Lung CD4+ resident memory T cells remodel epithelial responses to accelerate neutrophil recruitment during pneumonia

Abstract

Previous pneumococcal experience establishes lung-resident IL-17A-producing CD4+ memory TRM cells that accelerate neutrophil recruitment against heterotypic pneumococci. Herein, we unravel a novel crosstalk between CD4+ TRM cells and lung epithelial cells underlying this protective immunity. Depletion of CD4+ cells in pneumococcus-experienced mice diminished CXCL5 (but not CXCL1 or CXCL2) and downstream neutrophil accumulation in the lungs. Epithelial cells from experienced lungs exhibited elevated mRNA for CXCL5 but not other epithelial products such as GM-CSF or CCL20, suggesting a skewing by CD4+ TRM cells. Genome-wide expression analyses revealed a significant remodeling of the epithelial transcriptome of infected lungs due to infection history, ~80% of which was CD4+ cell-dependent. The CD4+ TRM cell product IL-17A stabilized CXCL5 but not GM-CSF or CCL20 mRNA in cultured lung epithelial cells, implicating posttranscriptional regulation as a mechanism for altered epithelial responses. These results suggest that epithelial cells in experienced lungs are effectively different, owing to their communication with TRM cells. Our study highlights the role of tissue-resident adaptive immune cells in fine-tuning epithelial functions to hasten innate immune responses and optimize defense in experienced lungs, a concept that may apply broadly to mucosal immunology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Quinton, L. J., Walkey, A. J. & Mizgerd, J. P. Integrative physiology of pneumonia. Physiol. Rev. 98, 1417–1464 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    (WHO) WHO. The Top 10 Causes of Death (World Health Organization, Geneva, 2014).

  3. 3.

    Collaborators GBDCoD. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–1788 (2018).

    Article  Google Scholar 

  4. 4.

    Bogaert, D., De Groot, R. & Hermans, P. W. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis. 4, 144–154 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    Mizgerd, J. P. Respiratory infection and the impact of pulmonary immunity on lung health and disease. Am. J. Respir. Crit. Care Med. 186, 824–829 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Curns, A. T., Holman, R. C., Sejvar, J. J., Owings, M. F. & Schonberger, L. B. Infectious disease hospitalizations among older adults in the United States from 1990 through 2002. Arch. Intern. Med. 165, 2514–2520 (2005).

    Article  Google Scholar 

  7. 7.

    Black, R. E. et al. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet 375, 1969–1987 (2010).

    Article  Google Scholar 

  8. 8.

    Jain, S. et al. Community-acquired pneumonia requiring hospitalization among U.S. adults. N. Engl. J. Med 373, 415–427 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Jain, S. et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N. Engl. J. Med. 372, 835–845 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Daniels, C. C., Rogers, P. D. & Shelton, C. M. A review of pneumococcal vaccines: current polysaccharide vaccine recommendations and future protein antigens. J. Pediatr. Pharm. Ther. 21, 27–35 (2016).

    Google Scholar 

  11. 11.

    Shenoy A. T., Orihuela C. J. Anatomical site-specific contributions of pneumococcal virulence determinants. Pneumonia (Nathan) 8, pii: 7 (2016).

  12. 12.

    Quinton, L. J. & Mizgerd, J. P. Dynamics of lung defense in pneumonia: resistance, resilience, and remodeling. Annu. Rev. Physiol. 77, 407–430 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Yao, Y. et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell 175, 1634–1650 e1617 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Thome, J. J. et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159, 814–828 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Smith, N. M. et al. Regionally compartmentalized resident memory T cells mediate naturally acquired protection against pneumococcal pneumonia. Mucosal Immunol. 11, 220–235 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Schenkel, J. M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886–897 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Rosato, P. C., Beura, L. K. & Masopust, D. Tissue resident memory T cells and viral immunity. Curr. Opin. Virol. 22, 44–50 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Turner, D. L. & Farber, D. L. Mucosal resident memory CD4 T cells in protection and immunopathology. Front. Immunol. 5, 331 (2014).

    Article  Google Scholar 

  21. 21.

    Allie, S. R. et al. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat. Immunol. 20, 97–108 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Weaver, C. T., Elson, C. O., Fouser, L. A. & Kolls, J. K. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu. Rev. Pathol. 8, 477–512 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    CAS  Article  Google Scholar 

  24. 24.

