Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vitamin D receptor upregulates tight junction protein claudin-5 against colitis-associated tumorigenesis

Abstract

Tight junctions are essential for barrier integrity, inflammation, and cancer. Vitamin D and the vitamin D receptor (VDR) play important roles in colorectal cancer (CRC). Using the human CRC database, we found colonic VDR expression was low and significantly correlated with a reduction of Claudin-5 mRNA and protein. In the colon of VDRΔIEC mice, deletion of intestinal VDR led to lower protein and mRNA levels of Claudin-5. Intestinal permeability was increased in the VDR−/− colon cancer model. Lacking VDR and a reduction of Claudin-5 are associated with an increased number of tumors in the VDR−/− and VDRΔIEC mice. Furthermore, gain and loss functional studies have identified CLDN-5 as a downstream target of VDR. We identified the Vitamin D response element (VDRE) binding sites in a reporter system showed that VDRE in the Claudin-5 promoter is required for vitamin D3-induced Claudin-5 expression. Conditional epithelial VDR overexpression protected against the loss of Claudin-5 in response to inflammation and tumorigenesis in vivo. We also reported fecal VDR reduction in a colon cancer model. This study advances the understanding of how VDR regulates intestinal barrier functions in tumorigenesis and the possibility for identifying new biomarker and therapeutic targets to restore VDR-dependent functions in CRC.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Reduced VDR was correlated with low Claudin-5 expression in human colorectal cancer (CRC) patients.
Fig. 2: VDR−/− mice developed a greater number of tumors compared to tumors in VDR+/+ mice.
Fig. 3: VDR deletion led to decreased Claudin-5 expression in tumor tissues.
Fig. 4: VDR-specific deletion in mouse intestines lead to decreased Claudin-5 expression in tumor tissues.
Fig. 5: VDR binds to the Claudin-5 promoter in vivo and in vitro.
Fig. 6: High VDR levels increased Claudin-5 at the protein and mRNA level in vitro.
Fig. 7: Overexpressed intestinal epithelial VDR led to increased Claudin-5 and reduced inflammation in vivo.
Fig. 8: Intestinal epithelial VDR overexpression mice have fewer and smaller tumors and show protection from decreased Claudin-5 and increased inflammation.

References

  1. Zeissig, S. et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56, 61–72 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Zhu, L. et al. Claudin Family Participates in the Pathogenesis of Inflammatory Bowel Diseases and Colitis-Associated Colorectal Cancer. Front. Immunol. 10, 1441 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cherradi, S., Martineau, P., Gongora, C. & Del Rio, M. Claudin gene expression profiles and clinical value in colorectal tumors classified according to their molecular subtype. Cancer Manag. Res. 11, 1337–1348 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haussler, M. R. et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J. Bone Miner. Res. 13, 325–349 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Xue, Y. & Fleet, J. C. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology 136, 1317–1327 (2009). e1311-1312.

    Article  CAS  PubMed  Google Scholar 

  6. Bouillon, R. et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev. 29, 726–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ogura, M. et al. Vitamin D3 modulates the expression of bile acid regulatory genes and represses inflammation in bile duct-ligated mice. J. Pharm. Exp. Ther. 328, 564–570 (2009).

    Article  CAS  Google Scholar 

  8. Kamen, D. L. & Tangpricha, V. Vitamin D and molecular actions on the immune system: modulation of innate and autoimmunity. J. Mol. Med. 88, 441–450 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Waterhouse, J. C., Perez, T. H. & Albert, P. J. Reversing bacteria-induced vitamin D receptor dysfunction is key to autoimmune disease. Ann. N. Y Acad. Sci. 1173, 757–765 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, P. T., Krutzik, S. R. & Modlin, R. L. Therapeutic implications of the TLR and VDR partnership. Trends Mol. Med. 13, 117–124 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. Gombart, A. F., Borregaard, N. & Koeffler, H. P. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 19, 1067–1077 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kong, J. et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G208–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Adams, J. S. & Hewison, M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat. Clin. Pr. Endocrinol. Metab. 4, 80–90 (2008).

    Article  CAS  Google Scholar 

  14. Yu, S., Bruce, D., Froicu, M., Weaver, V. & Cantorna, M. T. Failure of T cell homing, reduced CD4/CD8alphaalpha intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. Proc. Natl. Acad. Sci. USA 105, 20834–20839 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abreu, M. T. et al. Measurement of vitamin D levels in inflammatory bowel disease patients reveals a subset of Crohn’s disease patients with elevated 1,25-dihydroxyvitamin D and low bone mineral density. Gut 53, 1129–1136 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lim, W. C., Hanauer, S. B. & Li, Y. C. Mechanisms of disease: vitamin D and inflammatory bowel disease. Nat. Clin. Pr. Gastroenterol. Hepatol. 2, 308–315 (2005).

