Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dopaminergic signalling limits suppressive activity and gut homing of regulatory T cells upon intestinal inflammation

Abstract

Evidence from inflammatory bowel diseases (IBD) patients and animal models has indicated that gut inflammation is driven by effector CD4+ T-cell, including Th1 and Th17. Conversely, Treg seem to be dysfunctional in IBD. Importantly, dopamine, which is abundant in the gut mucosa under homoeostasis, undergoes a sharp reduction upon intestinal inflammation. Here we analysed the role of the high-affinity dopamine receptor D3 (DRD3) in gut inflammation. Our results show that Drd3 deficiency confers a stronger immunosuppressive potency to Treg, attenuating inflammatory colitis manifestation in mice. Mechanistic analyses indicated that DRD3-signalling attenuates IL-10 production and limits the acquisition of gut-tropism. Accordingly, the ex vivo transduction of wild-type Treg with a siRNA for Drd3 induced a potent therapeutic effect abolishing gut inflammation. Thus, our findings show DRD3-signalling as a major regulator of Treg upon gut inflammation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Drd3-deficient mice are unresponsive to DSS-induced inflammatory colitis.
Fig. 2: Drd3-deficient Treg display higher anti-inflammatory activity in vivo.
Fig. 3: DRD3-signalling reduces the suppressive activity and IL-10 production in regulatory T-cells.
Fig. 4: DRD3-signalling attenuates the recruitment of regulatory T-cells into the gut mucosa upon inflammation.
Fig. 5: The transference of Tregs transduced ex vivo with an shRNA for Drd3 into DSS-treated mice exterts a potent therapeutic effect attenuating the development of inflammatory colitis.

References

  1. 1.

    Granlund, A. et al. Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn’s disease and ulcerative colitis. PloS ONE 8, e56818 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Olsen, T. et al. TH1 and TH17 interactions in untreated inflamed mucosa of inflammatory bowel disease, and their potential to mediate the inflammation. Cytokine 56, 633–640 (2011).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Wu, W. et al. Prolactin mediates psychological stress-induced dysfunction of regulatory T cells to facilitate intestinal inflammation. Gut 63, 1883–1892 (2014).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Powrie, F. & Mason, D. OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J. Exp. Med 172, 1701–1708 (1990).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Mair, I. et al. A context-dependent role for alphav integrins in regulatory T cell accumulation at sites of inflammation. Front. Immunol. 9, 264 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6.

    Huber, S. et al. Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J. Immunol. 173, 6526–6531 (2004).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Saruta, M. et al. Characterization of FOXP3+CD4+ regulatory T cells in Crohn’s disease. Clin. Immunol. 125, 281–290 (2007).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Maul, J. et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology 128, 1868–1878 (2005).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Clark, A. & Mach, N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J. Int. Soc. Sports Nutr. 13, 43 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Asano, Y. et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1288–G1295 (2012).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Pacheco, R., Contreras, F. & Zouali, M. The dopaminergic system in autoimmune diseases. Front. Immunol. 5, 117 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. 12.

    Prado, C. et al. Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity. J. Immunol. 188, 3062–3070 (2012).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Cosentino, M. et al. Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109, 632–642 (2007).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Magro, F. et al. Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease. Dig. Dis. Sci. 47, 216–224 (2002).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Magro, F., Fraga, S., Ribeiro, T. & Soares-da-Silva, P. Decreased availability of intestinal dopamine in transmural colitis may relate to inhibitory effects of interferon-gamma upon L-DOPA uptake. Acta Physiol. Scand. 180, 379–386 (2004).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Pacheco, R., Prado, C. E., Barrientos, M. J. & Bernales, S. Role of dopamine in the physiology of T-cells and dendritic cells. J. Neuroimmunol. 216, 8–19 (2009).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Contreras, F. et al. Dopamine receptor D3 signaling on CD4+ T cells favors Th1- and Th17-mediated immunity. J. Immunol. 196, 4143–4149 (2016).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Franz, D. et al. Dopamine receptors D3 and D5 regulate CD4(+)T-cell activation and differentiation by modulating ERK activation and cAMP production. J. Neuroimmunol. 284, 18–29 (2015).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Elgueta, D. et al. Dopamine receptor D3 expression is altered in CD4+ T-cells from Parkinson’s disease patients and its pharmacologic inhibition attenuates the motor impairment in a mouse model. Front. Immunol. 10, 981 (2019).

  20. 20.

    Shao, W. et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via alphaB-crystallin. Nature 494, 90–94 (2013).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Yan, Y. et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62–73 (2015).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Torres-Rosas, R. et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat. Med. 20, 291–295 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Besser, M. J., Ganor, Y. & Levite, M. Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J. Neuroimmunol. 169, 161–171 (2005).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Miyazawa, T., Matsumoto, M., Kato, S. & Takeuchi, K. Dopamine-induced protection against indomethacin-evoked intestinal lesions in rats−role of anti-intestinal motility mediated by D2 receptors. Med. Sci. Monit. 9, BR71–BR77 (2003).

