Long-term maintenance of lung resident memory T cells is mediated by persistent antigen

Abstract

Tissue-resident memory T cells (TRM) in the lungs are pivotal for protection against repeated infection with respiratory viruses. However, the gradual loss of these cells over time and the associated decline in clinical protection represent a serious limit in the development of efficient T cell based vaccines against respiratory pathogens. Here, using an adenovirus expressing influenza nucleoprotein (AdNP), we show that CD8 TRM in the lungs can be maintained for at least 1 year post vaccination. Our results reveal that lung TRM continued to proliferate in situ 8 months after AdNP vaccination. Importantly, this required airway vaccination and antigen persistence in the lung, as non-respiratory routes of vaccination failed to support long-term lung TRM maintenance. In addition, parabiosis experiments show that in AdNP vaccinated mice, the lung TRM pool is also sustained by continual replenishment from circulating memory CD8 T cells that differentiate into lung TRM, a phenomenon not observed in influenza-infected parabiont partners. Concluding, these results demonstrate key requirements for long-lived cellular immunity to influenza virus, knowledge that could be utilized in future vaccine design.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: AdNP induced antigen-specific TRM are maintained long-term in lung and BAL.
Fig. 2: Antigen persists in the lungs and airways after AdNP vaccination.
Fig. 3: Persistent antigen in AdNP immunized mice pull circulating cells into the TRM pool.
Fig. 4: AdNP intranasal inoculation is indispensable for sustaining the lung TRM pool.

References

  1. 1.

    Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Kinnear, E. et al. Airway T cells protect against RSV infection in the absence of antibody. Mucosal. Immunol. 11, 290 (2018).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Jiang, X. et al. Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature 483, 227–231 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8(+) T cells. Nat. Immunol. 14, 509–513 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Stelma, F. et al. Human intrahepatic CD69 + CD8+ T cells have a tissue resident memory T cell phenotype with reduced cytolytic capacity. Sci. Rep. 7, 6172 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-beta and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Wakim, L. M. et al. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol. 189, 3462–3471 (2012).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Anderson, K. G. et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 9, 209–222 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Gilchuk, P. et al. A distinct lung-interstitium-resident memory CD8(+) T cell subset confers enhanced protection to lower respiratory tract infection. Cell Rep. 16, 1800–1809 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Hayward, S. L. et al. Environmental cues regulate epigenetic reprogramming of airway-resident memory CD8(+) T cells. Nat. Immunol. 21, 309–320 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Zammit, D. J., Turner, D. L., Klonowski, K. D., Lefrancois, L. & Cauley, L. S. Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration. Immunity 24, 439–449 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Coughlan, L. et al. Heterologous two-dose vaccination with simian adenovirus and poxvirus vectors elicits long-lasting cellular immunity to influenza virus a in healthy adults. EBioMed. 29, 146–154 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Powell, T. J. et al. Examination of influenza specific T cell responses after influenza virus challenge in individuals vaccinated with MVA-NP+M1 vaccine. PLoS ONE 8, e62778 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Uddback, I. E. et al. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus. Sci. Rep. 6, 20137 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Vitelli, A. et al. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus. PLoS ONE 8, e55435 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Bassi, M. R. et al. Vaccination with replication deficient adenovectors encoding YF-17D antigens induces long-lasting protection from severe yellow fever virus infection in mice. PLoS Negl. Trop. Dis. 10, e0004464 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Jensen, S. et al. Adenovirus-based vaccine against Listeria monocytogenes: extending the concept of invariant chain linkage. J. Immunol. 191, 4152–4164 (2013).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Lasaro, M. O. & Ertl, H. C. New insights on adenovirus as vaccine vectors. Mol. Ther. 17, 1333–1339 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Sheehy, S. H. et al. Phase Ia clinical evaluation of the safety and immunogenicity of the Plasmodium falciparum blood-stage antigen AMA1 in ChAd63 and MVA vaccine vectors. PLoS ONE. 7, e31208 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Bett, A. J., Prevec, L. & Graham, F. L. Packaging capacity and stability of human adenovirus type 5 vectors. J. Virol. 67, 5911–5921 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Kamen, A. & Henry, O. Development and optimization of an adenovirus production process. J. Gene Med. 6(Suppl 1), S184–S192 (2004).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Zhou, A. C., Wagar, L. E., Wortzman, M. E. & Watts, T. H. Intrinsic 4-1BB signals are indispensable for the establishment of an influenza-specific tissue-resident memory CD8 T-cell population in the lung. Mucosal. Immunol. 10, 1294–1309 (2017).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Jensen, B. A. et al. Co-expression of tumor antigen and interleukin-2 from an adenoviral vector augments the efficiency of therapeutic tumor vaccination. Mol. Ther. 22, 2107–2117 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Anderson, K. G. et al. Cutting edge: intravascular staining redefines lung CD8 T cell responses. J. Immunol. 189, 2702–2706 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Bolinger, B. et al. A new model for CD8+ T cell memory inflation based upon a recombinant adenoviral vector. J. Immunol. 190, 4162–4174 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Tatsis, N. et al. Adenoviral vectors persist in vivo and maintain activated CD8+ T cells: implications for their use as vaccines. Blood 110, 1916–1923 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Karrer, U. et al. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J. Immunol. 170, 2022–2029 (2003).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Holtappels, R., Pahl-Seibert, M. F., Thomas, D. & Reddehase, M. J. Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J. Virol. 74, 11495–11503 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Holst, P. J., Orskov, C., Thomsen, A. R. & Christensen, J. P. Quality of the transgene-specific CD8+ T cell response induced by adenoviral vector immunization is critically influenced by virus dose and route of vaccination. J. Immunol. 184, 4431–4439 (2010).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    McMaster, S. R. et al. Pulmonary antigen encounter regulates the establishment of tissue-resident CD8 memory T cells in the lung airways and parenchyma. Mucosal. Immunol. 11, 1071–1078 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Takamura, S. et al. Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance. J. Exp. Med. 213, 3057–3073 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Pizzolla, A. et al. Resident memory CD8+ T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Sci. Immunol. 2 eaam6970 (2017).