    Article  CAS  Google Scholar 

  18. Wang, T. T. et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J. Biol. Chem. 285, 2227–2231 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Rufo, P. A. & Bousvaros, A. Current therapy of inflammatory bowel disease in children. Paediatr. Drugs 8, 279–302 (2006).

    Article  PubMed  Google Scholar 

  20. Sun, J. Vitamin D and mucosal immune function. Curr. Opin. Gastroenterol. 26, 591–595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song, M., Chan, A. T. & Jun, J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology 158, 322–340 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Lu, R. et al. Paneth cell alertness to pathogens maintained by vitamin D receptors. Gastroenterology 160, 1269–1283 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Y.-G. et al. Vitamin D receptor protects against dysbiosis and tumorigenesis via the JAK/STAT pathway in intestine. Biorxiv 02, 2020.02.18.946335 (2020).

  24. Zhang, Y. G. et al. Vitamin D Receptor Protects Against Dysbiosis and Tumorigenesis via the JAK/STAT Pathway in Intestine. Cell Mol. Gastroenterol. Hepatol. 10, 729–746 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wong, S. H. et al. Gavage of Fecal Samples From Patients With Colorectal Cancer Promotes Intestinal Carcinogenesis in Germ-Free and Conventional Mice. Gastroenterology 153, 1621–1633 e1626 (2017).

    Article  PubMed  Google Scholar 

  26. Andoh, A. et al. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn’s disease using terminal restriction fragment length polymorphism analysis. J. Gastroenterol. 46, 479–486 (2011).

    Article  PubMed  Google Scholar 

  27. Bird, R. P. & Good, C. K. The significance of aberrant crypt foci in understanding the pathogenesis of colon cancer. Toxicol. Lett. 112-113, 395–402 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Kang, X. et al. Serrated neoplasia in the colorectum: gut microbiota and molecular pathways. Gut Microbes 13, 1–12 (2021).

    Article  PubMed  Google Scholar 

  30. Yongguo Zhang, Y. X. & Sun, J. A simple and sensitive method to detect vitamin D receptor expression in various disease models using stool samples. Genes Dis. 8, 939–945 (2020).

    Article  CAS  Google Scholar 

  31. Wu, S. et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut 64, 1082–1094 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Sun, J. et al. Increased NF-kappaB activity in fibroblasts lacking the vitamin D receptor. Am. J. Physiol. Endocrinol. Metab. 291, E315–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Kato, S. The function of vitamin D receptor in vitamin D action. J. Biochem. 127, 717–722 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Y.-G. et al. Tight junction CLDN2 gene is a direct target of the vitamin D receptor. Sci. Rep. 5, 10642 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Capaldo, C. T. et al. Tight function zonula occludens-3 regulates cyclin D1-dependent cell proliferation. Mol. Biol. Cell 22, 1677–1685 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ivanov, A. I. et al. Microtubules regulate disassembly of epithelial apical junctions. BMC Cell Biol. 7, 12 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhang, Y. G. et al. Intestinal epithelial HMGB1 inhibits bacterial infection via STAT3 regulation of autophagy. Autophagy 15, 1935–1953 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chatterjee, I. et al. Overexpression of Vitamin D Receptor in Intestinal Epithelia Protects Against Colitis via Upregulating Tight Junction Protein Claudin 15. J. Crohn’s Colitis. 15, 1720–1736 (2021).

    Article  Google Scholar 

  39. Zhang, Y. G., Wu, S. & Sun, J. Vitamin D, Vitamin D Receptor, and Tissue Barriers. Tissue Barriers 1, e23118 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Urashima, M. et al. Effect of Vitamin D Supplementation on Relapse-Free Survival Among Patients With Digestive Tract Cancers: the AMATERASU Randomized Clinical Trial. JAMA 321, 1361–1369 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vancamelbeke, M. & Vermeire, S. The intestinal barrier: a fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 11, 821–834 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mineta, K. et al. Predicted expansion of the claudin multigene family. FEBS Lett. 585, 606–612 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Fujita, H. et al. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol. Biol. Cell 19, 1912–1921 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y. G. et al. Lack of Vitamin D Receptor Leads to Hyperfunction of Claudin-2 in Intestinal Inflammatory Responses. Inflamm. Bowel Dis. 25, 97–110 (2019).

