Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effector memory CD4+T cells in mesenteric lymph nodes mediate bone loss in food-allergic enteropathy model mice, creating IL-4 dominance


Intestinal inflammation can be accompanied by osteoporosis, but their relationship, mediated by immune responses, remains unclear. Here, we investigated a non-IgE-mediated food-allergic enteropathy model of ovalbumin (OVA) 23-3 mice expressing OVA-specific T-cell-receptor transgenes. Mesenteric lymph nodes (MLNs) and their pathogenic CD4+T cells were important to enteropathy occurrence and exacerbation when the mice were fed an egg-white (EW) diet. EW-fed OVA23-3 mice also developed bone loss and increased CD44hiCD62LloCD4+T cells in the MLNs and bone marrow (BM); these changes were attenuated by MLN, but not spleen, resection. We fed an EW diet to F1 cross offspring from OVA23-3 mice and a mouse line expressing the photoconvertible protein KikGR to track MLN CD4+T cells. Photoconverted MLN CD44hiCD62LloCD4+T cells migrated predominantly to the BM; pit formation assay proved their ability to promote bone damage via osteoclasts. Significantly greater expression of IL-4 mRNA in MLN CD44hiCD62LloCD4+T cells and bone was observed in EW-fed OVA23-3 mice. Anti-IL-4 monoclonal antibody injection canceled bone loss in the primary inflammation phase in EW-fed mice, but less so in the chronic phase. This novel report shows the specific inflammatory relationship, via Th2-dominant-OVA-specific T cells and IL-4 production, between MLNs and bone, a distant organ, in food-allergic enteropathy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Egg-white (EW)-fed OVA23-3 mice display bone loss.
Fig. 2: Egg-white (EW) feeding induces CD44hiCD62LloCD4+T cells in OVA23-3 mice throughout the experimental period.
Fig. 3: Mesenteric lymph nodes (MLNs), but not the spleen (SP), play an important role in the bone loss induced by egg-white (EW)-fed OVA23-3 mice.
Fig. 4: CD44hiCD62LloCD4+T cells promote bone damage independently of receptor activator of nuclear factor kappa-Β ligand (RANKL) expression.
Fig. 5: Egg-white (EW) feeding promotes weight loss, intestinal changes, bone loss, and migration of CD44hiCD62LloCD4+T cells from mesenteric lymph nodes (MLNs) to bone marrow (BM) in K23-3 mice.
Fig. 6: Analysis of cytokine mRNA expression patterns in egg-white (EW)-fed OVA23-3 mice shows predominant IL-4 and IL-1β production.
Fig. 7: Activated CD44hiCD62LloCD4+T cells in mesenteric lymph nodes (MLNs) show predominant IL-4 expression.
Fig. 8: Neutralization of IL-4 prevents weight loss, intestinal changes, and bone loss in R23-3/BALB mice.


  1. 1.

    Amarasekara, D. S., Yu, J. & Rho, J. Bone loss triggered by the cytokine network in inflammatory autoimmune diseases. J. Immunol. Res. 2015, 832127 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Ashcroft, A. J. et al. Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity 19, 849–861 (2003).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Nakajima-Adachi, H. et al. Food antigen causes TH2-dependent enteropathy followed by tissue repair in T-cell receptor transgenic mice. J. Allergy Clin. Immunol. 117, 1125–1132 (2006).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Ono-Ohmachi, A., Nakajima-Adachi, H., Morita, Y., Kato, K. & Hachimura, S. Milk basic protein supplementation exerts an anti-inflammatory effect in a food-allergic enteropathy model mouse. J. Dairy Sci. 101, 1852–1863 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Nakajima-Adachi, H. et al. Peyer’s patches and mesenteric lymph nodes cooperatively promote enteropathy in a mouse model of food allergy. PLoS ONE 9, 2–11 (2014).

    Article  CAS  Google Scholar 

  6. 6.

    Nakajima-Adachi, H. et al. Critical role of intestinal interleukin-4 modulating regulatory T cells for desensitization, tolerance, and inflammation of food allergy. PLoS ONE 12, 1–19 (2017).

    Article  CAS  Google Scholar 

  7. 7.

