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Pulmonary monocytes interact with effector T cells in the lung
tissue to drive TRM differentiation following viral infection
Paul R. Dunbar1, Emily K. Cartwright1, Alexander N. Wein1, Tetsuo Tsukamoto2, Zheng-Rong Tiger Li1, Nivedha Kumar1, Ida E. Uddbäck3,
Sarah L. Hayward1, Satoshi Ueha4, Shiki Takamura2 and Jacob E. Kohlmeier1,5

Lung resident memory CD8 T cells (TRM) are critical for protection against respiratory viruses, but the cellular interactions required
for their development are poorly understood. Herein we describe the necessity of classical monocytes for the establishment of lung
TRM following influenza infection. We find that, during the initial appearance of lung TRM, monocytes and dendritic cells are the
most numerous influenza antigen-bearing APCs in the lung. Surprisingly, depletion of DCs after initial T cell priming did not impact
lung TRM development or maintenance. In contrast, a monocyte deficient pulmonary environment in CCR2−/− mice results in
significantly less lung TRM following influenza infection, despite no defect in the antiviral effector response or in the peripheral
memory pool. Imaging shows direct interaction of antigen-specific T cells with antigen-bearing monocytes in the lung, and
pulmonary classical monocytes from the lungs of influenza infected mice are sufficient to drive differentiation of T cells in vitro.
These data describe a novel role for pulmonary monocytes in mediating lung TRM development through direct interaction with
T cells in the lung.

Mucosal Immunology (2020) 13:161–171; https://doi.org/10.1038/s41385-019-0224-7

INTRODUCTION
During respiratory virus infections, effector CD8 T cells are primed
in the lung-draining lymph nodes by antigen presenting cells
(APCs) that have migrated from the infected lung.1–3 Following a
program of proliferation and differentiation that is regulated by
antigen encounter, co-stimulation receptor engagement, and the
local cytokine environment, virus-specific effector CD8 T cells then
traffic back to the infected lung to mediate their effector
functions.4,5 Upon entry into the lung tissue, virus-specific effector
CD8 T cells may re-encounter antigen presented by local APCs,
including monocytes, macrophages, dendritic cells, and infected
epithelial cells. In addition to antigen re-encounter, cues from the
local microenvironment can further influence the differentiation
of virus-specific CD8 T cells into short-lived effector or long-lived
memory cells, ultimately directing cell fate.6–8 Despite the
significance of these cell fate decisions for pathogen clearance
and the establishment of immune memory, the importance of the
local microenvironment on T cell differentiation in the tissue and
the roles of individual tissue-resident APC subsets that provide
these signals for the development of T cell memory are not well
understood.
Following respiratory virus clearance, subsets of the CD8

memory precursor cells in the lung will differentiate into tissue-
resident memory T cells (TRM). Lung TRM have been shown to be
critical for protective cellular immunity against secondary
heterosubtypic respiratory infections, enabling the rapid detec-
tion of the invading pathogen and thereby limiting pathogen
replication and immunopathology.9–11 The programming of CD8

TRM has been extensively investigated in recent years, and key
cytokines such as TGF-β and IL-15 have been shown to be
important for their development.12–14 Although antigen stimula-
tion is required to initiate the effector T cell response in the
lymph nodes, its role in TRM development in the tissue had been
less well characterized. Recently, it has been demonstrated that
differentiation of lung TRM during influenza virus infection
requires virus-specific T cells to re-encounter antigen in the
lung tissue.15,16 However, it is not clear if this requires interaction
between effector T cells and specific APC subsets in the lung.
Previous reports have shown that targeting vaccines to
pulmonary CD103+ dendritic cells or alveolar macrophages
promotes the establishment of lung TRM, but it is unclear
whether this was due to the ability of these APC subsets to
promote TRM programming during initial priming in the lymph
node, or whether these APC subsets regulate lung TRM establish-
ment through antigen re-encounter in the lung itself.17,18 Given
the importance of TRM for protective cellular immunity in the
lung, it is critical to define the cellular and molecular require-
ments for their establishment and identify new approaches for
optimizing vaccines against respiratory pathogens.
To better define the factors that promote TRM in the lung, we

