Article | Published:

Selective delipidation of Mycobacterium bovis BCG enables direct pulmonary vaccination and enhances protection against Mycobacterium tuberculosis

Mucosal Immunology (2019) | Download Citation



Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is the leading killer due to an infectious organism. Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only vaccine approved against TB, however, its efficacy against pulmonary TB is poor. While BCG is currently inoculated intradermally, the natural route of M.tb infection is through the lung. Excessive lung pathology caused by pulmonary inoculation of BCG has prevented the use of this immunization route. Here, we show that selective chemical treatment of BCG with petroleum ether removes inflammatory lipids from the bacterial surface while keeping BCG viable. Pulmonary vaccination using this modified BCG attenuated inflammatory responses, prevented immunopathology of the lung, and significantly increased protection against M.tb infection in mice. We further directly linked IL-17A as the responsible contributor of improved immunity against M.tb infection. These results provide evidence that selective removal of cytotoxic lipids from the BCG surface attenuates inflammation and offers a safer and superior vaccine against TB causing less damage post-infectious challenge with M.tb.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    WHO. Global Tuberculosis Report 2018. pp. 1–277. (WHO Organization, Geneva, 2018).

  2. 2.

    Moliva, J. I., Turner, J. & Torrelles, J. B. Prospects in Mycobacterium bovis Bacille Calmette et Guerin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis? Vaccine 33, 5035–5041 (2015).

  3. 3.

    Moliva, J. I., Turner, J. & Torrelles, J. B. Immune responses to BCG vaccination: why do they fail to protect against Mycobacterium tuberculosis? Front Immunol. 8, 407 (2017).

  4. 4.

    Lambert, P. H. & Laurent, P. E. Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine 26, 3197–3208 (2008).

  5. 5.

    Derrick, S. C., Kolibab, K., Yang, A. & Morris, S. L. Intranasal administration of Mycobacterium bovis BCG induces superior protection against aerosol infection with Mycobacterium tuberculosis in mice. Clin. Vaccin. Immunol. 21, 1443–1451 (2014).

  6. 6.

    Perdomo, C. et al. Mucosal BCG vaccination induces protective lung-resident memory T cell populations against tuberculosis. MBio 7, 10.1128/mBio.01686-16 (2016).

  7. 7.

    Aguilo, N. et al. Pulmonary but not subcutaneous delivery of BCG vaccine confers protection to tuberculosis-susceptible mice by an Interleukin 17-dependent mechanism. J. Infect. Dis. 213, 831–839 (2016).

  8. 8.

    Tree, J. A. et al. Intranasal bacille Calmette-Guerin (BCG) vaccine dosage needs balancing between protection and lung pathology. Clin. Exp. Immunol. 138, 405–409 (2004).

  9. 9.

    Nuermberger, E. L., Yoshimatsu, T., Tyagi, S., Bishai, W. R. & Grosset, J. H. Paucibacillary tuberculosis in mice after prior aerosol immunization with Mycobacterium bovis BCG. Infect. Immun. 72, 1065–1071 (2004).

  10. 10.

    Geisel, R. E., Sakamoto, K., Russell, D. G. & Rhoades, E. R. In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J. Immunol. 174, 5007–5015 (2005).

  11. 11.

    Silva, C. L., Ekizlerian, S. M. & Fazioli, R. A. Role of cord factor in the modulation of infection caused by mycobacteria. Am. J. Pathol. 118, 238–247 (1985).

  12. 12.

    Chauhan, P. et al. Secretory phosphatases deficient mutant of Mycobacterium tuberculosis imparts protection at the primary site of infection in guinea pigs. PLoS. ONE 8, e77930 (2013).

  13. 13.

    Astarie-Dequeker, C. et al. Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS. Pathog. 5, e1000289 (2009).

  14. 14.

    Sinsimer, D. et al. The phenolic glycolipid of Mycobacterium tuberculosis differentially modulates the early host cytokine response but does not in itself confer hypervirulence. Infect. Immun. 76, 3027–3036 (2008).

  15. 15.

    Cambier, C. J., O’Leary, S. M., O’Sullivan, M. P., Keane, J. & Ramakrishnan, L. Phenolic glycolipid facilitates mycobacterial escape from microbicidal tissue-resident macrophages. Immunity 47, 552–565 e554 (2017).

  16. 16.

    Reed, M. B. et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431, 84–87 (2004).

  17. 17.

