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Vitamin A and its derivative retinoic acid (RA) play important roles in the regulation of mucosal immunity. The effect of vitamin A
metabolism on T lymphocyte immunity has been well documented, but its role in mucosal B lymphocyte regulation is less well
described. Intestinal immunoglobulin A (IgA) is key in orchestrating a balanced gut microbiota composition. Here, we describe the
contribution of RA to IgA class switching in tissues including the lamina propria, mesenteric lymph nodes, Peyer’s patches and
isolated lymphoid follicles. RA can either indirectly skew T cells or directly affect B cell differentiation. IgA levels in healthy
individuals are under the control of the metabolism of vitamin A, providing a steady supply of RA. However, IgA levels are altered in
inflammatory bowel disease patients, making control of the metabolism of vitamin A a potential therapeutic target. Thus, dietary
vitamin A is a key player in regulating IgA production within the intestine, acting via multiple immunological pathways.
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INTRODUCTION
The beneficial effect of vitamin A on the immune system was
first described in 1928, when it was demonstrated that rats on a
vitamin A-deficient (VAD) diet developed infections in multiple
organs, ultimately leading to death1. Over time, additional
animal studies have demonstrated that vitamin A derivatives are
important in providing protection against many pathogens,
including respiratory syncytial virus2, Salmonella3, Mycobacter-
ium tuberculosis4, Listeria monocytogenes5 and influenza virus6.
In addition, the anti-infectious properties of dietary vitamin
A have been observed in humans. Individuals with insufficient
vitamin A intake have higher chances of developing tuberculosis
when exposed to Mycobacterium tuberculosis7 and enhanced
risks for measles- and diarrhoeal disease-related mortality8.
Taken together, these studies were the first to indicate the
importance of dietary vitamin A in immunity and the protective
functions of dietary vitamin A against a broad range of mucosal
infections. Later studies recognized vitamin A as a key regulator
in the production of protective immunoglobulin A (IgA)
antibodies in mucosal tissues. In this review, we describe how
the immune system uses vitamin A to promote the antibody
response and preserve mucosal homeostasis. We further focus
on the molecular mechanism by which vitamin A promotes IgA
class switching in B lymphocytes, thereby preventing pathology.

Metabolism and transport of vitamin A and its derivatives
Vitamin A is involved in the regulation of multiple physiological
processes, such as spermatogenesis, fertilization, pregnancy
maintenance, morphogenesis, organogenesis, growth and cellular
differentiation9,10. It is an essential fat-soluble molecule that needs
to be obtained from the diet in the form of retinol, retinyl esters or
carotenoids. The gastric and intestinal epithelial barriers, which are
the first to come in contact with dietary vitamin A, absorb free

retinol by passive transport, whereas the uptake of plant-derived
β-carotene has been proposed to be facilitated by class B
scavenger receptors (SRB1)11,12. The detailed mechanism of
vitamin A transport and metabolism has been reviewed else-
where13. Absorbed dietary retinoids are transported in chylomi-
crons in the form of retinyl esters via the lymphatic system. The
majority of chylomicron retinyl ester (66–75%) is stored within the
liver, while some (25–33%) is delivered to peripheral tissues14.
When dietary vitamin A is scarce, retinol is released from the liver
and transported through the periphery while bound to the retinol
binding protein (RBP) complex. Within the periphery, retinol is
taken up by target cells via the high-affinity retinoic acid 6 (STRA6)
receptor, allowing cells to receive retinol for further metabolic
processing15.
Within the intestine, vitamin A is converted into its metabo-

lically active form, retinoid acid (RA), within intestinal epithelial
cells (IECs). First, retinol is converted into retinal under normal
physiological conditions by microsomal retinol dehydrogenases
(RDHs) in a reversible manner16. Then, the retinal is irreversibly
converted into RA by aldehyde dehydrogenases (ALDHs)17