    PubMed  Article  Google Scholar 

  37. 37.

    Finn, J. D. et al. Persistence of transgene expression influences CD8+ T-cell expansion and maintenance following immunization with recombinant adenovirus. J. Virol. 83, 12027–12036 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Sakai, S. et al. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J. Immunol. 192, 2965–2969 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Slutter, B., et al. Dynamics of influenza-induced lung-resident memory T cells underlie waning heterosubtypic immunity. Sci. Immunol. 2 (2017).

  42. 42.

    Leon, B., Ballesteros-Tato, A., Randall, T. D. & Lund, F. E. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CD8 T cells. J. Exp. Med. 211, 1637–1655 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Van Braeckel-Budimir, N., Varga, S. M., Badovinac, V. P. & Harty, J. T. Repeated antigen exposure extends the durability of influenza-specific lung-resident memory CD8(+) T cells and heterosubtypic immunity. Cell Rep. 24, 3374–3382 e3373 (2018).

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Tatsis, N. et al. Multiple immunizations with adenovirus and MVA vectors improve CD8+ T cell functionality and mucosal homing. Virology 367, 156–167 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Steffensen, M. A. et al. Qualitative and quantitative analysis of adenovirus type 5 vector-induced memory CD8 T cells: not as bad as their reputation. J. Virol. 87, 6283–6295 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Jahn, M. L., Steffensen, M. A., Christensen, J. P. & Thomsen, A. R. Analysis of adenovirus-induced immunity to infection with Listeria monocytogenes: Fading protection coincides with declining CD8 T cell numbers and phenotypic changes. Vaccine 36, 2825–2832 (2018).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    McMaster, S. R., Wilson, J. J., Wang, H. & Kohlmeier, J. E. Airway-resident memory CD8 T cells provide antigen-specific protection against respiratory virus challenge through rapid IFN-gamma production. J. Immunol. 195, 203–209 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Danish Research Council and ‘Fonden til Lægevidenskabens Fremme’ for grant support. IEMU is the recipient of a PhD scholarship from the Faculty of Health and Medical Sciences, University of Copenhagen. We would also like to acknowledge the support by NIH grants HL122559, HL138508, and Centers of Excellence in Influenza Research and Surveillance contract HHSN272201400004C (to J.E.K.), and Grant-in-Aid for Young Scientists (A) 24689043, Grant-in-Aid for Scientific Research (C) 16K08850 from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and grants from Takeda Science Foundation, Daiichi-Sankyo Foundation of Life Science, Uehara Memorial Foundation, and Kanae Foundation for Promotion of Medical Science (to S.T.). S.L.H. was supported by NIH grant F31 HL136101. We recognize contributions from the Children’s Healthcare of Atlanta and Emory University Pediatric Flow Cytometry Core for cell sorting and the NIH Tetramer Core Facility (contract HHSN272201300006C).

Author information

Affiliations

Authors

Contributions

I.U. and E.K.C designed, performed, and analyzed most of the experiments with input from A.R.T, J.E.K., and J.P.C. A.S.S., S.L.H., J.L. carried out tetramer stainings and facs analysis. S.T. performed parabiosis experiments. A.N.W. desgined and performed immunofluorescence microscopy experiment and analysis. I.U. and E.K.C. wrote the manuscript and A.R.T., J.E.K., and J.P.C. edited the manuscript.

Corresponding authors

Correspondence to Jacob E. Kohlmeier or Jan P. Christensen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uddbäck, I., Cartwright, E.K., Schøller, A.S. et al. Long-term maintenance of lung resident memory T cells is mediated by persistent antigen. Mucosal Immunol (2020). https://doi.org/10.1038/s41385-020-0309-3

Download citation

Further reading

Search