    Gatti, D. et al. Allergy and the bone: unexpected relationships. Ann. Allergy Asthma Immunol. 107, 202–206 (2011).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Arima, K. et al. Burden of atopic dermatitis in Japanese adults: analysis of data from the 2013 National Health and Wellness Survey. J. Dermatol. 45, 390–396 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Wu, C. Y. et al. Osteoporosis in adult patients with atopic dermatitis: a nationwide population-based study. PLoS ONE 12, e0171667 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lewis, D. B. et al. Osteoporosis induced in mice by overproduction of interleukin 4. Proc. Natl Acad. Sci. USA 90, 11618–11622 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Burggraf, M. et al. Oral tolerance induction does not resolve gastrointestinal inflammation in a mouse model offoodallergy. Mol. Nutr. Food Res. 55, 1475–1483 (2011).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Nakajima-Adachi, H. et al. Two distinct epitopes on the ovalbumin 323-339 peptide differentiating CD4+T cells into the Th2 or Th1 phenotype. Biosci. Biotechnol. Biochem. 76, 1979–1981 (2012).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Kanai, T. et al. Naturally arising CD4+CD25+ regulatory T cells suppress the expansion of colitogenic CD4+CD44highCD62L−effector memory T cells. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1051–1058 (2006).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Nemoto, Y. et al. Bone marrow retaining colitogenic CD4+ T cells may be a pathogenic reservoir for chronic colitis. Gastroenterology 132, 176–189 (2007).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Nemoto, Y. et al. Long-lived colitogenic CD4+ memory T cells residing outside the intestine participate in the perpetuation of chronic colitis. J. Immunol. 183, 5059–5068 (2009).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Rosa, F. D. & Santoni, A. Memory T-cell competition for bone marrow seeding. Immunology 108, 296–304 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Rosa, F. D. & Pabst, R. The bone marrow: A nest for migratory memory T cells. Trends Immunol. 26, 360–366 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Tokoyoda, K. et al. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 30, 721–730 (2009).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Kikuta, J. et al. Dynamic visualization of RANKL and Th17-mediated osteoclast function. J. Clin. Invest. 123, 866–873 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Nakanishi, Y. et al. Regulatory T cells with superior immunosuppressive capacity emigrate from the inflamed colon to draining lymph nodes. Mucosal Immunol. 11, 437–448 (2018).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Tsukasaki, M. et al. Host defense against oral microbiota by bone-damaging T cells. Nat. Commun. 9, 701 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Sato, K. et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ciucci, T. et al. Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD. Gut 64, 1072–1081 (2015).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Collins, N. et al. The bone marrow protects and optimizes immunological memory during dietary restriction. Cell 178, 1088–1101 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Sugiyama, T., Omatsu, Y. & Nagasawa, T. Niches for hematopoietic stem cells and immune cell progenitors. Int. Immunol. 31, 5–11 (2019).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Matsuoka, S. et al. A novel type of cell death of lymphocytes induced by a monoclonal antibody without participation of complement. J. Exp. Med. 181, 2007–2015 (1995).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Schepper, J. D. et al. Probiotic Lactobacillus reuteri prevents postantibiotic bone loss by reducing intestinal dysbiosis and preventing barrier disruption. J. Bone Miner. Res. 34, 681–698 (2019).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Mu, Q., Kirby, J., Reilly, C. M. & Luo, X. M. Leaky gut as a danger signal for autoimmune diseases. Front. Immunol. 8, 598 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Srivastava, R. K., Dar, H. Y. & Mishra, P. K. Immunoporosis: Immunology of osteoporosis-role of T cells. Front. Immunol. 9, 657 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Bozec, A. & Zaiss, M. M. T Regulatory cells in bone remodelling. Curr. Osteoporos. Rep. 15, 121–125 (2017).

    Article  PubMed  Google Scholar 

  32. 32.

    Zaiss, M. M., Jones, R. M., Schett, G. & Pacifici, R. The gut-bone axis: how bacterial metabolites bridge the distance. J. Clin. Invest. 129, 3018–3028 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Svensson, L., Nandakumar, K. S., Johansson, Å., Jansson, L. & Holmdahl, R. IL-4-deficient mice develop less acute but more chronic relapsing collagen-induced arthritis. Eur. J. Immunol. 32, 2944–2953 (2002).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Nandakumar, K. S. & Holmdahl, R. Arthritis induced with cartilage-specific antibodies is IL-4-dependent. Eur. J. Immunol. 36, 1608–1618 (2006).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Ohmura, K., Nguyen, L. T., Locksley, R. M., Mathis, D. & Benoist, C. Interleukin-4 can be a key positive regulator of inflammatory arthritis. Arthritis Rheum. 52, 1866–1875 (2005).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Yang, D. H. & Yang, M. Y. The role of macrophage in the pathogenesis of osteoporosis. Int. J. Mol. Sci. 20, 2093 (2019).

