MicroRNA-219a-5p suppresses intestinal inflammation through inhibiting Th1/Th17-mediated immune responses in inflammatory bowel disease


MicroRNA (miR)-219a-5p has been implicated in the development of numerous progression of carcinoma and autoimmune diseases. However, whether miR-219a-5p is involved in the pathogenesis of inflammatory bowel disease (IBD) remains elusive. In this study, we demonstrated that miR-219a-5p expression was significantly decreased in the inflamed intestinal mucosa and peripheral blood (PB)-CD4+ T cells from patients with IBD. Proinflammatory cytokines (e.g., IL-6, IL-12, IL-23 and TNF-α) inhibited miR-219a-5p expression in CD4+ T cells in vitro. Lentivirus-mediated miR-219a-5p downregulation facilitated Th1/Th17 cell differentiation, whereas miR-219a-5p overexpression exerted an opposite effect. Luciferase assays confirmed that ETS variant 5 (ETV5) was a functional target of miR-219a-5p and ETV5 expression was significantly increased in the inflamed intestinal mucosa and PB-CD4+ T cells from IBD patients. ETV5 overexpression enhanced Th1/Th17 immune response through upregulating the phosphorylation of STAT3 and STAT4. Importantly, supplementation of miR-219a-5p ameliorated TNBS-induced intestinal mucosal inflammation, characterized by decreased IFN-γ+ CD4+ T cells and IL-17A+ CD4+ T cells infiltration in the colonic lamina propria. Our data thus reveal a novel mechanism whereby miR-219a-5p suppresses intestinal inflammation through inhibiting Th1/Th17-mediated immune responses. miR-219a-5p might be a target for the treatment of IBD.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Shi, Y. et al. Smad nuclear interacting protein 1 (SNIP1) inhibits intestinal inflammation through regulation of epithelial barrier function. Mucosal Immunol. 11, 835–845 (2018).

    CAS  PubMed  Google Scholar 

  2. 2.

    Ma, C. et al. Critical role of CD6highCD4+ T cells in driving Th1/Th17 cell immune responses and mucosal inflammation in IBD. J. Crohn’s Colitis 13, 510–524 (2018).

    Google Scholar 

  3. 3.

    De Souza, H. S. P. et al. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 14, 739–749 (2017).

    PubMed  Google Scholar 

  4. 4.

    Sartor, R. B. & Wu, G. D. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology 152, 327–339 (2017).

    CAS  PubMed  Google Scholar 

  5. 5.

    Schwerd, T. et al. NOX1 loss-of-function genetic variants in patients with inflammatory bowel disease. Mucosal Immunol. 11, 562–574 (2018).

    CAS  PubMed  Google Scholar 

  6. 6.

    Geremia, A. & Arancibia-Carcamo, C. V. Innate lymphoid cells in intestinal inflammation. Front. Immunol. 8, 1296 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Citalan-Madrid, A. F. et al. Cortactin deficiency causes increased RhoA/ROCK1-dependent actomyosin contractility, intestinal epithelial barrier dysfunction, and disproportionately severe DSS-induced colitis. Mucosal Immunol. 10, 1237–1247 (2017).

    CAS  PubMed  Google Scholar 

  8. 8.

    Zhou, R. et al. JNK pathway-associated phosphatase/DUSP22 suppresses CD4(+) T-cell activation and Th1/Th17-cell differentiation and negatively correlates with clinical activity in inflammatory bowel disease. Front. Immunol. 8, 781 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Shi, T. et al. The signaling axis of microRNA-31/interleukin-25 regulates Th1/Th17-mediated inflammation response in colitis. Mucosal Immunol. 10, 983–995 (2017).

    CAS  PubMed  Google Scholar 

  10. 10.

    Sanctuary, M. R. et al. miR-106a deficiency attenuates inflammation in murine IBD models. Mucosal Immunol. 12, 200–211 (2019).

    CAS  PubMed  Google Scholar 

  11. 11.

    Kaser, A. et al. Inflammatory bowel disease. Annu. Rev. Immunol. 28, 573–621 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Morgan, M. E. et al. Toll-like receptor 6 stimulation promotes T-helper 1 and 17 responses in gastrointestinal-associated lymphoid tissue and modulates murine experimental colitis. Mucosal Immunol. 7, 1266–1277 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    He, C. et al. MicroRNA 301A promotes intestinal inflammation and colitis-associated cancer development by inhibiting BTG1. Gastroenterology 152, 1434–1448 (2017).

    CAS  PubMed  Google Scholar 

  14. 14.

