Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation


In the intestine, IgA antibody-secreting B cells (IgA-ASCs) and helper T cells coordinate to maintain local homeostasis while their dysregulation could lead to development of intestinal inflammatory diseases. However, mechanisms underlying the coordinated localization and function of the B and T cells into the intestine, particularly the colon, are poorly understood. We herein report the first evidence that the gut-homing chemokine receptor CCR10+ IgA-ASCs form conjugates with helper T cells, preferentially regulatory T cells, at their differentiation sites of gut-associated lymphoid organs for their coordinated co-localization into the colon to promote local homeostasis. In CCR10-knockout mice, defective migration of IgA-ASCs also resulted in defective T-cell migration and homeostasis, and development of inflammatory symptoms in the colon. Antigen-specific interaction of CCR10+ IgA-ASCs and T cells is crucial for their homeostatic establishment in the colon. On the other hand, in IgA-knockout mice, preferential expansion of CCR10+ IgG1-ASCs with regulatory functions compensated for CCR10+ IgA-ASCs to help maintain colonic homeostasis. The preferential expansion of specific subclasses of CCR10+ IgG-ASCs with regulatory functions was also found in asymptomatic IgA-deficient patients. These findings suggest coordinated cell migration as a novel mechanism underlying localization and function of B and T cells in colonic homeostatic regulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: CCR10−/− mice developed colonic inflammation associated with dysregulated T cells.
Fig. 2: CCR10+IgA+ cells preferentially conjugate with Treg cells in the colon.
Fig. 3: CCR10 mediates co-migration of IgA-ASCs and conjugating T cells into the colon.
Fig. 4: MHCII expressed by CCR10+ IgA-ASCs is not important for their formation of conjugates with T cells but is crucial for their establishment in the colon.
Fig. 5: CCR10+ IgG1-ASCs are the major isotype of ASCs that substitute for CCR10+ IgA-ASCs in the colons of IgA-knockout mice.
Fig. 6: IgG1-ASCs and IgG2-ASCs are the major isotypes of plasma cells substituting for IgA-ASCs in IgA-deficient human patients.


  1. 1.

    Cerutti, A. The regulation of IgA class switching. Nat. Rev. Immunol. 8, 421–434 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Mora, J. R. & von Andrian, U. H. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 1, 96–109 (2008).

    CAS  PubMed  Google Scholar 

  3. 3.

    Macpherson, A. J., Geuking, M. B. & McCoy, K. D. Homeland security: IgA immunity at the frontiers of the body. Trends Immunol. 33, 160–167 (2012).

    CAS  PubMed  Google Scholar 

  4. 4.

    Xiong, N. & Hu, S. Regulation of intestinal IgA responses. Cell Mol. Life Sci. 72, 2645–2655 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Brandtzaeg, P. Secretory IgA: designed for anti-microbial defense. Front Immunol. 4, 222 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Fritz, J. H. et al. Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut. Nature 481, 199–203 (2011).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kim, M. S. & Kim, T. S. IgA+ plasma cells in murine intestinal lamina propria as a positive regulator of Treg differentiation. J. Leukoc. Biol. 95, 461–469 (2014).

    PubMed  Google Scholar 

  8. 8.

    Gommerman, J. L., Rojas, O. L. & Fritz, J. H. Re-thinking the functions of IgA(+) plasma cells. Gut Microbes 5, 652–662 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Shale, M., Schiering, C. & Powrie, F. CD4(+) T-cell subsets in intestinal inflammation. Immunol. Rev. 252, 164–182 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kunkel, E. J. et al. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J. Clin. Invest. 111, 1001–1010 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Lazarus, N. H. et al. A common mucosal chemokine (mucosae-associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts. J. Immunol. 170, 3799–3805 (2003).

    CAS  PubMed  Google Scholar 

  13. 13.

    Pan, J. et al. A novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues. J. Immunol. 165, 2943–2949 (2000).

    CAS  PubMed  Google Scholar 

  14. 14.

    Wang, W. et al. Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J. Biol. Chem. 275, 22313–22323 (2000).

    CAS  PubMed  Google Scholar 

  15. 15.

    Hu, S., Yang, K., Yang, J., Li, M. & Xiong, N. Critical roles of chemokine receptor CCR10 in regulating memory IgA responses in intestines. Proc. Natl Acad. Sci. USA 108, E1035–E1044 (2011).

    PubMed  Google Scholar 

  16. 16.

    Kim, S. V. et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340, 1456–1459 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Nguyen, L. P. et al. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat. Immunol. 16, 207–213 (2015).

    CAS  PubMed  Google Scholar 

  18. 18.

    Wang, C., Kang, S. G., Lee, J., Sun, Z. & Kim, C. H. The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunol. 2, 173–183 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Jin, Y., Xia, M., Sun, A., Saylor, C. M. & Xiong, N. CCR10 is important for the development of skin-specific gammadeltaT cells by regulating their migration and location. J. Immunol. 185, 5723–5731 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Doi, T. et al. IgA plasma cells express the negative regulatory co-stimulatory molecule programmed cell death 1 ligand and have a potential tolerogenic role in the intestine. Biochem. Biophys. Res. Commun. 425, 918–923 (2012).

    CAS  PubMed  Google Scholar 

  21. 21.

