Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A transmissible γδ intraepithelial lymphocyte hyperproliferative phenotype is associated with the intestinal microbiota and confers protection against acute infection

Abstract

Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) serve as a first line of defense against luminal microbes. Although the presence of an intact microbiota is dispensable for γδ IEL development, several microbial factors contribute to the maintenance of this sentinel population. However, whether specific commensals influence population of the γδ IEL compartment under homeostatic conditions has yet to be determined. We identified a novel γδ IEL hyperproliferative phenotype that arises early in life and is characterized by expansion of multiple Vγ subsets. Horizontal transfer of this hyperproliferative phenotype to mice harboring a phenotypically normal γδ IEL compartment was prevented following antibiotic treatment, thus demonstrating that the microbiota is both necessary and sufficient for the observed increase in γδ IELs. Further, we identified two guilds of small intestinal or fecal bacteria represented by 12 amplicon sequence variants (ASV) that are strongly associated with γδ IEL expansion. Using intravital microscopy, we find that hyperproliferative γδ IELs also exhibit increased migratory behavior leading to enhanced protection against bacterial infection. These findings reveal that transfer of a specific group of commensals can regulate γδ IEL homeostasis and immune surveillance, which may provide a novel means to reinforce the epithelial barrier.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: IFNAR-deficient mice exhibit a γδ IEL hyperproliferative phenotype and skewed Vγ composition early in life.
Fig. 2: Horizontal transfer of the microbiota is necessary and sufficient to induce the γδ IEL hyperproliferative phenotype.
Fig. 3: The γδ IEL hyperproliferative phenotype is transmitted vertically independently of genotype.
Fig. 4: Small intestinal microbiota signature is associated with the local expansion of the γδ IEL compartment.
Fig. 5: Combining the fecal and small intestinal microbiota signatures accurately predicts the γδ IEL hyperproliferative phenotype.
Fig. 6: γδ IEL surveillance behavior is enhanced in WT mice exhibiting the hyperproliferative phenotype and confers protection against enteric infection.

Data availability

All raw 16S rRNA sequencing data is accessible in NCBISRA with accession number: PRJNA744534. The accession number of γδ TCR sequencing data is PRJNA744491. Scripts and command lines related to the current study are freely available from the corresponding author upon request.

References

  1. Hu, M. D., Jia, L. & Edelblum, K. L. Policing the intestinal epithelial barrier: Innate immune functions of intraepithelial lymphocytes. Curr. Pathobiol. Rep. 6, 35–46 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Komano, H. et al. Homeostatic regulation of intestinal epithelia by intraepithelial gamma delta T cells. Proc. Natl Acad. Sci. USA 92, 6147–6151 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Chen, Y., Chou, K., Fuchs, E., Havran, W. L. & Boismenu, R. Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc. Natl Acad. Sci. USA 99, 14338–14343 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Swamy, M. et al. Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance. Nat. Commun. 6, 7090 (2015).

    CAS  PubMed  Article  Google Scholar 

  5. Ismail, A. S. et al. {gamma}{delta} intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc. Natl Acad. Sci. USA 108, 8743–8748 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Carding, S. R. & Egan, P. J. Gammadelta T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2, 336–345 (2002).

    CAS  PubMed  Article  Google Scholar 

  7. Edelblum, K. L. et al. Dynamic migration of gammadelta intraepithelial lymphocytes requires occludin. Proc. Natl Acad. Sci. USA 109, 7097–7102 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Edelblum, K. L. et al. Gammadelta intraepithelial lymphocyte migration limits transepithelial pathogen invasion and systemic disease in mice. Gastroenterology 148, 1417–1426 (2015).

    PubMed  Article  Google Scholar 

  9. Cho, H. & Kelsall, B. L. The role of type I interferons in intestinal infection, homeostasis, and inflammation. Immunol. Rev. 260, 145–167 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Schaupp, L. et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic. Cells Cell 181, 1080–1096 e1019 (2020).

    CAS  PubMed  Article  Google Scholar 

  11. Ganal, S. C. et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171–186 (2012).

    CAS  PubMed  Article  Google Scholar 

  12. Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94–98 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Bandeira, A. et al. Localization of gamma/delta T cells to the intestinal epithelium is independent of normal microbial colonization. J. Exp. Med. 172, 239–244 (1990).