investigated the role of different lung-resident APC subsets in
virus-specific CD8 TRM development. Although essential for initial
virus-specific CD8 T cell activation, depletion of CD11c+ dendritic
cells during the peak of the effector T cell response did not
impact the number of virus-specific lung CD8 TRM following
influenza infection. Surprisingly, analysis of pulmonary APC
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subsets around the time of viral clearance showed that
monocytes were among the most numerous lung APC subsets
harboring influenza antigens, and this correlated with the initial
appearance of virus-specific lung CD8 TRM. While monocytes have
been investigated for their pro-inflammatory roles in innate
immunity, their ability to influence T cell responses through direct
interactions with virus-specific CD8 T cells has not been as
extensively investigated.19–21 Using CCR2-deficient mice, which
are defective in monocyte trafficking to the lung during influenza
infection,22 we observed a significant decrease in the number of
virus-specific lung CD8 TRM in both the parenchyma and airways,
but there was no effect on the number of circulating virus-specific
memory CD8 T cells in the spleen. Notably, there were no
differences in the number of virus-specific effector CD8 T cells or
virus-specific memory CD8 precursor cells generated in the lung
at the time of viral clearance when comparing wild-type and
CCR2−/− mice, demonstrating the role for monocytes in TRM
development was restricted to antigen re-encounter in the tissue
and not initial T cell priming. In support of this, imaging of the
lung revealed a close interaction between virus-specific CD8
T cells and monocytes. Furthermore, pulmonary monocytes
sorted from infected lungs were sufficient to activate naive
antigen specific T cells, as well as induce their expression of
CD103 on a subset of highly-divided cells in vitro. Together, these
data define a novel role for lung tissue-resident monocytes as
critical mediators in the establishment of lung CD8 TRM but not
circulating T cell memory following respiratory infection, through
presentation of viral antigens to T cells in the infected lung.

RESULTS
Lung CD8 TRM develop immediately following viral clearance
While there is growing appreciation for the role of tissue resident
memory T cells in protection against viral challenges at mucosal
surfaces, less is known about their ontogeny. To determine the
cellular interactions critical for lung TRM development, we first
sought to define the kinetics of the appearance of CD8 TRM in the
lung following influenza infection. Flu-specific CD8 T cells were
identified in both the lung vasculature and lung parenchyma
following intravital labeling. The appearance of cells with a tissue-
resident phenotype (CD69+ CD103+) was observed in the lung
parenchyma beginning on day 8 post infection (Figs. 1a, b), just
preceding the peak of the effector CD8 T cell response at day 10
post infection, as well as influenza viral clearance.23,24 Over the
course of the effector T cell response in the lung, the frequency of
vascular versus tissue-resident flu-specific CD8 T cells remains
relatively constant. However, the frequency of CD69+ CD103+ flu-
specific CD8 T cells steadily increases within the resident population
from day 8–14 post infection (Fig. 1c). We see a similar pattern in the
number of lung TRM, with a peak at D10 and a decline following viral
clearance that mimics the kinetics of the total effector response
(Fig. 1c). Similar to polyclonal flu-specific T cells, transgenic OT-I
T cells resident in the lung show an increase in the frequency of
CD69+ CD103+ cells from days 8–14 following infection with
influenza x31-OVA (Fig. 1d), and numbers of lung OT-I TRM matched
the kinetics of the overall effector T cell response. Coincident with
the expansion of CD69+ CD103+ cells we observed continued
antigen stimulation, as measured by Nur77-GFP expression, in flu-
specific CD8 T cells resident in the lung, but not in the lung
vasculature or the spleen, on day 10 post infection (Fig. 1e, f).
Increased Nur77-GFP expression in lung flu-specific CD8 T cells
continued through day 14 post infection, but was largely absent by
day 30 post infection. In addition, there were increased numbers of
flu-specific CD69+ CD103+ cells in the lung at day 14 post infection
(Fig. 1g). Together, these data show the seeding of the lung-resident
T cell pool occurs rapidly following the resolution of influenza
infection and is associated with continued antigen recognition by
flu-specific T cells in the lung tissue.