    Arbues, A., Lugo-Villarino, G., Neyrolles, O., Guilhot, C. & Astarie-Dequeker, C. Playing hide-and-seek with host macrophages through the use of mycobacterial cell envelope phthiocerol dimycocerosates and phenolic glycolipids. Front Cell Infect. Microbiol. 4, 173 (2014).

  18. 18.

    Arbues, A. et al. Trisaccharides of phenolic glycolipids confer advantages to pathogenic mycobacteria through manipulation of host-cell pattern-recognition receptors. ACS Chem. Biol. 11, 2865–2875 (2016).

  19. 19.

    Day, T. A. et al. Mycobacterium tuberculosis strains lacking surface lipid phthiocerol dimycocerosate are susceptible to killing by an early innate host response. Infect. Immun. 82, 5214–5222 (2014).

  20. 20.

    Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Jr. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

  21. 21.

    Tran, V., Ahn, S. K., Ng, M., Li, M. & Liu, J. Loss of lipid virulence factors reduces the efficacy of the BCGvaccine. Sci. Rep. 6, 29076 (2016).

  22. 22.

    Indrigo, J., Hunter, R. L. Jr. & Actor, J. K. Cord factor trehalose 6,6’-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149, 2049–2059 (2003).

  23. 23.

    Bloch, H. Studies on the virulence of tubercle bacilli: isolation and biological properties of a constituent of virulent organisms. J. Exp. Med 91, 197–219 (1950).

  24. 24.

    Noll, H., Bloch, H., Asselineau, J. & Lederer, E. The chemical structure of the cord factor of Mycobacterium tuberculosis. Biochim Biophys. Acta 20, 299–309 (1956).

  25. 25.

    Smith, K. C., Orme, I. M. & Starke, J. R. Tuberculosis vaccines. In Vaccines 6e, Plotkin, Offit & Orenstein (Eds), Philadelphia: WB Saunders, 35, 789–811 (2013).

  26. 26.

    Vogelzang, A. et al. Central memory CD4+T cells are responsible for the recombinant Bacillus Calmette-Guerin DeltaureC::hly vaccine’s superior protection against tuberculosis. J. Infect. Dis., 10.1093/infdis/jiu347 (2014).

  27. 27.

    Mueller, S. N., Gebhardt, T., Carbone, F. R. & Heath, W. R. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 31, 137–161 (2013).

  28. 28.

    Cyktor, J. C., Carruthers, B., Beamer, G. L. & Turner, J. Clonal Expansions of CD8(+) T Cells with IL-10 secreting capacity occur during chronic Mycobacterium tuberculosis infection. PLoS. ONE 8, e58612 (2013).

  29. 29.

    Flynn, J. L. et al. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med 178, 2249–2254 (1993).

  30. 30.

    Khader, S. A. et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8, 369–377 (2007).

  31. 31.

    Effros, R. B. & Walford, R. L. Diminished T-cell response to influenza virus in aged mice. Immunology 49, 387–392 (1983).

  32. 32.

    Cooper, A. M. et al. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J. Exp. Med. 178, 2243–2247 (1993).

  33. 33.

    Cooper, A. M. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol. 27, 393–422 (2009).

  34. 34.

    Indrigo, J., Hunter, R. L. Jr. & Actor, J. K. Influence of trehalose 6,6’-dimycolate (TDM) during mycobacterial infection of bone marrow macrophages. Microbiology 148, 1991–1998 (2002).

  35. 35.

    Spargo, B. J., Crowe, L. M., Ioneda, T., Beaman, B. L. & Crowe, J. H. Cord factor (a,a-trehalose 6,6’-dimycolate) inhibits fusion between phospholipid vesicles. Proc. Natl Acad. Sci. USA 88, 737–740 (1991).

  36. 36.

    Pieters, J. Mycobacterium tuberculosis and the macrophage: Maintaining a balance. Cell Host. Microbe 3, 399–407 (2008).

  37. 37.

    Fox, C. J., Hammerman, P. S. & Thompson, C. B. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5, 844–852 (2005).

  38. 38.

    Kan-Sutton, C., Jagannath, C. & Hunter, R. L. Jr. Trehalose 6,6’-dimycolate on the surface of Mycobacterium tuberculosis modulates surface marker expression for antigen presentation and costimulation in murine macrophages. Microbes Infect. 11, 40–48 (2009).

  39. 39.

    Ozeki, Y. et al. In vivo induction of apoptosis in the thymus by administration of mycobacterial cord factor (trehalose 6,6’-dimycolate). Infect. Immun. 65, 1793–1799 (1997).