(Fig. 1). Studies using rats have demonstrated that intestinal
crypt epithelial stem cells, which express high levels of ALDH in
humans18,19, have the lowest concentration of retinol and the
highest concentration of RA20. This suggests that crypt stem cells
may be important in intestinal RA production. Multiple human
ALDH isoforms exist, among which ALDH1a1, ALDH1a2, and
ALDH1a3 are the most extensively studied in association with
the immune system17. Within mice, these enzymes are referred
to as retinaldehyde dehydrogenases (RALDH1, RALDH2, and
RALDH3). In addition, multiple isomers of RA exist, but all-trans
retinoic acid (ATRA) is considered to be the most biologically
prevalent form, and ATRA, therefore, is the focus of this
review21,22.
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Production of retinoic acid in mucosal tissues
Since IECs are key in converting dietary vitamin A into RA, they
are an important source of RA for the immune cells present
within the lamina propria (LP). IECs were shown to be crucial in
inducing the differentiation of tolerogenic dendritic cells (DCs),
a process dependent on RA23. These tolerogenic DCs in turn are
able to produce RA due to intracellular ALDH enzymatic activity
and are therefore referred to as RA-producing DCs (RA-DCs).
These RA-DCs are further characterized by the membrane
expression of CD103 (Fig. 2). Under homeostatic conditions,
mucosal DCs reside within the LP and interact with IECs when
sampling luminal antigens24–26 (Fig. 2). It has been demon-
strated that the capacity of DCs to express ALDH enzymes relies
on initial exposure to RA itself27–29, for instance, provided by
IECs (Fig. 2). Similarly, the number of CD103+ ALDH-expressing
DCs in the LP (LP-DCs) is decreased when RA signalling is
disrupted within enterocytes30. IECs need to be in close
proximity to DCs to provide them with RA23. In further support
of this, CD103-expressing DCs have also been observed to
interact with the epithelium in humans31–33. The ability of DCs to
produce RA is characteristic of mucosal subsets, as DCs in the
spleen or peripheral lymph nodes draining the skin do not
exhibit ALDH expression28,34,35. It is thought that RA-DCs within
the LP are not maintained by tissue-resident precursors but are
derived from DC precursors that continuously seed the LP from
the circulation, suggesting that the induction of RA-DCs is a
continuous process33. These studies imply a key role for IECs in
providing LP-DCs with a primary source of RA, allowing their
local differentiation within the intestine after their arrival as
precursors from the bloodstream. The presence of RA-DCs is not
restricted to the LP, as RA-DCs have been observed in mucosal
organized lymphoid tissues such as the gut-draining mesenteric
lymph nodes (MLNs) and Peyer’s patches (PPs). Similar to that of
small intestinal DCs, the capacity of DCs within the MLNs to
express ALDH enzymes is dependent on dietary vitamin A28. RA-
DCs within the LP have migratory properties and have been
described to migrate via the afferent lymphatics into the
MLNs33,36. Moreover, there are reports of mucosal macrophages
expressing ALDH enzymes as well, but to a lower extent than
CD103+ RA-DCs37. Myeloid cells are well known for their role
in facilitating adaptive immune responses. As a result, the
observation that different myeloid cells, particularly DCs,
possess the ability to produce RA has led to the question of
whether mucosal DCs, by producing RA, influence adaptive
immunity and contribute to gut homeostasis.

Retinoid acid and IgA differentiation in B cells
The link between RA-DCs and mucosal adaptive immunity was
first studied in mice consuming VAD diets. In this context, it was
observed that the absence of dietary vitamin A, which ultimately
led to vitamin A-deficient mice, produced a dramatic decrease in
the production of IgA antibodies in mucosal tissues38. IgA is
predominantly produced within the mucosa39 as a dimeric
antibody by gut-resident plasma B cells. IgA binds to the
polymeric immunoglobulin receptor (pIgR) expressed on IECs
and is transported through the epithelial barrier into the gut
lumen. During this process, IgA gains a secretory compound when
it is released into the lumen. In this site, IgA plays an important
role, as it interacts with the microbiota, promoting
host–microbiota symbiosis and participating in homeostasis40–43

as reviewed previously44. Additional studies have observed that
RA is a key regulator in facilitating IgA production in mouse45–48

and human49,50 B lymphocytes. Despite the important role of RA
in directing IgA production, B lymphocytes themselves are unable
to produce RA, as they do not express the ALDH enzymatic
machinery and are therefore dependent on external sources. It has
been observed that mucosal RA-DCs are important in providing B
cells with RA, leading to IgA production in vivo. Thus, when RA-
DCs are unable to develop, for instance, when mice are deficient
in vitamin A or RA production by IECs is hampered, there are
reductions in the amounts of LP IgA+ B lymphocytes and mucosal
IgA secretion23,30,35,38. The direct role of RA-DCs in skewing B
lymphocytes into IgA-secreting cells was observed in murine
in vitro cultures, demonstrating that LP-DCs induce IgA class
switch recombination (CSR) in naïve B lymphocytes in an RA-
dependent mechanism. In addition to steering IgA isotype
switching, RA has been proposed to stimulate the differentiation
status of B cells by promoting plasmablast differentiation50,51. This
is supported by a study that observed that RA enhances the
expression of plasma cell-generating transcription factors in
primary human B cells51. Furthermore, ageing is proposed to
influence the immunological physiology in the gut and may
therefore play a role in RA-mediated IgA biology (reviewed
previously52). Taken together, these studies demonstrate a key
role for RA-DCs in facilitating IgA production in the mucosa.