    CAS  PubMed  Google Scholar 

  25. 25.

    Magro, F. et al. Dopamine D2 receptor polymorphisms in inflammatory bowel disease and the refractory response to treatment. Dig. Dis. Sci. 51, 2039–2044 (2006).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Corridoni, D., Chapman, T., Ambrose, T. & Simmons, A. Emerging mechanisms of innate immunity and their translational potential in inflammatory bowel disease. Front. Med. 5, 32 (2018).

    Article  Google Scholar 

  27. 27.

    Gerner, R. R. et al. NAD metabolism fuels human and mouse intestinal inflammation. Gut 67, 1813–1823 (2018).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Sainathan, S. K. et al. Granulocyte macrophage colony-stimulating factor ameliorates DSS-induced experimental colitis. Inflamm. Bowel Dis. 14, 88–99 (2008).

    PubMed  Article  Google Scholar 

  29. 29.

    Moraga-Amaro, R., Gonzalez, H., Pacheco, R. & Stehberg, J. Dopamine receptor D3 deficiency results in chronic depression and anxiety. Behav. Brain Res. 274, 186–193 (2014).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    McKenna, F. et al. Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J. Neuroimmunol. 132, 34–40 (2002).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Vidal, P. M. & Pacheco, R. Targeting the dopaminergic system in autoimmunity. J. Neuroimmune Pharmacol. 15, 57–73 (2019).

  32. 32.

    Ueno, A. et al. Th17 plasticity and its relevance to inflammatory bowel disease. J. Autoimmun. 87, 38–49 (2018).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Owaga, E. et al. Th17 cells as potential probiotic therapeutic targets in inflammatory bowel diseases. Int. J. Mol. Sci. 16, 20841–20858 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Fontenot, J. D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341 (2005).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Ostanin, D. V. et al. T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G135–G146 (2009).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Cassani, B. et al. Gut-tropic T cells that express integrin alpha4beta7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology 141, 2109–2118 (2011).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Wan, Y. Y. & Flavell, R. A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445, 766–770 (2007).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Karo, J. M., Schatz, D. G. & Sun, J. C. The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells. Cell 159, 94–107 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Johansson-Lindbom, B. et al. Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J. Exp. Med. 198, 963–969 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424, 88–93 (2003).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Kim, S. V. et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340, 1456–1459 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Figueroa, C. et al. Inhibition of dopamine receptor D3 signaling in dendritic cells increases antigen cross-presentation to CD8+ T-cells favoring anti-tumor immunity. J. Neuroimmunol. 303, 99–107 (2017).

  45. 45.

    Villablanca, E. J. & Mora, J. R. Competitive homing assays to study gut-tropic t cell migration. J. Vis. Exp. 1, 2619 (2011).

  46. 46.

    Pacheco, R. Targeting dopamine receptor D3 signalling in inflammation. Oncotarget 8, 7224–7225 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Brochard, V. et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J. Clin. Invest. 119, 182–192 (2009).

    CAS  Google Scholar 

  48. 48.

    Gonzalez, H. et al. Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson’s disease. J. Immunol. 190, 5048–5056 (2013).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Chen, Y. et al. Dopamine receptor 3 might be an essential molecule in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. BMC Neurosci. 14, 76 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Elgueta, D. et al. Pharmacologic antagonism of dopamine receptor D3 attenuates neurodegeneration and motor impairment in a mouse model of Parkinson’s disease. Neuropharmacology 113(Pt A), 110–123 (2017).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Montoya, A. et al. Dopamine receptor D3 signalling in astrocytes promotes neuroinflammation. J. Neuroinflammation 16, 258 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Kipnis, J. et al. Dopamine, through the extracellular signal-regulated kinase pathway, downregulates CD4+CD25+ regulatory T-cell activity: implications for neurodegeneration. J. Neurosci. 24, 6133–6143 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Burris, K. D. et al. Lack of discrimination by agonists for D2 and D3 dopamine receptors. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 12, 335–345 (1995).

    CAS  Article  Google Scholar 

  54. 54.

    Pugsley, T. A. et al. Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907. J. Pharm. Exp. Ther. 275, 1355–1366 (1995).

    CAS  Google Scholar 

  55. 55.