    CAS  PubMed  Article  Google Scholar 

  15. Suzuki, H., Jeong, K. I., Itoh, K. & Doi, K. Regional variations in the distributions of small intestinal intraepithelial lymphocytes in germ-free and specific pathogen-free mice. Exp. Mol. Pathol. 72, 230–235 (2002).

    CAS  PubMed  Article  Google Scholar 

  16. Jung, J., Surh, C. D. & Lee, Y. J. Microbial colonization at early life promotes the development of diet-induced CD8 alphabeta intraepithelial T cells. Mol. Cells 42, 313–320 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang, W. et al. Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. J. Exp. Med. 210, 2465–2476 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Liu, L. et al. Commensal viruses maintain intestinal intraepithelial lymphocytes via noncanonical RIG-I signaling. Nat. Immunol. 20, 1681–1691 (2019).

    CAS  PubMed  Article  Google Scholar 

  19. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    CAS  PubMed  Article  Google Scholar 

  20. Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8alphaalpha(+) T cells. Science 357, 806–810 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Hoytema van Konijnenburg, D. P. et al. Intestinal epithelial and intraepithelial T. Cell Crosstalk Mediates a Dyn. Response Infect. Cell 171, 783–794 (2017).

    CAS  Google Scholar 

  22. Di Marco Barros, R. et al. Epithelia use butyrophilin-like molecules to shape organ-specific gammadelta T. Cell Compart. Cell 167, 203–218 e217 (2016).

    Google Scholar 

  23. Baccala, R. et al. Gamma delta T cell homeostasis is controlled by IL-7 and IL-15 together with subset- specific factors. J. Immunol. 174, 4606–4612 (2005).

    CAS  PubMed  Article  Google Scholar 

  24. Ma, L. J., Acero, L. F., Zal, T. & Schluns, K. S. Trans-presentation of IL-15 by intestinal epithelial cells drives development of CD8alphaalpha IELs. J. Immunol. 183, 1044–1054 (2009).

    CAS  PubMed  Article  Google Scholar 

  25. Stappenbeck, T. S. & Virgin, H. W. Accounting for reciprocal host-microbiome interactions in experimental science. Nature 534, 191–199 (2016).

    CAS  PubMed  Article  Google Scholar 

  26. Wu, G., Zhao, N., Zhang, C., Lam, Y. Y. & Zhao, L. Guild-based analysis for understanding gut microbiome in human health and diseases. Genome Med. 13, 22 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  27. Hu, M. D. et al. Epithelial IL-15 is a critical regulator of gammadelta intraepithelial lymphocyte motility within the intestinal mucosa. J. Immunol. 201, 747–756 (2018).

    CAS  PubMed  Article  Google Scholar 

  28. Knoop K. A, et al. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci. Immunol. 2, eaao1314 (2017).

  29. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Constantinides M. G, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366 494–499 (2019).

  31. Al Nabhani, Z. et al. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50, 1276–1288 e1275 (2019).

    CAS  PubMed  Article  Google Scholar 

  32. Wang, H., Zhou, C., Huang, J., Kuai, X. & Shao, X. The potential therapeutic role of Lactobacillus reuteri for treatment of inflammatory bowel disease. Am. J. Transl. Res. 12, 1569–1583 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, Y. et al. Lactobacillus reuteri DSM 17938 feeding of healthy newborn mice regulates immune responses while modulating gut microbiota and boosting beneficial metabolites. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G824–G838 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Tougaard, P. et al. TL1A regulates TCRgammadelta+ intraepithelial lymphocytes and gut microbial composition. Eur. J. Immunol. 45, 865–875 (2015).

    CAS  PubMed  Article  Google Scholar 

  35. Roselli, M. et al. Prevention of TNBS-induced colitis by different Lactobacillus and Bifidobacterium strains is associated with an expansion of gammadeltaT and regulatory T cells of intestinal intraepithelial lymphocytes. Inflamm. Bowel Dis. 15, 1526–1536 (2009).

    PubMed  Article  Google Scholar 

  36. Chen, W. et al. Aryl hydrocarbon receptor activation modulates CD8 alpha alpha(+)TCR alpha beta(+) IELs and suppression of colitis manifestations in mice. Biomed. Pharmacother. 87, 127–134 (2017).