Molecular mechanism by which retinoic acid induces IgA
production
Classic RA-dependent gene activation is mediated by the binding
of RA to its nuclear retinoic acid receptor (RAR), which forms a
dimer with retinoid X receptor (RXR) and functions as a
transcription factor53. Three RAR (RARα, RARβ, and RARγ) and
three RXR (RXRα, RXRβ, and RXRγ) isotypes, with different
expression patterns, are involved in controlling the dynamics of
RA signal transduction. In the absence of RA, the heterodimeric
receptors are bound to retinoic acid response elements (RAREs)
and provide a binding site for corepressors54, which can indirectly
make chromatin less accessible by allowing deacetylation55 (Fig. 3).
These RARE regions are found in gene promoters and character-
ized by two hexameric motifs, 5′-(A/G)G(G/T)TCA-3′, arranged as
palindromes, direct repeats, or inverted repeats56. In the presence
of RA, the RAR-RXR dimer undergoes a conformational change
that eliminates the corepressor binding site, allowing chromatin
acetylation57. As a result, binding can initiate RA-mediated gene
activation (Fig. 3). The human genome contains almost 15,000
RARE sequences, of which 138 locations are highly conserved
among vertebrates58. RA is a potent gene expression regulator
that has been described to regulate the expression of up to 500 to
800 genes59–61. Primary CSR factors are essential for initiating
somatic rearrangements in the immunoglobulin heavy chain gene
in B cells, leading to isotype switching into, for instance, IgA. For
class switching towards IgA, DNA breaks are specifically made in
switch regions upstream of the α chain locus by the enzyme
activation induced deaminase (AID), leading to switch region

Fig. 1 Intestinal epithelial cells metabolize dietary vitamin A into
retinoic acid. Dietary vitamin A is absorbed in human intestinal
epithelial cells and processed via two enzymatic digestion steps.
First, under normal physiological conditions, retinol is converted
into retinal by microsomal retinol dehydrogenases (RDHs) in a
reversible manner. Second, retinal is irreversibly converted by
aldehyde dehydrogenases (ALDHs) into retinoic acid.
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recombination and subsequent looping out of the constant
regions of other isotypes (Cμ, Cδ, Cγ, and Cε). Primary CSR stimuli
include CD40-ligand, TLR ligands and crosslinking of the BCR,
which induce the expression of the enzyme AID to enable CSR62,63.
However, secondary stimuli are required to direct CSR to
predetermined immunoglobulin isotypes, but these stimuli cannot
induce CSR on their own. As such, B cell differentiation towards
the IgA isotype was shown to be dependent on RA when
accompanied by primary CSR factors45–49,64,65. Thus, RA is
considered a secondary CSR factor that stimulates IgA isotype B
cell switching rather than initiating Cα gene transcription on its
own66. Runt-related transcription factors (RUNX) are essential in Cα
gene transcription, acting by binding to α Ig promoters. RA-
induced mucosal and systemic IgA production is completely
abrogated in RUNX2/3 double-knockout mice67. It is unclear how

RA is involved in RUNX-induced IgA CSR, as there is no literature
describing a direct physical link between RA and the RUNX family.
Mechanistically, it has been suggested that RA receptors can
directly bind the α switch region to promote the induction of DNA
breaks by offering a binding site for AID68. Moreover, RARE
sequences have been detected within the promoter region of
immunoglobulin germline α itself48, suggesting that RA may also
influence the expression levels of the IgA heavy chain. Never-
theless, the induction of IgA CSR was observed to also occur
independent of the RARE regions within the α chain promoter, as
CSR was still efficient in the presence of mutations in these RARE
sequences69. This suggests that RA enhances IgA CSR via
epigenetic modulations, such as altering the chromatin density
and thereby exposing AID binding sites, rather than acting as a
transcriptional regulator.

Fig. 3 Retinoic acid regulates the gene transcription of target genes. a In the absence of retinoic acid (RA), the nuclear factors retinoic acid
receptor (RAR) and retinoid X receptor (RXR) form a dimer and bind to retinoic acid response element sequences within the DNA to provide a
binding site for corepressors (CoRs). As a result, the deacetylated chromatin is not accessible for gene transcription. b After binding of RA to
the RAR-RXR complex, the dimer changes its conformation to eliminate the corepressor binding site, allowing chromatin acetylation. As a
result, the chromatin is acetylated, which allows access for transcription factors to regulate the gene expression of downstream target genes.

Fig. 2 Dietary vitamin A stimulates retinoic acid-producing dendritic cell differentiation in the gut. Dietary vitamin A is metabolized by
intestinal epithelial cells (IECs) into retinoic acid (RA). Close interaction of intestinal dendritic cells (DCs) with the epithelium skews the DCs
into an RA-DC phenotype characterized by the expression of CD103 and active ALDH enzymes. These local DCs provide RA to LP-residing
IgM+ B cells, allowing them to undergo class switching to IgA. Moreover, RA-DCs migrate from the LP into the mesenteric lymph nodes (MLNs)
to provide RA to B cells. Dietary vitamin A is also important in the development of tolerogenic RA-DCs within Peyer’s patches (PPs). Within
organized lymphoid organs, the production of RA primes B lymphocytes to express the gut-homing receptor α4β7 and undergo IgA class
switching. Activated B cells leave the PPs and MLNs, recirculate via the bloodstream and finally enter the gut using α4β7, where they populate
the LP and become resident IgA-secreting plasma cells. Locally, IgA is produced as a dimeric molecule and transported through the epithelial
layer, where it binds to the microbiota, thereby regulating its composition.
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Requirements for retinoic acid-mediated immunoglobulin A
switching in mucosal organized tissues
RA-DCs are located in multiple mucosal organized tissues,
including isolated lymphoid follicles (ILFs), the MLNs and PPs
(Fig. 2). These organized tissues provide a structured network to
allow interactions between immune cells to facilitate an adaptive
immune response. In germinal centre (GC) structures, T cells play
an important role in activating B cells, which is referred to as T cell-
dependent (TD) B cell activation. Typically, TD antibody produc-
tion starts when an antigen, presented by a mucosal antigen-
presenting cell (APC), such as an RA-DC, is recognized by T-helper
cells. At the same time, B lymphocytes recognize the antigen via
their BCR, which initiates B cell activation. Subsequently, upon
recognition of the antigenic peptide that is presented on B cell
MHC-II, T-helper cells further activate B cells via CD40 ligation and
interleukin-4 release70. TD B cell responses that develop in the
follicles are characterized by somatic hypermutation and affinity
maturation.

