The role of miR-155 in cigarette smoke-induced pulmonary inflammation and COPD

Abstract

Chronic obstructive pulmonary disease (COPD) is a highly prevalent respiratory disease characterized by airflow limitation and chronic inflammation. MiR-155 is described as an ancient regulator of the immune system. Our objective was to establish a role for miR-155 in cigarette smoke (CS)-induced inflammation and COPD. We demonstrate increased miR-155 expression by RT-qPCR in lung tissue of smokers without airflow limitation and patients with COPD compared to never smokers and in lung tissue and alveolar macrophages of CS-exposed mice compared to air-exposed mice. In addition, we exposed wild type and miR-155 deficient mice to CS and show an attenuated inflammatory profile in the latter. Alveolar macrophages were sorted by FACS from the different experimental groups and their gene expression profile was analyzed by RNA sequencing. This analysis revealed increased expression of miR-155 targets and an attenuation of the CS-induced increase in inflammation-related genes in miR-155 deficient mice. Moreover, intranasal instillation of a specific miR-155 inhibitor attenuated the CS-induced pulmonary inflammation in mice. Finally, elastase-induced emphysema and lung functional changes were significantly attenuated in miR-155 deficient mice. In conclusion, we highlight a role for miR-155 in CS-induced inflammation and the pathogenesis of COPD, implicating miR-155 as a new therapeutic target in COPD.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Hsa-miR-155-5p expression in never smokers, smokers without airflow limitation and patients with COPD and correlation with lung function parameters. Mmu-miR-155 expression in total lung tissue and sorted alveolar macrophages of air and cigarette smoke-exposed WT mice.
Fig. 2: Inflammatory cell numbers in the bronchoalveolar lavage fluid of WT and miR-155 KO mice exposed to air or cigarette smoke for four weeks.
Fig. 3: Effect of miR-155 deficiency on cytokine/chemokine protein levels in BAL supernatants.
Fig. 4: Poly-A+ sequencing of sorted alveolar macrophages from WT and miR-155 deficient mice.
Fig. 5: Expression levels of a subset of differentially expressed genes in sorted alveolar macrophages from WT and miR-155 deficient mice.
Fig. 6: Inflammatory cell numbers in the bronchoalveolar lavage fluid of air or cigarette smoke-exposed WT mice treated with a miR-155 inhibitor or scrambled control.
Fig. 7: Elastase-induced emphysema, inflammation and lung functional changes are attenuated in miR-155 deficient mice.

References

  1. 1.

    Vogelmeier, C. F. et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report: GOLD Executive Summary. Eur. Respir. J. 2017; 49, pii:1700214.

  2. 2.

    WHO. Burden of disease. http://www.who.int/topics/global_burden_of_disease/en/.

  3. 3.

    Murray, C. J. & Lopez, A. D. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 349, 1498–1504 (1997).

    CAS  PubMed  Google Scholar 

  4. 4.

    Hogg, J. C. & Timens, W. The pathology of chronic obstructive pulmonary disease. Annu. Rev. Pathol. 4, 435–459 (2009).

    CAS  PubMed  Google Scholar 

  5. 5.

    Abboud, R. T. & Vimalanathan, S. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int. J. Tuberculosis Lung Dis. 12, 361–367 (2008).

    CAS  Google Scholar 

  6. 6.

    Yang, S. R. et al. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L46–L57 (2006).

    CAS  PubMed  Google Scholar 

  7. 7.

    Vigorito, E., Kohlhaas, S., Lu, D. & Leyland, R. miR-155: an ancient regulator of the immune system. Immunol. Rev. 253, 146–157 (2013).

    PubMed  Google Scholar 

  8. 8.

    Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103, 12481–12486 (2006).

    CAS  PubMed  Google Scholar 

  9. 9.

    Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    CAS  PubMed  Google Scholar 

  10. 10.

    O'Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G. & Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl Acad. Sci. USA 104, 1604–1609 (2007).

    CAS  PubMed  Google Scholar 

  11. 11.

    Haasch, D. et al. T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC. Cell Immunol. 217, 78–86 (2002).

    CAS  PubMed  Google Scholar 

  12. 12.

    Bluml, S. et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 63, 1281–1288 (2011).

    PubMed  Google Scholar 

  13. 13.

    Singh, U. P. et al. miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses. Immunology 143, 478–489 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Zhang, J. et al. MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neuroimmunol. 266, 56–63 (2014).

    CAS  PubMed  Google Scholar 

  15. 15.

    O'Connell, R. M. et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607–619 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Murugaiyan, G., Beynon, V., Mittal, A., Joller, N. & Weiner, H. L. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J. Immunol. 187, 2213–2221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Johansson, K., Malmhall, C., Ramos-Ramirez, P. & Radinger, M. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. J. Allergy Clin. Immunol. 139, 1007–1016, e9 (2016).