    Rozanski, C. H. et al. Sustained antibody responses depend on CD28 function in bone marrow-resident plasma cells. J. Exp. Med. 208, 1435–1446 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 323, 1488–1492 (2009).

    CAS  PubMed  Google Scholar 

  23. 23.

    Gohda, M. et al. Sphingosine 1-phosphate regulates the egress of IgA plasmablasts from Peyer’s patches for intestinal IgA responses. J. Immunol. 180, 5335–5343 (2008).

    CAS  PubMed  Google Scholar 

  24. 24.

    Harriman, G. R. et al. Targeted deletion of the IgA constant region in mice leads to IgA deficiency with alterations in expression of other Ig isotypes. J. Immunol. 162, 2521–2529 (1999).

    CAS  PubMed  Google Scholar 

  25. 25.

    Macpherson, A. J. & McCoy, K. D. Independence Day for IgA. Immunity 43, 416–418 (2015).

    CAS  PubMed  Google Scholar 

  26. 26.

    Suzuki, K. et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl Acad. Sci. USA 101, 1981–1986 (2004).

    CAS  PubMed  Google Scholar 

  27. 27.

    Khounlotham, M. et al. Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity 37, 563–573 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Moon, C. et al. Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature 521, 90–93 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Feng, T., Elson, C. O. & Cong, Y. Treg cell-IgA axis in maintenance of host immune homeostasis with microbiota. Int. Immunopharmacol. 11, 589–592 (2011).

    CAS  PubMed  Google Scholar 

  30. 30.

    Wang, L. et al. T regulatory cells and B cells cooperate to form a regulatory loop that maintains gut homeostasis and suppresses dextran sulfate sodium-induced colitis. Mucosal Immunol. 8, 1297–1312 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kawamoto, S. et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41, 152–165 (2014).

    CAS  PubMed  Google Scholar 

  32. 32.

    Cong, Y., Feng, T., Fujihashi, K., Schoeb, T. R. & Elson, C. O. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl Acad. Sci. USA 106, 19256–19261 (2009).

    CAS  PubMed  Google Scholar 

  33. 33.

    Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457 (2009).

    CAS  PubMed  Google Scholar 

  34. 34.

    Shellard, A. & Mayor, R. Supracellular migration–beyond collective cell migration. J Cell Sci 132 (2019).

  35. 35.

    Labernadie, A. et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol. 19, 224–237 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557 (2019).

    CAS  PubMed  Google Scholar 

  37. 37.

    Yazdani, R., Azizi, G., Abolhassani, H. & Aghamohammadi, A. Selective IgA deficiency: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Scand. J. Immunol. 85, 3–12 (2017).

    CAS  PubMed  Google Scholar 

  38. 38.

    Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005).

    CAS  PubMed  Google Scholar 

  39. 39.

    Ravetch, J. V. & Bolland, S. IgG Fc receptors. Annu. Rev. Immunol. 19, 275–290 (2001).

    CAS  PubMed  Google Scholar 

  40. 40.

    Bruhns, P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood 119, 5640–5649 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Crabbe, P. A. & Heremans, J. F. Lack of gamma A-immunoglobulin in serum of patients with steatorrhoea. Gut 7, 119–127 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Savilahti, E. IgA deficiency in children. Immunoglobulin-containing cells in the intestinal mucosa, immunoglobulins in secretions and serum IgA levels. Clin. Exp. Immunol. 13, 395–406 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Brandtzaeg, P. et al. The human secretory immune system shows striking heterogeneity with regard to involvement of J chain-positive IgD immunocytes. J. Immunol. 122, 503–510 (1979).

    CAS  PubMed  Google Scholar 

  44. 44.

    Oxelius, V. A. et al. IgG subclasses in selective IgA deficiency: importance of IgG2-IgA deficiency. N. Engl. J. Med. 304, 1476–1477 (1981).

    CAS  PubMed  Google Scholar 

  45. 45.

    Mbawuike, I. N. et al. Mucosal immunity to influenza without IgA: an IgA knockout mouse model. J. Immunol. 162, 2530–2537 (1999).

    CAS  PubMed  Google Scholar 

  46. 46.

    Hu, S. & Xiong, N. Programmed downregulation of CCR6 is important for establishment of epidermal gammadeltaT cells by regulating their thymic egress and epidermal location. J. Immunol. 190, 3267–3275 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Wolgast, L. R. et al. Spectrin isoforms: differential expression in normal hematopoiesis and alterations in neoplastic bone marrow disorders. Am. J. Clin. Pathol. 136, 300–308 (2011).

    PubMed  Google Scholar 

Download references


Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers AR064831 and Pennsylvania State University institutional support (to N.X.) and Montefiore Medical Center Pathology Research Funding (to S.H.). The content is solely the responsibility of the authors and does not necessarily represent official views of the funding agencies. We thank the Clinical Immunology lab of Montefiore Medical Center for excellent technical support for IHC staining.

Author information




L.Z., S.H., M.L.D., J.Y., and Y.D.L. performed the mouse experiments. S.H., J.M.A., Y.L., Y.W., and Q.L. performed staining and analysis of human colonic sections. M.J.K. scored the H&E stained sections of colons. N.X., L.Z., and S.H. designed the study. N.X., L.Z., and S.H. wrote the paper. All authors approved the paper.

Corresponding author

Correspondence to Na Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Hu, S., Davila, M.L. et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol 14, 420–430 (2021).

Download citation


Quick links