Isolated lymphoid follicles
ILFs are organized structures within the intestine that develop
de novo in response to luminal stimuli71. Organized ILFs are
dominated by the presence of B lymphocytes but also contain
T cells, DCs72 and stromal cells, allowing B cell differentiation73.
ILFs harbour memory and naïve B lymphocytes and offer a
suitable environment for GC-based B cell priming74. It has been
suggested that ILFs contribute to the production of antigen-
specific IgA75,76. Human ILFs contain immunoglobulin M (IgM)+
memory B cells that already express germline Cα transcripts,
which is direct evidence of IgM-to-IgA CSR77. When entering GC
pathways, these IgM+ memory B cells generate IgA+ memory B
cells and IgA-secreting plasma cells, which is accompanied by
hypermutation77. Additionally, it was demonstrated that B cells
in an ILF express AID transcripts, supporting that IgA CSR takes
place inside the ILF74. However, the extent to which RA
orchestrates IgA induction in ILF-contained GCs must be
addressed in future studies.

Mesenteric lymph nodes
The MLNs act as a firewall for nutrients and microbial substances
entering the lymph in the intestinal LP. The MLNs contain B cell
follicles and distinct T cell areas containing T cells and DCs. These
DCs are important for tolerance induction to food proteins and
prevent live commensal intestinal bacteria from spreading
systemically78. It was demonstrated that antigen-loaded CD103+

DCs from the LP migrate into the MLNs, where they drive T cell
responses to soluble luminal antigens79. When mice are T cell
deficient, they have a partial reduction in IgA+ B cells in the MLNs,
suggesting that T cells contribute to the differentiation of IgA+ B
cells within the MLNs80. Although the MLNs drain the LP and are
important for orchestrating mucosal immunity, they are not
the exclusive site of B cell IgA induction81,82. CD103+ DCs from
the MLNs express ALDH enzymes, whereas their CD103- counter-
parts lack ALDH enzyme expression37,38,83,84. Although DC-
mediated IgA production can occur the MLNs, mainly via TD
mechanisms82, the MLNs are still a minor site for IgA switching
during homeostasis81,85. Mechanistically, CD103+ RA-DCs from
the MLNs were shown to induce IgA CSR in naïve B lymphocytes,
which was observed to be at least partly dependent on RA
production86 (Fig. 4). Similarly, the contribution of RA-mediated
IgA production in the MLNs was supported by a reduction in
antigen-specific IgA-secreting B lymphocyte numbers within the
MLNs upon abrogation of RA signalling in the B cell lineage47.
Although it is unclear to what extent the MLNs contribute to
overall mucosal IgA levels, data point towards the involvement of
RA-mediated IgA production in the MLNs.

Peyer’s patches
PPs consist of multiple B cell follicles located underneath the
surface of the epithelial cell barrier in the small intestine and
have an important role in the production of antigen-specific
IgA87,88 (Fig. 5). Within PPs, B cells undergo somatic hypermuta-
tion and affinity maturation of IgA class-switched B cells, which
is predominantly mediated by T cells89. In the subepithelial
dome, luminal antigens are captured by microfold cells and

Fig. 4 Retinoic acid-producing dendritic cells facilitate the differentiation of IgA+ B lymphocytes within the mesenteric lymph nodes in
a T cell-dependent fashion. Antigen-loaded tolerogenic dendritic cells (DCs) migrate from the lamina propria (LP) into the mesenteric lymph
nodes (MLNs) via lymphatic vessels. In the MLNs, luminal antigens are recognized by the B cell receptor on naïve B lymphocytes, which
together with T cell help, initiates B cell activation. Moreover, RA initiates the expression of the gut-homing molecule α4β7 on B and T
lymphocytes. Subsequently, when activated B cells leave the MLNs, they move towards the circulation, after which they travel to the LP using
α4β7 and populate this site as IgA-secreting plasma cells. T cell-independent B cell activation has also been reported but described to not be
the predominant process in the MLNs.
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transferred to DCs, which are required for intestinal IgA
production in PPs90 (Fig. 5). DCs present antigens to CD4+