    PubMed  Google Scholar 

  45. Chen, H., Lu, R., Zhang, Y. G. & Sun, J. Vitamin D Receptor Deletion Leads to the Destruction of Tight and Adherens Junctions in Lungs. Tissue Barriers 6, 1–13 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Turpin, W. et al. Increased Intestinal Permeability is Associated with Later Development of Crohn’s Disease. Gastroenterology. 159, 2092–2100 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Pappa, H. M., Grand, R. J. & Gordon, C. M. Report on the vitamin D status of adult and pediatric patients with inflammatory bowel disease and its significance for bone health and disease. Inflamm. Bowel Dis. 12, 1162–1174 (2006).

    Article  PubMed  Google Scholar 

  49. Zhang, J., Zhang, Y., Xia, Y. & Sun, J. Imbalance of the intestinal virome and altered viral-bacterial interactions caused by a conditional deletion of the vitamin D receptor. Gut Microbes 13, 1957408 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Song, M., Chan, A. T. & Sun, J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology 158, 322–340 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Sun, J. & Kato, I. Gut microbiota, inflammation and colorectal cancer. Genes Dis. 3, 130–143 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sun, J. Impact of bacterial infection and intestinal microbiome on colorectal cancer development. Chinese Med. J. 135, 400–408 (2022).

    Article  Google Scholar 

  53. Galamb, O. et al. Inflammation, adenoma and cancer: objective classification of colon biopsy specimens with gene expression signature. Dis. Markers 25, 1–16 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sabates-Bellver, J. et al. Transcriptome profile of human colorectal adenomas. Mol. Cancer Res. 5, 1263–1275 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Galamb, O. et al. Diagnostic mRNA expression patterns of inflamed, benign, and malignant colorectal biopsy specimen and their correlation with peripheral blood results. Cancer Epidemiol. Biomark. Prev.:Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Preventive Oncol. 17, 2835–2845 (2008).

    Article  CAS  Google Scholar 

  56. Pekow, J. et al. Gene signature distinguishes patients with chronic ulcerative colitis harboring remote neoplastic lesions. Inflamm. Bowel Dis. 19, 461–470 (2013).

    Article  PubMed  Google Scholar 

  57. Zhang, Y.-G. et al. Lack of Vitamin D Receptor Leads to Hyperfunction of Claudin-2 in Intestinal Inflammatory Responses. Inflamm. Bowel Dis. 25, 97–110 (2018).

    PubMed Central  Google Scholar 

  58. Lu, R., Zhang, Y. G., Xia, Y. & Sun, J. Imbalance of autophagy and apoptosis in intestinal epithelium lacking the vitamin D receptor. FASEB J. 33, 11845–11856 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu, R. et al. Chronic effects of a Salmonella type III secretion effector protein AvrA in vivo. PLoS ONE 5, e10505 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lu, R. et al. Alcohol Injury Damages Intestinal Stem Cells. Alcohol. Clin. Exp. Res. 41, 727–734 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu, S., Xia, Y., Liu, X. & Sun, J. Vitamin D receptor deletion leads to reduced level of IkappaBalpha protein through protein translation, protein-protein interaction, and post-translational modification. Int J. Biochem. Cell Biol. 42, 329–336 (2010).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. David Zhou for assisting with the CRC human samples, Drs. Shaoping Wu and Rong Lu for assisting with the AOM/DSS model, and Jason S. Xia for proofreading.

Funding

This research was funded by the UIC Cancer Center, the NIDDK/National Institutes of Health grant R01 DK105118 and R01DK114126, VA Merit Award VA 1 I01 BX004824-01, and DOD BC160450P1 to Jun Sun. The study sponsors played no role in the study design, data collection, analysis, and interpretation of data. The contents do not represent the views of the United States Department of Veterans Affairs or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z.: acquisition, analysis, and interpretation of data; drafting the paper; and statistical analysis. S.G.: assistance with western blots and TJ data. Y.X.: statistical analysis, and paper drafting. R.E.C.: Provided human biopsies and clinical perspective of CRC. J.S.: study concept and design, analysis and interpretation of data, writing the paper for important intellectual content, obtained funding, and study supervision.

Corresponding author

Correspondence to Jun Sun.

Ethics declarations

Competing interests

The authors declare no competing interests. The funders played no role in the study design, the collection, analyses, or interpretation of data, the writing of the paper, or the decision to publish the results.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Garrett, S., Carroll, R.E. et al. Vitamin D receptor upregulates tight junction protein claudin-5 against colitis-associated tumorigenesis. Mucosal Immunol 15, 683–697 (2022). https://doi.org/10.1038/s41385-022-00502-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41385-022-00502-1

Search

Quick links