  18. 18.

    Malmhall, C. et al. MicroRNA-155 is essential for TH2-mediated allergen-induced eosinophilic inflammation in the lung. J. Allergy Clin. Immunol. 133, 1429–1438, e1427 (2014).

    CAS  PubMed  Google Scholar 

  19. 19.

    Zech, A. et al. MicroRNA-155 modulates P2R signaling and Th2 priming of dendritic cells during allergic airway inflammation in mice. Allergy 70, 1121–1129 (2015).

    CAS  PubMed  Google Scholar 

  20. 20.

    Wang, W. et al. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats. Am. J. Physiol. Lung Cell Mol. Physiol. 311, L494–L506 (2016).

    PubMed  Google Scholar 

  21. 21.

    Xu, F. et al. Akt1-mediated regulation of macrophage polarization in a murine model of Staphylococcus aureus pulmonary infection. J. Infect. Dis. 208, 528–538 (2013).

    CAS  PubMed  Google Scholar 

  22. 22.

    Lu, Z. J. et al. MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression. World J. Gastroenterol. 23, 976–985 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Barnes, P. J. Alveolar macrophages as orchestrators of COPD. COPD 1, 59–70 (2004).

    PubMed  Google Scholar 

  24. 24.

    Culpitt, S. V. et al. Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med 167, 24–31 (2003).

    PubMed  Google Scholar 

  25. 25.

    Finlay, G. A. et al. Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. Am. J. respiratory Crit. Care Med. 156, 240–247 (1997).

    CAS  Google Scholar 

  26. 26.

    Shapiro, S. D. The macrophage in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 160(5 Pt 2), S29–S32 (1999).

    CAS  PubMed  Google Scholar 

  27. 27.

    Conickx, G. et al. MicroRNA Profiling Reveals a Role for MicroRNA-218-5p in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 195, 43–56 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    Conickx, G. et al. microRNA profiling in lung tissue and bronchoalveolar lavage of cigarette smoke-exposed mice and in COPD patients: a translational approach. Sci. Rep. 7, 12871 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    The miRNA body-map. http://mellfire.ugent.be/public/body_map/index.php.

  30. 30.

    Allen, N. P. et al. RASSF6 is a novel member of the RASSF family of tumor suppressors. Oncogene 26, 6203–6211 (2007).

    CAS  PubMed  Google Scholar 

  31. 31.

    Elmesmari, A. et al. MicroRNA-155 regulates monocyte chemokine and chemokine receptor expression in Rheumatoid Arthritis. Rheumatology 55, 2056–2065 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Ma, L., Xue, H. B., Wang, F., Shu, C. M. & Zhang, J. H. MicroRNA-155 may be involved in the pathogenesis of atopic dermatitis by modulating the differentiation and function of T helper type 17 (Th17) cells. Clin. Exp. Immunol. 181, 142–149 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kurowska-Stolarska, M. et al. The role of microRNA-155/liver X receptor pathway in experimental and idiopathic pulmonary fibrosis. J. Allergy Clin. Immunol. 139, 1946–1956 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Bruning, U. et al. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol. Cell Biol. 31, 4087–4096 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Nazari-Jahantigh, M. et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J. Clin. Invest 122, 4190–4202 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    O'Connell, R. M., Chaudhuri, A. A., Rao, D. S. & Baltimore, D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl Acad. Sci. USA 106, 7113–7118 (2009).

    CAS  PubMed  Google Scholar 

  37. 37.

    Androulidaki, A. et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31, 220–231 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Bandyopadhyay, S., Long, M. E. & Allen, L. A. Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response. PLoS ONE 9, e109525 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Li, Y., Ma, D., Wang, Z. & Yang, J. MicroRNA-155 deficiency in Kupffer cells Ameliorates liver ischemia-reperfusion injury in mice. Transplantation 101, 1600–1608 (2017).

    CAS  PubMed  Google Scholar 

  40. 40.

    Mann, M. et al. An NF-kappaB-microRNA regulatory network tunes macrophage inflammatory responses. Nat. Commun. 8, 851 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Bohlson, S. S., Fraser, D. A. & Tenner, A. J. Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol. Immunol. 44, 33–43 (2007).

    CAS  PubMed  Google Scholar 

  42. 42.

    Demoor, T. et al. The role of ChemR23 in the induction and resolution of cigarette smoke-induced inflammation. J. Immunol. 186, 5457–5467 (2011).

    CAS  PubMed  Google Scholar 

  43. 43.