    CAS  Article  PubMed Central  Google Scholar 

  37. 37.

    Pereira, M. et al. Common signalling pathways in macrophage and osteoclast multinucleation. J. Cell Sci. 131, jcs216267 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Silfverswärd, C. J., Frost, A., Brändström, H., Nilsson, O. & Ljunggren, Ö. Interleukin-4 and interleukin-13 potentiate interleukin-1 induced secretion of interleukin-6 in human osteoblast-like cells. J. Orthop. Res. 22, 1058–1062 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Nakamura, I. & Nakamura, I. Regulation of osteoclast differentiation and function by interleukin-1. Vitam. Horm. 74, 357–370 (2006).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Amarasekara, D. S. et al. Regulation of osteoclast differentiation by cytokine networks. Immune Netw. 18, e8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Yamada, A. et al. Interleukin-4 inhibition of osteoclast differentiation is stronger than that of interleukin-13 and they are equivalent for induction of production from osteoblasts. Immunology 120, 573–579 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Morita, H. et al. Food protein-induced enterocolitis syndromes with and without bloody stool have distinct clinicopathologic features. J. Allergy Clin. Immunol. 140, 1718–21 (2017).

    Article  PubMed  Google Scholar 

  43. 43.

    Sato, T. et al. Naive T cells can mediate delayed‐type hypersensitivity response in T cell receptor transgenic mice. Eur. J. Immunol. 24, 1512–6 (1994).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Ono-Ohmachi, A., Ishida, Y., Morita, Y., Kato, K. & Nara, T. Y. Milk basic protein facilitates increased bone mass in growing mice. J. Nutr. Sci. Vitaminol. (Tokyo) 63, 315–322 (2017).

    CAS  Article  Google Scholar 

Download references


We thank Erika Hiraide, Mamiko Morinaga, Tomiko Asakura, Takashi Matsuwaki, Yoshikazu Saito, Takuya Miyakawa, and Jun Kunisawa (the University of Tokyo); staff of the Institute of Medical Science and the FACS Core Laboratory at the University of Tokyo; Naoyuki Takahashi (Matsumoto Dental University); Ken Kato, Atsushi Serizawa, and Takayuki Nara (Megmilk Snow Brand Co., Ltd.); Toshimitsu Yoshioka and Takashi Fujita (Bean Stalk Snow Co., Ltd.); and Akemi Ito (Ito Bone Histomorphometry Institute) for their technical advice and support.

Author information




H.N.A. and A.O.O. provided substantial contributions to the conception of the work. M.T. provided KikGR mice. S.K. and Y.I. provided recombinant IL-1β and S.M. provided RE2 mAb and performed experiments. N.U., Y.N. and M.K. helped with the analysis of the bone. A.O.O., H.N.A., S.Y., S.U., M.T., K.S., S.N., Y.M., T.T., and T.I. performed the experiments and analyzed the data. H.N.A. and A.O.O. wrote the manuscripts. All authors discussed and interpreted the data.

Corresponding author

Correspondence to Haruyo Nakajima-Adachi.

Ethics declarations

Competing interests

This work was supported by grants from the Kieikai Research Foundation (H.N.A., 2017S063, 2018T019), a Grant-in-Aid for Scientific Research (C) (H.N.A., 18K05502) from the Japan Society for the promotion of science, a grant from The Food Science Institute Foundation (Ryoushoku-kenkyukai; H.N.A., No. 2019A01), and grants from Megmilk Snow Brand Co., Ltd. (H.N.A., H.K., and S.H.). The authors declare no conflict of interest associated with this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ono-Ohmachi, A., Yamada, S., Uno, S. et al. Effector memory CD4+T cells in mesenteric lymph nodes mediate bone loss in food-allergic enteropathy model mice, creating IL-4 dominance. Mucosal Immunol 14, 1335–1346 (2021).

Download citation


Quick links