T cells in the perifollicular area, leading to the secretion of
cytokines by effector T cells involved in IgA CSR91,92. The
involvement of T lymphocytes in facilitating mucosal IgA CSR,
induced by CD40L costimulation and cytokine production, is
evident within PPs93. Recent work showed that T cell depletion
in mice decreased the frequency of IgA+ B cells in PPs,
supporting the involvement of T cells in IgA production80. With
respect to the RA dependency of IgA production, PP-derived
DCs have been observed to induce integrin α4β7 on lympho-
cytes in vitro, which reflects their capacity to produce RA38,94.
Moreover, PP-derived DCs enhance the production of IgA in
activated mouse B cells in vitro, which can be blocked by a
RAR receptor antagonist38,95, demonstrating that IgA differen-
tiation in PPs is partly dependent on RA. Interestingly,
PP-derived DCs were observed to express the mouse retina-
laldehyde dehydrogenase 3 (RALDH3) enzymes, in contrast to
MLN-derived DCs, which express RALDH294. Further support for
the dependency for IgA production within PPs on RA was
derived from studies in which RA signalling was silenced in
mouse B lymphocytes. In these mice, the frequency of total B
lymphocytes within PPs remained stable, whereas the numbers
of IgA+ and AID-expressing B cells were reduced47. The same
study observed a reduction in antigen-specific IgA-secreting B
lymphocyte numbers within PPs upon oral immunization47.
Moreover, RA indirectly promotes IgA production by stimulating
follicular DCs in the presence of bacterial products. As a result,
follicular DCs produce multiple factors, including TGFβ, and
thereby establish an IgA-promoting environment96. Together,
these studies show the importance of RA in TD IgA production
within PPs.

RETINOIC ACID-MEDIATED T CELL SKEWING INDIRECTLY
REGULATES MUCOSAL IMMUNOGLOBULIN A PRODUCTION
While RA can have a direct effect on IgA CSR in B lymphocytes, it
can also indirectly influence IgA production via its effect on T
lymphocyte differentiation.

Retinoic acid regulates regulatory T cell and T-helper 17-cell
differentiation
The production of RA by DCs in the steady state influences
the differentiation of T cells. T cells exposed to RA become
less sensitive to interleukin-6, interleukin-21 (IL21) and inter-
leukin-23, which are required to develop a T-helper 17
(Th17) response97–99. As a result, naïve T cells are unable to
differentiate into interleukin-17-producing cells when exposed
to RA; rather, they differentiate into other subsets, such as
regulatory T cells (Tregs) (Fig. 6)98. In addition, RA can suppress
the T cell production of interleukin-4, IL21 and interferon-ƴ,
cytokines that inhibit Treg formation (Fig. 6)100. As a result, RA-
DCs allow the differentiation of Tregs and thereby modulate the
balance between Treg and Th17 responses99,101,102. Although it
is widely accepted that helper T cells facilitate B cell CSR, it was
proposed that Tregs are important in mucosal IgA production as
well93. Mice lacking Tregs displayed decreased numbers of IgA+
B cells, and these numbers were restored upon in vivo
administration of Tregs103. There are multiple mechanisms by
which CD4+ T cells contribute to the induction of mucosal IgA
production. Tregs facilitate IgA production by secreting TGFβ
within PPs, and this isotype switching is unrelated to antigens
and independent of the microbiota104. Moreover, it was
proposed that Tregs can transform into follicular T cells, which
are responsible for GC formation105 and IL21 secretion, thereby
facilitating specific IgA production104,106. However, despite
extensive studies showing a positive effect of RA on Treg
differentiation, it remains unclear whether RA is involved in
mucosal IgA production via the induction of Tregs or T follicular
helper cells.

Retinoic acid regulates T-helper 1- and T-helper 2-cell
differentiation
The contribution of RA to the regulation of T-helper 1 (Th1) and
T-helper 2 (Th2) responses in the mucosa is less clear, as there
are inconsistencies in the literature. It was observed that RA
sustains stable expression of Th1 lineage-specific genes via
RARα signalling. Furthermore, RA was found to be essential for
limiting Th1-cell conversion into Th17 cells and preventing