  40. 40.

    Reed, M. B., Gagneux, S., Deriemer, K., Small, P. M. & Barry, C. E. III The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J. Bacteriol. 189, 2583–2589 (2007).

  41. 41.

    Cox, D., Tseng, C. C., Bjekic, G. & Greenberg, S. A. A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J. Biol. Chem. 274, 1240–1247 (2000).

  42. 42.

    Gopal, R. et al. Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection. PLoS. Pathog. 10, e1004099 (2014).

  43. 43.

    Pitt, J. M. et al. Blockade of IL-10 signaling during bacillus Calmette-Guerin vaccination enhances and sustains Th1, Th17, and innate lymphoid IFN-gamma and IL-17 responses and increases protection to Mycobacterium tuberculosisinfection. J. Immunol. 189, 4079–4087 (2012).

  44. 44.

    Fauci, A. S. Addressing the tuberculosis epidemic: 21st century research for an ancient disease. JAMA 320, 1315–1316 (2018).

  45. 45.

    Moliva, J. I. et al. Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+T-cell-dependent manner. Mucosal Immunol., (2017).

  46. 46.

    Tullius, M. V., Harth, G. & Horwitz, M. A. High extracellular levels of Mycobacterium tuberculosis glutamine synthetase and superoxide dismutase in actively growing cultures are due to high expression and extracellular stability rather than to a protein-specific export mechanism. Infect. Immun. 69, 6348–6363 (2001).

  47. 47.

    Arcos, J. et al. Human lung hydrolases delineate Mycobacterium tuberculosis-macrophage interactions and the capacity to control infection. J. Immunol. 187, 372–381 (2011).

  48. 48.

    Torrelles, J. B. et al. Identification of Mycobacterium tuberculosis clinical isolates with altered phagocytosis by human macrophages due to a truncated lipoarabinomannan. J. Biol. Chem. 283, 31417–31428 (2008).

  49. 49.

    Canan, C. H. et al. Characterization of lung inflammation and its impact on macrophage function in aging. J. Leukoc. Biol. 96, 473–480 (2014).

Download references


This work was supported by the National Institute of Allergy and Infectious Diseases grant numbers [AI073856 and AI093570] to J.B.T.; by a National Institute on Aging grant number [AG051428] supporting J.T. and J.B.T.; and by The Ohio State University (OSU) College of Medicine Systems in Integrative Biology Training Grant [T32-GM068412], and NIH/NIAID [AI039570-S1] and NIH/NIA [AG051428-S1] supplements supporting J.I.M. This study was also partially supported by a CTSA award UL1TR001070 from the National Center for Advancing Translational Sciences. Its contents are solely the responsibility of the authors and do not necessarily represent official views of the National Center for Advancing Translational Sciences or the National Institutes of Health. We thank the University Laboratory Animal Resources facility and personnel, the Biosafety Level 3 program facility and personnel, and the Comparative Pathology and Mouse Phenotyping Shared Resource (P30 CA016058) at OSU for their technical support.

Author information


  1. Texas Biomedical Research Institute, San Antonio, TX, 78227, USA

    • Juan I. Moliva
    • , Varun Dwivedi
    • , Joanne Turner
    •  & Jordi B. Torrelles
  2. Department of Microbial Infection and Immunity, Wexner College of Medicine, The Ohio State University, Columbus, OH, 43210, USA

    • Juan I. Moliva
    • , Austin P. Hossfeld
    • , Sabeen Sidiki
    • , Cynthia H. Canan
    • , Joanne Turner
    •  & Jordi B. Torrelles
  3. Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA

    • Gillian Beamer


  1. Search for Juan I. Moliva in:

  2. Search for Austin P. Hossfeld in:

  3. Search for Sabeen Sidiki in:

  4. Search for Cynthia H. Canan in:

  5. Search for Varun Dwivedi in:

  6. Search for Gillian Beamer in:

  7. Search for Joanne Turner in:

  8. Search for Jordi B. Torrelles in:


Conceptualization, J.I.M., J.T., and J.B.T.; Methodology, J.I.M., J.T., and J.B.T.; Investigation, J.I.M., A.P.H., S.S., C.H.C., V.D., and G.B.; Writing – Original Draft, J.I.M.; Writing – Review & Editing, J.I.M., J.T., and J.B.T.; Funding Acquisition, J.T and J.B.T.; Supervision, J.T. and J.B.T.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Joanne Turner or Jordi B. Torrelles.

Supplementary information

About this article

Publication history