    Wu, W. et al. miR-10a inhibits dendritic cell activation and Th1/Th17 cell immune responses in IBD. Gut 64, 1755–1764 (2015).

    CAS  PubMed  Google Scholar 

  15. 15.

    Li, M. et al. Upregulation of miR-665 promotes apoptosis and colitis in inflammatory bowel disease by repressing the endoplasmic reticulum stress components XBP1 and ORMDL3. Cell Death Dis. 8, e2699 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Koukos, G. et al. MicroRNA-124 regulates STAT3 expression and is down-regulated in colon tissues of pediatric patients with ulcerative colitis. Gastroenterology 145, 842–852 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Koukos, G. et al. A microRNA signature in pediatric ulcerative colitis: deregulation of the miR-4284/CXCL5 pathway in the intestinal epithelium. Inflamm. Bowel Dis. 21, 996–1005 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Pei, X. F. et al. Role of miR-22 in intestinal mucosa tissues and peripheral blood CD4+ T cells of inflammatory bowel disease. Pathol. Res. Pract. 214, 1095–1104 (2018).

    CAS  PubMed  Google Scholar 

  19. 19.

    Li, J. et al. Critical role of alternative M2 skewing in miR-155 deletion-mediated protection of colitis. Front. Immunol. 9, 904 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Singh, U. P. et al. miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses. Immunology 143, 478–489 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bruinsma, I. B. et al. Regulator of oligodendrocyte maturation, miR-219, a potential biomarker for MS. J. Neuroinflamm. 14, 235 (2017).

    Google Scholar 

  22. 22.

    Hu, X. M. et al. Downregulation of miR-219 enhances brain-derived neurotrophic factor production in mouse dorsal root ganglia to mediate morphine analgesic tolerance by upregulating CaMKIIgamma. Mol. Pain 12, pii: 1744806916666283 (2016).

    Google Scholar 

  23. 23.

    Rius, B. et al. Resolvin D1 primes the resolution process initiated by calorie restriction in obesity-induced steatohepatitis. FASEB J. 28, 836–848 (2014).

    CAS  PubMed  Google Scholar 

  24. 24.

    Recchiuti, A. et al. MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. FASEB J. 25, 544–560 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Huang, N. et al. MiR-219-5p inhibits hepatocellular carcinoma cell proliferation by targeting glypican-3. FEBS Lett. 586, 884–891 (2012).

    CAS  PubMed  Google Scholar 

  26. 26.

    Huang, L. X. et al. microRNA-219-5p inhibits epithelial−mesenchymal transition and metastasis of colorectal cancer by targeting lymphoid enhancer-binding factor 1. Cancer Sci. 108, 1985–1995 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Wei, C. et al. MicroRNA-219-5p inhibits the proliferation, migration, and invasion of epithelial ovarian cancer cells by targeting the Twist/Wnt/beta-catenin signaling pathway. Gene 637, 25–32 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    He, C. et al. miR-301a promotes intestinal mucosal inflammation through induction of IL-17A and TNF-alpha in IBD. Gut 65, 1938–1950 (2016).

    CAS  PubMed  Google Scholar 

  29. 29.

    Ichiyama, K. et al. The microRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression. Immunity 44, 1284–1298 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Deng, L. et al. Involvement of microRNA-23b in TNF-alpha-reduced BMSC osteogenic differentiation via targeting runx2. J. Bone Miner. Metab. 36, 648–660 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Xie, M. et al. NF-kappaB-driven miR-34a impairs Treg/Th17 balance via targeting Foxp3. J. Autoimmun. 102, 96–113 (2019).

    CAS  PubMed  Google Scholar 

  32. 32.

    Lin, H. Y. et al. STAT3 upregulates miR-92a to inhibit RECK expression and to promote invasiveness of lung cancer cells. Br. J. Cancer 109, 731–738 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Cheng, X. et al. ETS variant 5 promotes colorectal cancer angiogenesis by targeting platelet-derived growth factor BB. Int. J. Cancer 145, 179–191 (2019).

    CAS  PubMed  Google Scholar 

  34. 34.

    Pham, D. et al. The transcription factor Etv5 controls TH17 cell development and allergic airway inflammation. J. Allergy Clin. Immunol. 134, 204–214 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Yu, S. et al. IL-12 induced the generation of IL-21- and IFN-gamma-co-expressing poly-functional CD4+ T cells from human naive CD4+ T cells. Cell Cycle 14, 3362–3372 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kubo, S. et al. Janus kinase inhibitor baricitinib modulates human innate and adaptive immune system. Front. Immunol. 9, 1510 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Delgoffe, G. M. et al. Interpreting mixed signals: the cell’s cytokine conundrum. Curr. Opin. Immunol. 23, 632–638 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Nagashima, H. et al. Regulation of interleukin-6 receptor signaling by TNF receptor-associated factor 2 and 5 during differentiation of inflammatory CD4(+) T cells. Front. Immunol. 9, 1986 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Wirtz, S. et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12, 1295–1309 (2017).

