: State medical marijuana laws. Addiction. 2017.

  57. 57.

    Newmeyer MN, Swortwood MJ, Abulseoud OA, Huestis MA. Subjective and physiological effects, and expired carbon monoxide concentrations in frequent and occasional cannabis smokers following smoked, vaporized, and oral cannabis administration. Drug Alcohol Depend. 2017;175:67–76.

  58. 58.

    Abrams DI, Vizoso HP, Shade SB, Jay C, Kelly ME, Benowitz NL. Vaporization as a smokeless cannabis delivery system: a pilot study. Clin Pharmacol Ther. 2007;82:572–78.

  59. 59.

    Dahan A, Olofsen E, Niesters M. Pharmacotherapy for pain: efficacy and safety issues examined by subgroup analyses. Pain. 2015;156:S119–26.

  60. 60.

    Comer SD, Metz VE, Cooper ZD, Kowalczyk WJ, Jones JD, Sullivan MA, et al. Comparison of a drug versus money and drug versus drug self-administration choice procedure with oxycodone and morphine in opioid addicts. Behav Pharmacol. 2013;24:504–16.

  61. 61.

    Cooper ZD, Haney M. Comparison of subjective, pharmacokinetic, and physiological effects of marijuana smoked as joints and blunts. Drug Alcohol Depend. 2009;103:107–13.

  62. 62.

    National Academies of Sciences, Engineering, and Medicine, Health and Medicine Division, Board on Population Health and Public Health Practice, Committee on the Health Effects of Marijuana: An Evidence Review and Research Agenda (National Academies Press (US): Washington (DC), 2017). The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research. at

  63. 63.

    Pomahacova B, Van der Kooy F, Verpoorte R. Cannabis smoke condensate III: the cannabinoid content of vaporised Cannabis sativa. Inhal Toxicol. 2009;21:1108–12.

  64. 64.

    Van Dam NT, Earleywine M. Pulmonary function in cannabis users: support for a clinical trial of the vaporizer. Int J Drug Policy. 2010;21:511–13.

Download references


The authors acknowledge and appreciate the exceptional assistance of Olivia Derella and Bennett Wechsler in data collection and Dr. Richard Foltin for his assistance with regulatory and computer programming aspects of the study.


This research was supported by US National Institute on Drug Abuse Grant DA19239, DA009236, and DA027755. ZDC, GB, DR, RB, SDC, and MH have no competing interests in relation to the work described. ZDC and MH have received research funds and partial salary support from Insys Therapuetics. Over the past 3 years, SDC received compensation (in the form of partial salary support) from studies supported by Braeburn Pharmaceuticals, Cerecor, Indivior, MediciNova, and Reckitt-Benckiser Pharmaceuticals. In addition, SDC has served as a consultant to the following companies over the past 3 years: Advances in Pain Management, AstraZeneca, Clinilabs, Collegium Pharmaceutical, Daiichi Sankyo, Depomed, Egalet, Endo, Guidepoint Global, Heptares Therapeutics Limited, Inspirion Delivery Sciences, IntelliPharmaCeutics, Janssen, KemPharm, Mallinckrodt, Neuromed, Opiant, Orexo, Pfizer, and Shire.

Author information


  1. Division on Substance Abuse, New York State Psychiatric Institute and Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA

    • Ziva D. Cooper
    • , Rebecca Balter
    • , Sandra D. Comer
    •  & Margaret Haney
  2. Orygen National Centre of Excellence in Youth Mental Health, and Center for Youth Mental Health, University of Melbourne, Melbourne, Australia

    • Gillinder Bedi
  3. Center for Advancement in Managing Pain, University of Connecticut School of Nursing, Storrs, CT, USA

    • Divya Ramesh


  1. Search for Ziva D. Cooper in:

  2. Search for Gillinder Bedi in:

  3. Search for Divya Ramesh in:

  4. Search for Rebecca Balter in:

  5. Search for Sandra D. Comer in:

  6. Search for Margaret Haney in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Ziva D. Cooper.

About this article

Publication history






Further reading