Depletion of lung dendritic cells after initial T cell priming does
not alter lung CD8 TRM establishment
Previous studies have shown that the establishment of lung-
resident T cell memory requires antigen re-encounter in the
lung,15 and flu-specific T cells continue to receive antigen
stimulation in the lung following viral clearance.25,26 Dendritic
cells, specifically, are appreciated as efficient mediators of T cell
activation and differentiation. As well, the importance of dendritic
cells in the initiation of a T cell response against influenza infection
has been well documented,4,22,27–29 but the role pulmonary DCs
may be playing in the differentiation of flu-specific TRM in the
tissue after initial priming is less well understood. To address this
question, we investigated the establishment of lung TRM following
depletion of DCs after initial T cell priming (Fig. 2a). Treatment of
CD11c-DTR (Itgax-DTR) chimeras with diphtheria toxin (DTx)
beginning on day 5 post infection was sufficient to deplete the
majority of CD11c+ cells in the lung, which include both DCs and
alveolar macrophages, while leaving the CD11b+ cells intact
(Fig. 2b, c, and S1). Surprisingly, depletion of CD11c+ cells before
TRM generation but after initial T cell activation had no effect on
the phenotype or numbers of flu-specific lung TRM in the airways
or parenchyma on day 14 post infection (Fig. S1D and S1E), or at
memory (Fig. 2d, e). Therefore, despite their importance for the
initial priming of naïve CD8 T cells, interactions between DCs and
virus-specific CD8 T cells in the tissue are not required for the
establishment of lung TRM.

Lung-resident dendritic cells and monocytes are among the most
numerous cell types presenting influenza antigens during the
initial appearance of lung TRM
This finding led us to broaden our approach to identify additional
APC subsets potentially involved in lung TRM differentiation. We
investigated which APC subsets in the lung were displaying
antigen to flu-specific T cells, particularly at the conclusion of the
effector T cell response, when resident memory is established.
CD8 T cells in the lung make direct contact with many different
APC subsets, including dendritic cells, macrophages, and mono-
cytes (Fig. 3a). To determine which APC subsets were capable of
presenting influenza antigens in the lung, we performed intravital
labeling to identify different lung extra-vascular APC subsets,
(Fig. S2) and assessed intracellular influenza nucleoprotein (FluNP)
content.30 This staining approach was specific for the influenza
nucleoprotein, as isotype staining, as well as staining of lung APCs
following Sendai virus infection, failed to give a positive signal
(Fig. 3b). Intracellular FluNP staining was detected in pulmonary
monocytes, monocytic respiratory dendritic cells (MoRDCs),
CD11bhi DCs, and CD103+ DCs, and this staining was restricted
to the lung-resident (CD45.2−) population of each subset (Fig. 3c).
The number of cells containing FluNP in each subset was highest
at day 6 post infection, and substantial numbers of pulmonary
APCs containing FluNP were detected through day 15 post
infection (Fig. 3d).30 Although, as expected, substantial numbers of
FluNP+ DCs were present in the lung, it was surprising to observe
that pulmonary monocytes were also among the most numerous
FluNP+ APC subset from days 10–15 post infection. Thus, we
began to assess what role these monocytes may play in the
differentiation of lung TRM, as well as any differences in the roles of
the classical and non-classical monocyte subsets.

Inhibiting monocyte recruitment to the lung significantly
decreases lung CD8 TRM development
To investigate the role pulmonary monocytes may be playing in
the development of lung TRM in vivo, we used mice deficient in
C–C chemokine receptor type 2, or CCR2, which lack the ability to
efficiently traffic monocytes from the circulation into sites of
mucosal inflammation. Previous studies characterizing influenza
infection in CCR2−/− mice observed no defect in the flu-specific
effector CD8 T cell response or viral clearance,31,32 but the mice do
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show decreased monocyte-driven immunopathology.22 To test
this, we seeded WT and CCR2−/− mice with naïve OT-I T cells,
infected the mice with x31-OVA, and tracked the OVA-specific, as
well as endogenous fluNP-specific T cell response (Fig. 4a). As

expected, we observed a significant decrease in the number of
monocytes recruited to the lung in CCR2−/− mice following
influenza infection, but no difference in the numbers of other lung
APC subsets, including MoRDC, CD103+, and CD11bhi DC subsets
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(Fig. S3). Similar to previous reports, at day 10 post infection there
were no differences in the number of OT-I effector T cells in the
BAL, lung interstitium (lung extra-vascular, LEV), or spleen
between WT and CCR2−/− mice (Fig. 4b, c).31 In addition, there
was no difference in the number of CD69+ CD103+ lung-resident
OT-I cells at this peak of the acute CD8 T cell response (Fig. 4c). To
determine whether CCR2−/− mice showed a defect in overall
memory T cell development, we assessed the number of memory
precursor cells (MPECs) in the lung and spleen (Fig. 4d). Similar to
our observations of the overall effector T cell pool, there was no
difference in the number of CD127hi KLRG1lo MPECs in the lung or
spleen. Thus, CCR2−/− mice showed no defect in the flu-specific
effector CD8 T cell response, even within the lung tissue and
airways (BAL).
In contrast to the effector T cell response, CCR2−/− mice