    Sautel, F. et al. A functional test identifies dopamine agonists selective for D3 versus D2 receptors. Neuroreport 6, 329–332 (1995).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Merlo, S., Canonico, P. L. & Sortino, M. A. Distinct effects of pramipexole on the proliferation of adult mouse sub-ventricular zone-derived cells and the appearance of a neuronal phenotype. Neuropharmacology 60, 892–900 (2011).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Cretney, E. et al. Characterization of Blimp-1 function in effector regulatory T cells. J. Autoimmun. 91, 73–82 (2018).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Zhang, S. Y. et al. Adrenomedullin 2 improves early obesity-induced adipose insulin resistance by inhibiting the class II MHC in adipocytes. Diabetes 65, 2342–2355 (2016).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Basova, L. et al. Dopamine and its receptors play a role in the modulation of CCR5 expression in innate immune cells following exposure to Methamphetamine: Implications to HIV infection. PloS ONE 13, e0199861 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Espinosa-Oliva, A. M. et al. Role of dopamine in the recruitment of immune cells to the nigro-striatal dopaminergic structures. Neurotoxicology 41, 89–101 (2014).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Watanabe, Y. et al. Dopamine selectively induces migration and homing of naive CD8+ T cells via dopamine receptor D3. J. Immunol. 176, 848–856. (2006).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Trivedi, P. J. et al. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity. J. Autoimmun. 68, 98–104 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Souza, H. S., Elia, C. C., Spencer, J. & MacDonald, T. T. Expression of lymphocyte-endothelial receptor-ligand pairs, alpha4beta7/MAdCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. Gut 45, 856–863 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Rivera-Nieves, J. et al. Antibody blockade of CCL25/CCR9 ameliorates early but not late chronic murine ileitis. Gastroenterology 131, 1518–1529 (2006).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Biswas, S., Bryant, R. V. & Travis, S. Interfering with leukocyte trafficking in Crohn’s disease. Best. Pr. Res Clin. Gastroenterol. 38–39, 101617 (2019).

    Article  Google Scholar 

  66. 66.

    Sands, B. E. Leukocyte anti-trafficking strategies: current status and future directions. Digestive Dis. 35, 13–20 (2017).

    Article  Google Scholar 

  67. 67.

    Joseph, J. D. et al. Dopamine autoreceptor regulation of release and uptake in mouse brain slices in the absence of D(3) receptors. Neuroscience 112, 39–49 (2002).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Chen, Y. et al. Induction of experimental acute ulcerative colitis in rats by administration of dextran sulfate sodium at low concentration followed by intracolonic administration of 30% ethanol. J. Zhejiang Univ. Sci. B 8, 632–637 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Menning, A. et al. Retinoic acid-induced gut tropism improves the protective capacity of Treg in acute but not in chronic gut inflammation. Eur. J. Immunol. 40, 2539–2548 (2010).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Stransky, B., Faria, A. M. & Vaz, N. M. Oral tolerance induction with altered forms of ovalbumin. Braz. J. Med Biol. Res 31, 381–386 (1998).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Weijtens, M. E., Willemsen, R. A., Hart, E. H. & Bolhuis, R. L. A retroviral vector system ‘STITCH’ in combination with an optimized single chain antibody chimeric receptor gene structure allows efficient gene transduction and expression in human T lymphocytes. Gene Ther. 5, 1195–1203 (1998).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Marc Caron for providing Drd3−/− mice, Dr. María Rosa Bono for providing OT-II and B6.SJL-Ptprca mice. We are grateful to Dr. Alvaro Lladser and Dr. Ernesto López for helpful discussions and technical assistance with viral vectors. We also thank Dr. Sebastián Valenzuela for his valuable veterinary assistance in our animal facility and Dr. María José Fuenzalida for her technical assistance in cell sorting. This work was supported by Programa de Apoyo a Centros con Financiamiento Basal AFB-170004 (to Fundación Ciencia & Vida) from “Comisión Nacional de Investigación Científica y Tecnológica de Chile (CONICYT)” and by grants FONDECYT-1170093 (to R.P.), from “Fondo Nacional de Desarrollo Científico y Tecnológico de Chile, MJFF-10332.01 and MJFF-15076 (to R.P.) from Michael J. Fox Foundation for Parkinson Research.

Author information

Affiliations

Authors

Contributions

R.P. designed the study, V.U., F.C., O.C., C.P. and A.E. conducted experiments, V.U., F.C., O.C. and C.P. acquired data, V.U., F.C. and R.P. analysed data, R.P. wrote the manuscript.

Corresponding author

Correspondence to Rodrigo Pacheco.

Ethics declarations

Competing interests

The authors declare that the research was conducted in the absence of any financial or non-financial competing interests with the exception of a pending patent application describing the therapeutic use of DRD3 inhibition as treatment for inflammatory bowel diseases, and which could be construed as a potential conflict of interest. Authors of said patent present in this paper are: V.U., F.C. and R.P.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ugalde, V., Contreras, F., Prado, C. et al. Dopaminergic signalling limits suppressive activity and gut homing of regulatory T cells upon intestinal inflammation. Mucosal Immunol 14, 652–666 (2021). https://doi.org/10.1038/s41385-020-00354-7

Download citation

Search

Quick links