Fig. 5 Retinoic acid-producing dendritic cells facilitate the differentiation of IgA+ B lymphocytes within Peyer’s patches. Specialized
microfold cells (M cells) transport microbes and luminal antigens to intestinal retinoic acid-producing dendritic cells (RA-DCs). These RA-DCs
present antigenic peptides on major histocompatibility complex-2 (MHCII) to T lymphocytes, promoting their differentiation into T-helper 2
(Th2) cells. Th2 cells express CD40 ligand, which further activates B cells that have recognized their cognate antigen with the B cell receptor
(BCR). Moreover, Th2 cells secrete multiple cytokines, including interleukin-4 (IL4), to facilitate B cell activation. Within PPs, the most
predominant mechanism of IgA differentiation in B cells involves TD activation. It is suggested that local RA-DCs together with CD40
costimulation provided by T cells skew naïve B cells into an IgA isotype. Additionally, a fraction of TI IgA induction is also reported within PPs,
but whether this requires the involvement of RA is still unclear.
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pathogenic responses in vivo107. In contrast, it was suggested
that RA is important for Th2 responses, as RARα signalling within
T cells leads to efficient activation, whereas RARα deficiency
results in a cell-autonomous CD4+ T cell activation defect108.
Moreover, multiple studies have indicated that RA promotes Th2
rather than Th1 responses in mice109,110. The ability of RA to
mediate mouse T cell differentiation in vitro towards Th2 cells
was demonstrated to be dependent on the culture condi-
tions109, suggesting that the inconsistent data in the literature
may be due to technical differences between experiments.
Nevertheless, human T cells also differentiate towards a Th2
phenotype when cultured in the presence of RA, a process
shown to be dependent on RARα signalling111,112. Overall, the
data point towards a stimulatory effect of RA on Th2-cell
differentiation. Th2 cells are well known for their roles in anti-
parasitic immunity and allergy, functioning by producing a
spectrum of effector cytokines, including interleukin-5 (IL5).
Additionally, IL5 has been proposed to promote IgA production
in multiple in vivo studies113,114. As an example, administration
of recombinant murine IL5 promotes IgA synthesis in PP-derived
cycling B cells113. IL5 itself cannot initiate IgA production114 but
rather cooperates with IL21 to promote the proliferation of B
cells exposed to IgA-inducing factors, such as RA115. Accord-
ingly, IgA induction by vitamin A is impaired in IL5 receptor-
deficient mice116, suggesting that RA and IL5 cooperate to
induce IgA. However, despite extensive data supporting the
enhancing effect of IL5 on mucosal IgA production in mice, a
similar effect has not been demonstrated in humans. It is
possible that RA may indirectly promote mucosal IgA production
by facilitating a Th2 response, which, through the release of IL5
contributes, together with RA, to mucosal TD IgA production
(Fig. 6). Nevertheless, future studies are required to demonstrate
whether this also applies to humans.

RETINOIC ACID-MEDIATED IMMUNOGLOBIN A PRODUCTION
OUTSIDE OF GERMINAL CENTRES
IgA differentiation of B cells is not only established with T cell help
but can also occur in a T cell-independent (TI) manner. In contrast
to TD B cell stimulation, TI stimulation induces a limited number of
hypermutations in the Ig variable regions and has been proposed
to occur outside GCs117,118. In addition to high-affinity IgA, low
affinity IgA is produced in the LP39. Various studies have
suggested that TI IgA responses produce natural polyreactive
specificities with low affinity for commensal bacteria119–121. In vivo
mouse experiments have frequently been used to study the
contribution of TI stimulation to IgA+ B cell differentiation, but in
humans, it was demonstrated that IgA+ memory B cells can
differentiate independent of GCs122. Although there are reports
describing that TI B cell activation can occur in the MLNs86 and
PP39,86,117, a recent study proposed that TI IgA production in
mucosal organized tissues is not the predominant mechanism80.
We will therefore not further elaborate on the role of TI IgA
production in mucosal lymphoid tissues but instead focus on RA-
mediated IgA production outside of GCs. Typically, TI B cell
activation requires DCs that have taken up luminal antigens.
CD103+ DCs can receive luminal antigens directly from goblet
cells25 or CX3CR1+ macrophages123 but can also take up these
antigens via phagocytosis of luminal bacteria using their
intraepithelial dendrites124. Once mucosal DCs are activated, they
produce a range of cytokines, including BAFF and APRIL, to
facilitate B cell activation independent of CD40 ligand125,126.
Additionally, epithelial cells can secrete APRIL, depending on the
composition of the microbiota, which further contributes to the
creation of a suitable environment for B cells to undergo CSR127.
Furthermore, B cells require TLR stimulation as well as BCR
crosslinking with the corresponding antigen for TI antibody
production. It is unclear whether IgA CSR occurs within the LP

Fig. 6 Indirect effects of retinoic acid on T lymphocytes to stimulate IgA class switch recombination. Epithelial cells metabolize dietary
vitamin A into retinoic acid (RA), which is required for dendritic cells (DCs) to differentiate into RA-producing DCs. Within Peyer’s patches (PPs),
RA secretion affects the differentiation of CD4+ T cells, thereby facilitating IgA class switching by B lymphocytes. In particular, RA regulates
the balance of regulatory T cell (Treg) and T helper 17 (Th17)-cell differentiation. RA suppresses the production of interleukin-4 (IL4),
interleukin-21 (IL21) and interferon-ƴ (IFNƴ), which are cytokines that inhibit Treg formation, by T cells. As such, RA indirectly promotes the
differentiation of Tregs. Tregs themselves are involved in the induction of antigen-independent IgA differentiation by secreting TGFβ.
Moreover, Tregs can differentiate into T follicular helper cells (Tfhs), which are involved in antigen-dependent IgA production by secreting IL21
within PPs. RA also promotes the differentiation of T-helper 2 cells, which secrete interleukin-5 and, together with IL21, promote an IgA-
inducing environment.
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itself, outside of organized lymphoid structures, as conflicting
studies report on the absence/presence of markers for local CSR
within LP B cells118,128–130. These inconsistencies in detecting
markers for IgA CSR in the LP may be explained by the complexity
of the techniques that have been used. Further support that IgA
CSR occurs in the LP is derived from experiments using mouse
models with dysfunctional T cell responses, which exhibited
normal frequencies of IgA+ B lymphocytes within the LP117,118,131.
Similarly, mice that lack T cells have almost normal IgA coating of
intestinal bacteria, except for a few atypical taxa132, suggesting
that a substantial part of the IgA repertoire produced against the
microbiota is derived via TI activation132. Although these studies
demonstrate that T cells are not essential for the development of
IgA+ B lymphocytes within the LP, they do not address whether
IgA CSR actually takes place within the LP itself. In fact, B
lymphocytes may become activated within gut lymphoid tissues,
after which they migrate into the LP, where they complete
CSR117,133,134.
Indeed, IgM+ B lymphocytes from the LP are pre-committed