showed a significant decrease in the number of OT-I lung TRM in
both the airway (BAL) and interstitium (LEV) at memory (Fig. 4e, f).
Importantly, there was no difference in the number of OT-I
memory T cells in the spleen, indicating that the role of pulmonary
monocytes in the generation of CD8 T cell memory was restricted
to the lung-resident pool. In addition to a significant decrease in
the total number of lung extra-vascular T cells, there was a
significant decrease in the number of CD69+ CD103+ TRM OT-I
cells in both the airways and interstitium in CCR2−/− mice (Fig. 4f).
Although there is some overlap between the number of lung TRM
observed in WT and CCR2−/− mice, the compiled data show a
significant defect in the average number of flu-specific lung TRM in
CCR2-deficient mice.
To differentiate between the potential role classical and non-

classical monocytes may be playing in the CCR2−/− model, we
generated CX3CR1-DTR bone marrow chimeras to allow for the
selective depletion of CX3CR1+ non-classical monocytes (Fig.
S4A).32 This model showed no difference at memory between the
PBS and DTx treated mice, with similar numbers of memory OT-Is
being generated in the lung extra-vascular compartment, the
airways, and the spleen (Fig. S4B and S4C). This indicated that the
classical monocytes, but not non-classical monocytes, had a
prominent role in driving the differentiation of lung TRM following
influenza infection.
To confirm the results of the transferred OT-I cells in the

CCR2−/− model, we also investigated the endogenous polyclonal
flu-specific T cell response. Similar to the OT-I response, there was
no difference in the number of effector fluNP-specific CD8 T cells
in the airways and lung on day 10 post infection, but a significant
decrease in the number of fluNP-specific lung extra-vascular
T cells in the airways and interstitium in CCR2−/− mice at memory
(Fig. 4g). Furthermore, in CCR2−/− mice, the overall decrease in
fluNP-specific lung extra-vascular T cells was paralleled by a
significant decrease in the number of CD69+ CD103+ TRM in the
airway and interstitium (Fig. 4h).
Assessing the impact of reduced numbers of lung TRM on

cellular immune protection in CCR2−/− mice is complicated due
to the reduced monocyte recruitment, which results in decreased
immunopathology and weight loss.22,33 To overcome this issue,
we treated (H3N2) influenza x31-immune WT and CCR2−/− mice
with FTY-720 to sequester circulating immune cells in secondary

lymphoid organs and limit the response to the virus to lung TRM
and challenged the mice with heterologous (H1N1) influenza PR8
to assess the protective efficacy of the lung TRM population.
Similar to previous reports, mock FTY-720-treated CCR2−/− mice
showed decreased weight loss compared to WT mice following
PR8 challenge (Fig. 4i). In contrast, treatment with FTY-720
resulted in significantly greater weight loss in CCR2−/− mice
compared to WT mice, indicating that the decreased numbers of
lung TRM in CCR2−/− mice are associated with impaired immune
protection.

Pulmonary monocytes interact with virus-specific CD8 T cells
in vivo and are sufficient to drive CD8 T cell activation and
differentiation in vitro
The effect of defective monocyte trafficking on lung TRM
establishment suggested two possibilities: that the inflammatory
milieu of the lung was altered in a manner detrimental to TRM
differentiation, or that TRM development is driven by direct
interactions between antigen-specific T cells and monocytes in the
lung tissue. Given that antigen re-encounter in the tissue is
necessary to establish lung TRM following an influenza infection,15