    CAS  PubMed  Google Scholar 

  40. 40.

    Zhou, G. et al. Tripartite motif-containing (TRIM) 21 negatively regulates intestinal mucosal inflammation through inhibiting TH1/TH17 cell differentiation in patients with inflammatory bowel diseases. J. Allergy Clin. Immunol. 142, 1218–1228 (2018).

    CAS  PubMed  Google Scholar 

  41. 41.

    Yang, W. et al. Critical role of ROCK2 activity in facilitating mucosal CD4(+) T cell activation in inflammatory bowel disease. J. Autoimmun. 89, 125–138 (2018).

    CAS  PubMed  Google Scholar 

  42. 42.

    Huang, Z. et al. miR-141 Regulates colonic leukocytic trafficking by targeting CXCL12beta during murine colitis and human Crohn’s disease. Gut 63, 1247–1257 (2014).

    CAS  PubMed  Google Scholar 

  43. 43.

    Cheng, X. et al. miR-19b downregulates intestinal SOCS3 to reduce intestinal inflammation in Crohn’s disease. Sci. Rep. 5, 10397 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yu, M. et al. MicroRNA-590-5p Inhibits Intestinal Inflammation by Targeting YAP. J. Crohn’s. Colitis 12, 993–1004 (2018).

    Google Scholar 

  45. 45.

    Fitzpatrick, L. R. Novel pharmacological approaches for inflammatory bowel disease: targeting key intracellular pathways and the IL-23/IL-17 axis. Int. J. Inflamm. 2012, 389404 (2012).

    Google Scholar 

  46. 46.

    Radi, Z. A. et al. Pharmacologic evaluation of sulfasalazine, FTY720, and anti-IL-12/23p40 in a TNBS-induced Crohn’s disease model. Dig. Dis. Sci. 56, 2283–2291 (2011).

    CAS  PubMed  Google Scholar 

  47. 47.

    Van Der Heijden, T. et al. The IL-12 cytokine family in cardiovascular diseases. Cytokine 122, 154188 (2017).

  48. 48.

    Wei, B. & Pei, G. microRNAs: critical regulators in Th17 cells and players in diseases. Cell. Mol. Immunol. 7, 175–181 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Liu, Y. et al. MiR-155 inhibition ameliorates 2, 4, 6-Trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis in rat via influencing the differentiation of Th17 cells by Jarid2. Int. Immunopharmacol. 64, 401–410 (2018).

    CAS  PubMed  Google Scholar 

  50. 50.

    Wang, H. et al. miR-219 cooperates with miR-338 in myelination and promotes myelin repair in the CNS. Dev. Cell 40, 566–582 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Thieu, V. T. et al. Signal transducer and activator of transcription 4 is required for the transcription factor T-bet to promote T helper 1 cell-fate determination. Immunity 29, 679–690 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Ouyang, W. et al. The Ets transcription factor ERM is Th1-specific and induced by IL-12 through a Stat4-dependent pathway. Proc. Natl. Acad. Sci. USA 96, 3888–3893 (1999).

    CAS  PubMed  Google Scholar 

  53. 53.

    Wirtz, S. et al. Interleukin-35 mediates mucosal immune responses that protect against T-cell-dependent colitis. Gastroenterology 141, 1875–1886 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by grants from the National Natural Science Foundation of China (81700494), Jiangsu Provincial Key Research and Development Program (BE2017692) and supporting funds from Zhenjiang Municipal Health Commission and Affiliated People’s Hospital of Jiangsu University (K201733, K201741).

Author information




Y.S. conceived the project and wrote the manuscript. Y.X. and J.Y. supervised the experimental work and revised the manuscript; Y.S., C.Q., Y.Z. and T.W. performed the experiments and data analysis. Y.X., C.X., and S.D. diagnosed the patients, recorded the consent and provided clinical samples and information.

Corresponding authors

Correspondence to Jun Yao or Yaping Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Dai, S., Qiu, C. et al. MicroRNA-219a-5p suppresses intestinal inflammation through inhibiting Th1/Th17-mediated immune responses in inflammatory bowel disease. Mucosal Immunol 13, 303–312 (2020). https://doi.org/10.1038/s41385-019-0216-7

Download citation

Further reading