    Hautamaki, R. D., Kobayashi, D. K., Senior, R. M. & Shapiro, S. D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004 (1997).

    CAS  PubMed  Google Scholar 

  44. 44.

    Churg, A. et al. Macrophage metalloelastase mediates acute cigarette smoke-induced inflammation via tumor necrosis factor-alpha release. Am. J. Respiratory Crit. Care Med. 167, 1083–1089 (2003).

    Google Scholar 

  45. 45.

    Hancock, D. B. et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. 42, 45–52 (2010).

    CAS  PubMed  Google Scholar 

  46. 46.

    Wang, L. et al. Notch-dependent repression of miR-155 in the bone marrow niche regulates hematopoiesis in an NF-kappaB-dependent manner. Cell Stem Cell 15, 51–65 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    D'Hulst, A. I., Vermaelen, K. Y., Brusselle, G. G., Joos, G. F. & Pauwels, R. A. Time course of cigarette smoke-induced pulmonary inflammation in mice. Eur. Respir. J. 26, 204–213 (2005).

    CAS  PubMed  Google Scholar 

  48. 48.

    Seys, L. J. et al. Role of B cell-activating factor in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 192, 706–718 (2015).

    CAS  PubMed  Google Scholar 

  49. 49.

    Bracke, K. R. et al. Role of CXCL13 in cigarette smoke-induced lymphoid follicle formation and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 188, 343–355 (2013).

    CAS  PubMed  Google Scholar 

  50. 50.

    Bracke, K. R. et al. Cigarette smoke-induced pulmonary inflammation and emphysema are attenuated in CCR6-deficient mice. J. Immunol. 177, 4350–4359 (2006).

    CAS  PubMed  Google Scholar 

  51. 51.

    Bracke, K. R. et al. Cigarette smoke-induced pulmonary inflammation, but not airway remodelling, is attenuated in chemokine receptor 5-deficient mice. Clin. Exp. Allergy 37, 1467–1479 (2007).

    CAS  PubMed  Google Scholar 

  52. 52.

    Lanckacker, E. A. et al. Short cigarette smoke exposure facilitates sensitisation and asthma development in mice. Eur. Respir. J. 41, 1189–1199 (2013).

    CAS  PubMed  Google Scholar 

  53. 53.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Greet Barbier, Indra De Borle, Katleen De Saedeleer, Anouck Goethals, Marie-Rose Mouton and Ann Neesen (Department of Respiratory Medicine, Ghent University) for their excellent technical assistance. We would also like to thank Prof. Wim Janssens and Dr. Bart Vanaudenaerde (Department of Pneumology, Catholic University of Leuven) for providing us with explant lungs of patients with severe COPD, and Prof. Dirk Elewaut (Department of Rheumatology, Ghent University) for the use of the FACSAria. The research described in this article was supported by the Concerted Research Action of the Ghent University (BOF/GOA, 01G02714 and 01G00819) and by the Fund for Scientific Research in Flanders (FWO Vlaanderen, G052518N and EOS‐contract G0G2318N). F.M.V. and S.P. are post-doctoral researchers of the Fund for Scientific Research–Flanders and this work was further supported by a Special Research Fund (BOF) scholarship of Ghent University to Francisco Avila Cobos (BOF.DOC.2017.0026.01).

Author information

Affiliations

Authors

Contributions

K.R.B., G.G.B., G.F.J., P.M., H.P.V.E., and E.G.D.S. conceived the project and designed the experiments; K.R.B., F.M.V., E.B., S.P., P.M., H.P.V.E., K.V., and E.G.D.S. conducted the experiments; F.A.C., K.R.B., G.G.B., G.F.J., F.M.V., T.M., H.P.V.E., and E.G.D.S. contributed to the data analysis and interpretation; E.G.D.S. wrote the manuscript and all authors contributed to writing and editing of the manuscript.

Corresponding author

Correspondence to K. R. Bracke.

Ethics declarations

Competing interests

G.F.J. reports grants and personal fees from AstraZeneca, grants from Chiesi, personal fees from Eureca, grants and personal fees from GlaxoSmithKline, grants and personal fees from Novartis, personal fees from Teva, outside the submitted work. T.M. reports grants from Belspo, grants from Ghent University, during the conduct of the study; personal fees from GlaxoSmithKline, outside the submitted work; and is shareholder of Oryzon Genomics. All other authors have nothing to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Smet, E.G., Van Eeckhoutte, H.P., Avila Cobos, F. et al. The role of miR-155 in cigarette smoke-induced pulmonary inflammation and COPD. Mucosal Immunol 13, 423–436 (2020). https://doi.org/10.1038/s41385-019-0241-6

Download citation

Further reading

Search

Quick links