we focused on the potential role of pulmonary monocytes
presenting antigens directly to virus-specific CD8 T cells. The lung
is a large organ, making the precise localization of individual cells
crucial if they are to directly engage one another. As monocytes
are among the most abundant APC subsets containing influenza
antigens when lung TRM first appear, we examined whether
different fluorescently-marked monocyte subsets were interacting
with virus-specific CD8 T cells in the lung (Fig. 5a). Influenza
antigen-bearing monocytes were observed in close contact with
virus-specific CD8 T cells in the lung on day 12 post infection
(Fig. 5b, red arrows). To ensure that the monocytes not only
contained but were presenting antigen on MHC-I as described by
Jakubzick et al.,34 we stained lung monocytes for H-2Kb bound to
SIINFEKL, finding that both classical and non-classical monocytes
were capable of presenting virus-derived peptide on MHC-I
(Fig. 5c). Furthermore, we found that a subset of these H-2Kb-
SIINFEKL positive cells also contained intracellular FluNP protein,
thus demonstrating both flu antigen uptake, as well as presenta-
tion on MHC-I (Fig. 5d). Though the cells were in contact, it was
still possible they did not contribute to T cell activation and
differentiation. To test this, we sorted classical and non-classical
monocytes from the lungs of mice infected with ×31, pulsed the
monocytes with SIINFEKL peptide, and cultured the monocytes
with naïve OT-I T cells. Both monocytes subsets were able to
induce substantial proliferation of OT-I cells as measured by CTV
dilution (Fig. 5d). However, in highly divided cells, only classical
monocytes were able to generate a population of OT-I T cells that
co-expressed the TRM markers CD69 and CD103 (Fig. 5e, f).
Surprisingly, dendritic cell subsets, while able to induce CD103
upregulation, did so to a lesser degree than classical monocytes
(Fig. 5h). Both subsets of monocytes were able to induce the
expression of CD127 on highly divided cells, indicating that they
were capable of generating OT-I cells with the potential to
become memory T cells (Fig. S5). Together, these data indicate
that lung monocytes, particularly classical monocytes, are present

Fig. 1 Rapid appearance of lung resident CD8 T cells following influenza infection. a Gating strategy and representative flow plots for the
intravital labeling of FluNP-specific CD8 T cells in the lung. b Representative flow plots for CD69 and CD103 staining on FluNP-specific CD8
T cells in the lung vasculature (top row) or lung extra-vascular compartments (bottom row). c Frequency and number of total extra-vascular
FluNP-specific CD8 T cells and CD69+ CD103+ resident FluNP-specific CD8 T cells among total lung FluNP-specific CD8 T cells over time. d
Frequency and number of total extra-vascular OT-I CD8 T cells and CD69+ CD103+ resident OT-I CD8 T cells among total lung OT-I CD8 T cells
over time. e Representative staining of Nur77-GFP expression in FluNP-specific CD8 T cells. f Frequency and number of Nur77-GFP+ FluNP-
specific CD8 T cells that are circulating (IV+) or extra-vascular (IV−) in the lung and spleen on days 10, 14, and 35 post infection. g Frequency
and number of Nur77-GFP+ FluNP-specific tissue-resident CD8 T cells expressing both CD69 and CD103 in the lung extra-vascular population.
***p < 0.001 (two-tailed Student’s t-test) All graphs error bars are S.E.M. Data are representative of 3 independent experiments with 5 mice per
time point (a–c and g) or 2 independent experiments with 4 mice each (e and f)
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in the lung micro-environment, co-localize with CD8 T cells, and
are sufficient to drive T cell differentiation, including the
expression of CD103 on a subset of highly-divided cells. Overall,
these data demonstrate a novel role for antigen presentation by
pulmonary monocytes in the establishment of virus-specific lung
TRM, but not systemic T cell memory, following influenza infection.

DISCUSSION
Many studies have shown the importance of dendritic cells for the
initiation of antiviral T cell responses following influenza infection,
with particular subsets such as CD8α+ and CD103+ DCs playing
specific roles in naïve T cell activation and differentiation.4,35–37

Given the requirement for antigen re-encounter in the tissue for
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of intracellular FluNP staining in pulmonary monocytes following infection with influenza x31 (black histogram) or Sendai virus (gray
histogram). Isotype control staining is shown by the dashed line. c Representative staining of intracellular FluNP in extra-vascular (CD45.2 IV−)
lung APC subsets on day 7 post infection. d The number of FluNP-containing total monocytes (black), MoRDCs (blue), CD11bhi DCs (red), and
CD103+ DCs (green) in the lung over the course of influenza infection. Data are representative of 3 independent experiments with 5 mice per
time point. All graphs error bars are S.E.M.
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establishing lung TRM, it was surprising that depletion of CD11c+

cells after initial T cell activation showed that DCs were
dispensable for lung TRM formation. In contrast, inhibiting
monocyte recruitment to the lung had a dramatic impact on the
establishment of lung TRM, despite having no effect on the
magnitude of the effector T cell response. Thus, the ability of
monocytes to promote T cell responses against influenza is not
through the initial priming and expansion of antiviral T cells, but
through their ability to present viral antigens to effector T cells in
the infected lung tissue and drive T cell differentiation.
Classical monocytes have been characterized as innate