to class switching towards IgA, supporting the notion that the
local RA-rich environment provided by DCs and stromal cells is
important for inducing IgA+ B cell differentiation129. This is in
line with the finding that IgM+ memory B cells express Iα-Cµ
switch circle transcripts in the LP77, suggesting that these B cells
are primed to become IgA+ B cells. Naïve and IgM+ memory B
cells may become activated in ILFs or PPs, where RA-DCs
promote an IgA-inducing environment. As a result, B cells
migrate into the LP, which also contains RA-DCs, to complete
IgA CSR; this process has been shown in in vitro studies using
LP-DCs and naïve B cells135. However, this does not represent
what happens within the LP, as naïve B cells are not present in
the LP. Moreover, low numbers of memory B cells can be found
in the LP74,77,136. Mechanistically, stimulation of TLR5 on LP-DCs
was shown to trigger the production of RA, together with IL5
and interleukin-6, which eventually skewed B lymphocytes
towards IgA differentiation in vitro38,135 (Fig. 7). IgA CSR may
also occur in ILFs, which often do not have GC structures to
provide TD B cell stimulation77,137. Similarly, AID expression and
IgA CSR in B cells can still occur inside ILFs when T cells are
lacking, showing that ILFs provide a TI stimulatory environment
to promote IgA production137. Although unorganized ILFs retain
AID expression, the extent to which they contribute to TI CSR
is unclear, as IgM+ memory B cells from ILFs express markers
associated with the post-GC response77. The contribution of
ILFs to IgA production in the LP is relatively limited since mice
without ILFs produce unaltered levels of faecal IgA138. Thus, it is
likely that IgA CSR is predominantly initiated within the GC in an
RA-dependent manner, with further completion within the LP,
where RA-DCs facilitate B cell differentiation by providing an
IgA-promoting environment.

IMMUNOGLOBULIN A AND REGULATION OF MICROBIOTA
HOMEOSTASIS
Vitamin A metabolism and the microbiota
Secreted mucosal IgA antibodies play an important role in
mucosal tolerance. The tight interplay between the composition
of the gut microbiota and production of mucosal IgA creates a
homeostatic environment allowing commensal bacterial
growth. Simultaneously, the mucosal immune system needs to
balance its regulatory role with active readiness against
pathogens44,139. Mucosal IgA recognizes and coats particular
microbiota to prevent their translocation through the gut IEC
layer. With the directed production of IgA, which recognizes the
microbiota present within the gut lumen, host-microbe sym-
biosis is promoted, thereby safeguarding the composition and
metabolic function of the gut microbiota140. The production
of IgA against the gut microbiota is regulated by multiple

processes, including direct sampling of luminal bacteria by DCs
in the LP141,142. DCs within the MLNs and PPs harbour live
commensals, which are required for B cells to undergo IgA
differentiation in vitro82. Furthermore, commensal bacteria
stimulate the enzymatic machinery in DCs to produce RA, which
is important for DC-mediated skewing of B cells into an IgA
isotype38,46,47,143. In line with this, multiple studies have
demonstrated roles for RA in sustaining gut homeostasis and
regulating the composition of the microbiota144–147. It was
demonstrated that mice with low ALDH enzymatic activity
secrete less IgA into the intestinal lumen. As a result, these mice
show higher levels of bacterial translocation into the gut LP and
MLNs than mice with high ALDH enzymatic activity147. Animals
with insufficient intake of dietary vitamin A have an altered
colonic microbiota diversity144–146. Similarly, loss of RA-DCs
results in an altered microbiota composition, which makes mice
more susceptible to intestinal Citrobacter rodentium infection30.
Together, these data suggest that intestinal IgA antibody
secretion, which is facilitated by RA-DCs, regulates mucosal
tolerance under homeostatic conditions. As such, RA indirectly
contributes to mucosal tolerance.