    CAS  PubMed  Article  Google Scholar 

  37. Rauch, I. et al. Type I interferons have opposing effects during the emergence and recovery phases of colitis. Eur. J. Immunol. 44, 2749–2760 (2014).

    CAS  PubMed  Article  Google Scholar 

  38. Tschurtschenthaler, M. et al. Type I interferon signalling in the intestinal epithelium affects Paneth cells, microbial ecology and epithelial regeneration. Gut 63, 1921–1931 (2014).

    CAS  PubMed  Article  Google Scholar 

  39. Wilharm, A. et al. Mutual interplay between IL-17-producing gammadeltaT cells and microbiota orchestrates oral mucosal homeostasis. Proc. Natl Acad. Sci. USA 116, 2652–2661 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Wilharm, A. et al. Microbiota- dependent expansion of testicular IL-17-producing Vgamma6(+) gammadelta T cells upon puberty promotes local tissue immune surveillance. Mucosal Immunol. 14, 242–252 (2021).

    CAS  PubMed  Article  Google Scholar 

  41. Jin, C. et al. Commensal microbiota promote lung cancer development via gammadelta T. Cells Cell 176, 998–1013 e1016 (2019).

    CAS  PubMed  Article  Google Scholar 

  42. Hu, M. D. & Edelblum, K. L. Sentinels at the frontline: the role of intraepithelial lymphocytes in inflammatory bowel disease. Curr. Pharm. Rep. 3, 321–334 (2017).

    CAS  Article  Google Scholar 

  43. Prinz, I. et al. Visualization of the earliest steps of gammadelta T cell development in the adult thymus. Nat. Immunol. 7, 995–1003 (2006).

    CAS  PubMed  Article  Google Scholar 

  44. Sandrock, I. et al. Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing gammadelta T cells. J. Exp. Med. 215, 3006–3018 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Jia L, Edelblum K. L. Intravital imaging of intraepithelial lymphocytes in murine small intestine. J. Vis. Exp. e59853 https://doi.org/10.3791/59853 (2019).

  46. Costea, P. I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 (2017).

    CAS  PubMed  Article  Google Scholar 

  47. Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS  PubMed  Article  Google Scholar 

  48. Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).

    Article  Google Scholar 

  49. Wang, J. et al. Minimizing spurious features in 16S rRNA gene amplicon sequencing: PeerJ Preprints; 2018. Report no. 2167-9843.

  50. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(D1), D590–D596 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sergei Kotenko and Joan Durbin for providing the IFNAR KO mice. Cell sorting was performed at the NJMS Flow Cytometry and Immunology Core Laboratory and supported by National Institute for Research Resources Grant S10RR027022. This work was supported by Busch Biomedical Research Grant, New Jersey Commission on Cancer Research Bridge Grant (DCHS19CRF009), National Institute of Health Grant DK119349 (K.L.E.).

Author information

Authors and Affiliations

Authors

Contributions

L.J. designed and performed experiments and wrote the manuscript. G.W. analyzed data and wrote the manuscript. L.J. and G.W. contributed equally to the work. S.A. performed experiments and analyzed the data. A.L. analyzed the data and C.Z. and Y.L. performed experiments. L.Z. contributed to experimental design, supervised data analysis and revised the manuscript. K.L.E. conceived the study, performed experiments, supervised the research and wrote the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Karen L. Edelblum.

Ethics declarations

Competing interests

L.Z. is a co-founder of Notitia Biotechnologies Company. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplemenatry information

Supplemenatry information

41385_2022_522_MOESM2_ESM.mp4

Supplementary Video 1. Intravital microscopy of γδ T cells (green), luminal Alexa Fluor 633 (red), and nuclei (white) in jejunum of TcrdEGFP (WT) or F2 WT mice. Frames were collected approximately every 20 s.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, L., Wu, G., Alonso, S. et al. A transmissible γδ intraepithelial lymphocyte hyperproliferative phenotype is associated with the intestinal microbiota and confers protection against acute infection. Mucosal Immunol 15, 772–782 (2022). https://doi.org/10.1038/s41385-022-00522-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41385-022-00522-x

Search

Quick links