inflammatory mediators that produce large amounts of IL-1, IL-
6, and TNFα, and promote tissue damage,38 but their ability to
drive adaptive immune responses through antigen presentation
has been understudied.39 Monocytes have been shown to
promote TH1 responses during viral infection through direct
priming of naïve T cells in the lymph node.4,40,41 However, as we
observed no defect in the flu-specific effector CD8 T cell
response or the systemic flu-specific memory CD8 T cell pool
in CCR2−/− mice, it is unlikely that the decreased numbers of
lung TRM in these mice are due to a defect in the initial priming of
the flu-specific T cell response. Rather, our data show that
antigen presentation by pulmonary monocytes to effector CD8
T cells in the lung tissue is important for lung TRM establishment.
Consistent with these findings, Ly6C+ inflammatory monocytes

are efficient at cross-presentation to CD8 T cells in the presence
of TLR agonists, especially TLR7.34,42–45 Together, these findings
support a model where monocytes in the infected lung are
activated by viral TLR agonists, promoting efferocytosis of dying
cells and enhancing cross-presentation of influenza antigens to
flu-specific CD8 T cells, which ultimately drives the establishment
of lung TRM.

Several studies have identified roles for specific APC subsets in
the establishment or maintenance of TRM. Cross-presentation by
DNGR-1+ dendritic cells was shown to be required for optimal
generation of TRM, but not circulating memory T cells, in a model
of cutaneous Vaccinia virus infection.46 In the lung, targeting
vaccines to respiratory dendritic cells or alveolar macrophages was
shown to induce local TRM that could protect mice against
respiratory challenge.17,47 Recently, it was reported that inflam-
matory monocytes were important for the maintenance of both
lung TRM and circulating memory T cell subsets following Vaccinia
virus infection, but the mechanism by which monocytes were
promoting memory maintenance was unknown.31 We have
extended these findings to demonstrate a critical role for antigen
presentation by monocytes in establishing lung TRM. Although we
did not observe a defect in the circulating memory T cell pool in
our study, this discrepancy is likely due to the differences in tissue
tropism between influenza and Vaccinia viruses. As influenza
replication and inflammation is localized to the respiratory tract,
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the impact of monocyte antigen-presentation on memory T cell
development during a respiratory virus infection would be limited
to the lung.
Although our data support a direct role for antigen presentation

by pulmonary monocytes in driving lung TRM establishment, there
may be additional monocyte-derived factors contributing to this
process, such as cytokines or the propagation of tissue repair. For
example, monocytes can produce IL-15, which has been
implicated in the initial lodgment of TRM.

48 Monocytes are also

prevalent in areas of tissue repair following viral clearance in the
lung, and these sites have been identified as anatomical niches,
termed repair-associated memory depots, that promote the
maintenance of lung TRM.

49 Future studies investigating antigen-
independent functions of monocytes in TRM differentiation and
maintenance, and the interplay between monocytes and other
APCs in these processes, will be required to fully understand the
contributions of monocytes for the development of resident T cell
memory.
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Monocytes and effector CD8 T cells are recruited to discrete
sites of inflammation in the lung through CCR2-dependent and
CXCR3-dependent mechanisms, respectively.3,19 Given the large
size of the lung, having a mechanism to recruit both APCs and
virus-specific CD8 T cells to the same inflamed local microenvir-
onment where virus is present is an efficient means to ensure
T cells have access to antigen and accessory signals such as co-
stimulation and cytokines that will promote their differentiation.
The high number of antigen-bearing monocytes in the lung, their
co-localization with antigen specific T cells, and their sufficiency to
drive T cell differentiation in vitro all point to monocytes being
critical mediators of TRM differentiation.
It should be noted that monocytes did not induce

robust expression of TRM markers such as CD103 on all OT-I
cells in our in vitro culture system, and we did not examine
the transcriptional profile of these cells to assess the complete
TRM program.50,51 As the in vitro culture system cannot
recapitulate all the complex interactions that guide CD8 T cell
differentiation in vivo, we believe it is unlikely that monocytes
alone are sufficient to program lung TRM development following
an influenza inflection. It seems likely that multiple T cell—APC
interactions, separated by time (initial T cell priming and
antigen re-encounter) and location (lymph node and infected
lung) are required. One potential developmental pathway
suggested by our data is that dendritic cells may induce the
initial TRM program, and that pulmonary monocytes may provide
additional signals that lead to further progression or enforce-
ment of this program. We are currently investigating these
possibilities.
While significant technical hurdles remain, if strategies can be

devised by which vaccine-derived antigens are presented by
monocytes to activated T cells in the lung, this may enhance
vaccine efficacy through the establishment of greater numbers of
lung TRM. These findings also provide a rationale for antibody-
targeted mucosal vaccines, such as used by Villadangos et al.,18 to
directly target vaccine antigens to lung monocytes in order to
produce more robust TRM responses. Combined with the
previously demonstrated efficacy of dendritic cell targeting
vaccines, this could offer an avenue towards a combination
vaccine capable of generating robust cellular immunity in the
lung. In summary, we have identified a novel role for antigen
presentation by pulmonary monocytes in driving the establish-
ment of lung TRM following influenza virus infection. Further
exploration of the mechanisms by which monocytes promote TRM
differentiation may aid in the development of new strategies for
vaccination against respiratory pathogens.