Fig. 7 Retinoic acid-producing dendritic cells facilitate the
differentiation of IgA+ B lymphocytes within isolated lymphoid
follicles in a T cell-independent fashion. B cell activation within
isolated lymphoid follicles (ILFs) is accomplished via multiple steps.
Retinoic acid (RA)-producing dendritic cells (RA-DCs) retrieve
antigens from microfold cells, which is necessary for B cell receptor
(BCR) antigen recognition by B cells. Simultaneously, naïve B cells
are stimulated via toll-like receptors (TLRs) and cofactors in the form
of BAFF and APRIL produced by tolerogenic DCs and the epithelium.
Secondary stimuli are produced after TLR5 activation by tolerogenic
DCs. As a result, gut DCs secrete interleukin-4 (IL4), interleukin-5 (IL5)
and RA to skew naïve B cells into an IgA isotype. Upon subsequent
maturation, B lymphocytes leave the ILFs to become IgA-secreting
plasma cells within the lamina propria (LP).
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VITAMIN A METABOLISM AND INFLAMMATORY BOWEL
DISEASE
Microbial homeostasis is lost in a variety of diseases, including
inflammatory bowel disease (IBD). IBD is characterized by
chronic inflammation of the gastrointestinal tract and disruption
of the epithelial lining. IBD can be subdivided into two major
forms, ulcerative colitis (UC) and Crohn’s disease (CD)148. The
production of mucosal IgA in these patients is altered compared
to that in healthy donors. This was nicely illustrated in a study
showing that the faecal bacteria of IBD patients were more
abundantly opsonized with IgA compared to those of healthy
individuals149,150; IBD patients also have increased levels of
microbiota-specific IgA in the serum151. Transplantation of faecal
IgA-coated bacterial strains from IBD patients into germ-free
mice was shown to exacerbate DSS-induced colitis, suggesting
that the IgA coating identifies colitogenic bacteria150. Accord-
ingly, the percentage of IgA-opsonized bacteria in CD patients
was found to strongly correlate with clinical indexes of disease
activity152. Additionally, the composition of the microbiota of
these patients was altered compared to that of healthy
donors153. Together, these findings demonstrate a link among
IBD pathogenesis, microbial composition and the ability of the
immune system to produce specific IgA antibodies against
the microbiota. It is, however, not clear which factors are
causative for the alterations in the microbiota composition and
which are consequential. Determining whether abnormalities in
vitamin A metabolism can cause IBD development will require a
closer look at possible associations of vitamin A pathway
polymorphisms with IBD154. Such polymorphisms have been
described; in particular, reduced ALDH1a1 and increased
CYP26A1 levels have been linked to UC155,156, whereas a
CYP26B1 polymorphism resulting in higher levels of RA was
associated with an increased risk of CD155,157. Moreover, ALDH
activity is decreased in the intestinal DCs and macrophages of
UC patients, both during active disease and in remission,
compared to those of control individuals and CD patients31. It
was suggested that the reduced serum vitamin A levels in UC
patients correlate with a worse disease outcome158. However,
additional studies have demonstrated altered vitamin A
metabolism in CD patients as well, with decreased ALDH1A2
expression in IECs and an impaired ability to induce FoxP3-
mediated differentiation in T lymphocytes159. Moreover, UC and
CD onset is characterized by a damaged epithelial lining. As a
result, it is possible that despite maintaining an intact ALDH
enzymatic machinery, the epithelial cells of patients metabolize
vitamin A inefficiently, as few viable epithelial cells are present.
In contrast, the ALDH activity of gut DCs in CD patients was
shown to be increased compared to that in healthy donors,
which may reflect a compensatory mechanism160.
Taken together, these data demonstrate that vitamin A

metabolism can be altered during disease, with either reduced
or enhanced RA production, making it difficult to therapeutically
target this pathway. Nevertheless, a variety of studies have
tested the efficacy of vitamin A (derivatives) in chronic intestinal
inflammation, either in mouse models or in human clinical trials,
and generally demonstrated a beneficial effect on disease
pathology161. For instance, vitamin A-deficient mice developed
more severe colitis and showed delayed recovery in different
gut inflammation models, suggesting that RA has a protective
effect in this context147,162,163. Moreover, the effect of vitamin A
supplementation in UC patients was tested in a double-blinded
randomized clinical trial, which demonstrated an RA-dependent
increase in serum IgA levels and decreasing disease activity164.
Nevertheless, due to the diverse processes by which RA affects
the immune system, it is to be expected that therapeutic use of
RA in IBD patients will result in a mixed treatment outcome, as
IBD is a highly heterogenic disease.

CONCLUDING REMARKS
Vitamin A metabolism is a complex process that occurs in specific
sites within the intestinal mucosa and plays a key role in
sustaining gut homeostasis. Dietary vitamin A is processed by
IECs, which allows the differentiation of RA-DCs. RA-DCs migrate to
mucosal tissues, such as the MLNs and PPs, to provide B
lymphocytes with exogenous RA to skew the B cells towards TD
IgA differentiation. Moreover, RA-DCs regulate TI IgA production in
non-organized tissues, such as the LP and ILFs. IgA is crucially
involved in orchestrating the composition of the microbiota and
sustaining healthy mucosal symbiosis. As a result, clinical trials
have been initiated to study the effect of vitamin A on IBD
pathogenesis, as IBD is characterized by altered IgA production
and microbial dysbiosis. The mechanism by which RA-dependent
IgA production can control microbial dysbiosis, which may
underlie diseases such as IBD, is not yet understood.
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