    Chen, K. et al. IL-17 receptor signaling in the lung epithelium is required for mucosal chemokine gradients and pulmonary host defense against K. pneumoniae. Cell Host Microbe 20, 596–605 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Yamamoto, K. et al. Roles of lung epithelium in neutrophil recruitment during pneumococcal pneumonia. Am. J. Respir. Cell Mol. Biol. 50, 253–262 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kamata, H. et al. Epithelial cell-derived secreted and transmembrane 1a signals to activated neutrophils during pneumococcal pneumonia. Am. J. Respir. Cell Mol. Biol. 55, 407–418 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44(W1), W90–W97 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Herjan, T. et al. HuR is required for IL-17-induced Act1-mediated CXCL1 and CXCL5 mRNA stabilization. J. Immunol. 191, 640–649 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Karlsen, J. R., Borregaard, N. & Cowland, J. B. Induction of neutrophil gelatinase-associated lipocalin expression by co-stimulation with interleukin-17 and tumor necrosis factor-alpha is controlled by IkappaB-zeta but neither by C/EBP-beta nor C/EBP-delta. J. Biol. Chem. 285, 14088–14100 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    Amatya, N., Garg, A. V. & Gaffen, S. L. IL-17 signaling: the yin and the yang. Trends Immunol. 38, 310–322 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Liu, Y. et al. IL-17A and TNF-alpha exert synergistic effects on expression of CXCL5 by alveolar type II cells in vivo and in vitro. J. Immunol. 186, 3197–3205 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Chowdhury, S., Dijkhuis, A., Steiert, S. & Lutter, R. IL-17 attenuates degradation of ARE-mRNAs by changing the cooperation between AU-binding proteins and microRNA16. PLoS Genet. 9, e1003747 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Nouailles, G. et al. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J. Clin. Invest. 124, 1268–1282 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Stegemann-Koniszewski S., et al. Alveolar type II epithelial cells contribute to the anti-influenza A virus response in the lung by integrating pathogen- and microenvironment-derived signals. MBio 7, pii: e00276-16 (2016).

  35. 35.

    Leiva-Juarez, M. M., Kolls, J. K. & Evans, S. E. Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense. Mucosal Immunol. 11, 21–34 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Iwasaki, A., Foxman, E. F. & Molony, R. D. Early local immune defences in the respiratory tract. Nat. Rev. Immunol. 17, 7–20 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Sun, D. et al. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nat. Immunol. 12, 853–860 (2011).

    CAS  Article  Google Scholar 

  38. 38.

    Shen, F., Ruddy, M. J., Plamondon, P. & Gaffen, S. L. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-alpha-induced genes in bone cells. J. Leukoc. Biol. 77, 388–399 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    Shen, F., Hu, Z., Goswami, J. & Gaffen, S. L. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem. 281, 24138–24148 (2006).

    CAS  Article  Google Scholar 

  40. 40.

    Amezcua Vesely, M. C. et al. Effector TH17 cells give rise to long-lived TRM cells that are essential for an immediate response against bacterial infection. Cell 178, 1176–1188 e1115 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

    Article  Google Scholar 

  42. 42.

    Dai, M. et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33, e175 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the BU Flow Cytometry Core Facility and Dr. Patrick Autissier for expert technical assistance and Adam Gower for bioinformatics guidance and consultation. This work was supported by the NIH including R35 HL135756 and R01 AI115053 (to J.P.M.); F31-HL127978 (to G.A.W.); R01 HL104053 (to M.R.J.); R01 GM120060 and R01 HL111459 (to L.J.Q.); and NIH T32 HL007035 and T32 AI089673 (for support of trainees).

Author information

Affiliations

Authors

Contributions

G.A.W. and A.T.S. executed experiments. E.I.A., A.K.W., N.M.S.S. and I.M.C.M. provided experimental assistance. G.A.W., A.T.S. and J.P.M. designed experiments and analyzed data. M.R.J., L.J.Q. and J.P.M. provided reagents and resources. A.T.S. and J.P.M. wrote original draft of the manuscript and all co-authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Joseph P. Mizgerd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Co-authors: Anukul T. Shenoy, Gregory A. Wasserman

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shenoy, A.T., Wasserman, G.A., Arafa, E.I. et al. Lung CD4+ resident memory T cells remodel epithelial responses to accelerate neutrophil recruitment during pneumonia. Mucosal Immunol 13, 334–343 (2020). https://doi.org/10.1038/s41385-019-0229-2

Download citation

Further reading