MATERIALS AND METHODS
Mice and infections
C57BL/6 J (WT), B6.PL-Thy1a/CyJ (CD90.1), B6.SJL-Ptprca Pepcb/
BoyJ (CD45.1), B6.129S4-Ccr2tm1Ifc/J (CCR2−/−), B6.129P-
CX3CR1tm1Litt/J (CX3CR1-GFP), B6.129(Cg)-CCR2tm2.1Ifc/J (CCR2-
RFP), C57BL/6-Tg(Nr4a1-EGFP/cre)820Khog/J (Nur77-GFP),

B6N.129P2-Cx3cr1tm3(DTR)Litt/J (CX3CR1-DTR), and B6.FVB-
1700016L21RikTg(Itgax−DTR/EGFP)57Lan/J (CD11c-DTR) mice from The
Jackson Laboratory were housed under SPF conditions at Emory
University and Kindai University. B6.129P-CX3CR1tm1Litt/J and
B6.129(Cg)-CCR2tm2.1Ifc/J mice were crossed to generate F1 dual
reporter mice (CX3CR1+/GFP CCR2+/RFP) for imaging. Intranasal
infection with influenza A/HKx31 (H3N2) at 30,000 50% egg
infectious doses (EID50), A/HKx31-OVAI expressing SIINFEKL
peptide at 30,000 EID50, and influenza A/PR8-OVAI expressing
SIINFEKL peptide (H1N1) at 6000 EID50 were performed as
previously described.52 In some experiments, 104 CD90.1+ naïve
OT-I CD8 T cells were injected i.v. into recipient mice one day prior
to infection. In protection experiments, mice were injected daily i.
p. with 150 µg FTY720 (Cayman Chemical) suspended in PBS. All
experiments were completed in accordance with the Institutional
Animal Care and Use Committee guidelines of Emory University.

Generation of CD11c-DTR and CX3CR1-DTR chimeras
Recipient CD45.1 mice were injected i.p. with 600 μg of busulfan
(Otsuka Pharmaceutical). The next day and 5 × 106 BM cells
isolated from CD11c-DTR (Itgax-DTR) or CX3CR1-DTR mice were
injected intravenously. Chimeras were rested for 6 weeks for
reconstitution, and were bled to confirm the presence of the
donor CD45.2+ cells prior to virus infection. Some groups of mice
were injected i.n. with 60 μg of Diphtheria Toxin (DTx) (Sigma-
Aldrich) or PBS following infection with influenza x31 or x31-OVA.

Tissue collection and flow cytometry
Intravital staining was performed immediately before mouse
euthanasia and tissue harvest as previously described.53 Briefly, to
identify T cells resident in various tissues, including the lung
parenchyma, 1.5 µg of fluorophore-conjugated α-CD45.2 antibody
in 200λ 1 × PBS was intravenously injected into the tail vein of mice;
five minutes post injection, mice were euthanized with Avertin
(2,2,2-Tribromoethanol, Sigma) and exsanguinated prior to harvest
of BAL and other tissues. Cells in the lung airways were recovered
by lavage with 5 × 1ml R10 media. Lung tissues were digested by
collagenase D (Roche) for 30min at 37 °C and enriched by
centrifugation in 40/80% Percoll gradient. Splenocytes were
obtained by straining through nylon mesh, followed by RBC lysis
in buffered ammonium chloride. Cells were blocked first with mAbs
to FcRγIII/II and then stained with APC-conjugated influenza
NP366–374/D

b tetramer. Tetramer-labeled cells were washed and
stained with fluorophore-conjugated reagents purchased from BD
Biosciences (CD103, CD11c, Ly6C, Siglec-F), BioLegend (CD103,
CD11b, CD127, CD69, CD8a, CD90.1, KLRG-1, Ly6G, I-A/I-E, CD45.2),
eBiosciences (CD4, CD44, H2KB-OVA), anti influenza NP (Abcam),
and R&D (CCR2). Intracellular staining was performed using the
Cytofix/Cytoperm Kit according to manufacturer protocol (BD
Biosciences). Tetramers were generated by the NIH Tetramer Core
at Emory University. Samples were run on LSRFortessa and LSR-II
flow cytometers (BD), and data were analyzed using FlowJo
software (Tree Star). Cell sorting was performed on an SH800
(Sony) or FACSAria III cell sorter (BD Biosciences).

Fig. 5 Pulmonary monocytes interact with T cells in the lung during infection, present influenza-derived antigen, and are sufficient to drive
the activation and differentiation of TRM-like CD8 T cells in vitro. a Experimental design for using CX3CR1+/GFP CCR2+/RFP dual reporter mice
infected with x31-OVA for microscopy and monocyte isolation for in vitro culture. b Representative fluorescent microscopy images from the
lung at day 12 post infection. OT-I T cells interacting with FluNP-containing monocytes are indicated with red arrows. Scale bar is 20 μm. c
Representative co-staining of uninfected and x31-OVA-I infected mice with surface H-2Kb-OVA and intracellular FluNP protein, showing
specificity of staining (left plot), as well as monocytes with both surface H-2Kb-OVA and intracellular FluNP protein (right plot). d Number of
lung extra-vascular monocytes co-expressing FluNP protein and H-2Kb-OVA staining day 8 post infection. e Cell trace violet dilution of OT-I
T cells cultured in the presence or absence of classical or non-classical monocytes for three days. f Representative staining of CD69 and CD103
on OT-I CD8 T cells with 5+ cell divisions as indicated by CTV dilution. g Frequency of CD103+ OT-I CD8 T cells stimulated by classical or non-
classical monocytes with more than 5 cell divisions. ****p < 0.0001 (two-tailed Student’s t-test) (h) Frequency of CD103+ OT-I CD8 T cells
stimulated by CD103+DC, MoRDC, or CD11bhi DC subsets with more than 5 cell divisions. *p < .05 (two-tailed Student’s t-test) Data are
representative of 3 independent experiments, with each in vitro culture (d–i) run in triplicate. All graphs error bars are S.E.M.
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Fluorescence and confocal microscopy
Mouse lungs were inflated by intratracheal administration of
optimal cutting temperature (OCT) media to preserve lung
morphology followed by snap freezing in liquid nitrogen. Six or
Seven-micrometer-thick cryosections were fixed for 2 min with
acetone/ethanol, and blocked with combined rat serum, donkey
serum, mouse serum and FcBlock (anti CD16/32 2.4G2) or Blocking
One reagent (Nacalai Tesque) followed by blocking with
endogenous avidin and biotin blocking system (Abcam). Sections
were then stained with antibodies purchased from Biolegend
(CD90.1, anti-GFP, donkey anti rabbit IgG, CD8a, CD11b, CD11c,
B220), F4/80 (Bay Bioscience), pan-Cytokeratin (Bioss Antibodies),
Abcam (fluNP), Lifetech (streptavidin Alexa Fluor 405), Invitrogen
(a-RFP rabbit polyclonal), and mounted with ProLong™ Diamond
Antifade (Thermo Fisher). Images were acquired on an AxioOb-
server. Z1 (Zeiss) using a ×100 oil objective at room temperature
or a C2si confocal microscope (Nikon). Images were processed
using Zen 2.3 blue edition software.

Monocyte and T cell in vitro co-culture
Classical and non-classical monocytes were sorted from lungs of
day 10 × 31 influenza infected mice (CD45+, CD11b+, MHC-II−,
Ly6g−, Ly6c+, CCR2+ classical monocytes; CD45+, CD11b+, MHC-
II−, Ly6g−, Ly6c−, CCR2− non-classical monocytes). Sorted
monocytes were pulsed for 2 h with 1μM OVA peptide (SIINFEKL)
in round bottom plates at 37 °C. and cultured with naive CD8 OT-I
T cells isolated from spleens using the EasySep™ Mouse CD8+ T
Cell Isolation Kit (Stem Cell Technologies) and stained with Cell
Trace Violet (ThermoFisher) Co-cultures were performed at a 1:2
monocyte to T cell ratio for 3 days prior to analysis.54

Statistical analysis
Statistical analysis was performed using Prism 5 (GraphPad
Software), and significance was determined by an unpaired two-
tailed Student’s t test unless otherwise noted in the figure legend.
P-values less than 0.05 were considered significant.
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