Article | Published:

Group 2 innate lymphoid cells (ILC2) are regulated by stem cell factor during chronic asthmatic disease


Stem cell factor (SCF) binds to the receptor c-Kit that is expressed on a number of myeloid and lymphoid cell populations, including Type 2 innate lymphoid cells (ILC2). However the importance of the SCF/c-Kit interaction in ILC2 has not been studied. Here we investigate the role of a specific SCF isoform, SCF248, in the allergic asthmatic response and SCF/c-Kit in ILC2 activation during chronic allergy. We observed that mice treated with a monoclonal antibody specific for SCF248 attenuated the development of chronic asthmatic disease by decreasing the number of mast cells, ILC2 and eosinophils, as well as reducing the accompanying pathogenic cytokine responses. These data were supported using SCFfl/fl-Col1-Cre-ERT mice and W/Wv mice that demonstrated the importance of the stem cell factor/c-Kit activation during chronic allergy and the accumulation of c-kit+ cells. Finally, these data demonstrate for the first time that SCF could activate ILC2 cells in vitro for the production of key allergic cytokines. Together these findings indicate that SCF is a critical cytokine involved in the activation of ILC2 that lead to more severe outcomes during chronic allergy and that the SCF248 isoform could be an important therapeutic target to control the disease progression.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Lambrecht, B. N. & Hammad, H. The immunology of asthma. Nat. Immunol. 16, 45–56 (2015).

  2. 2.

    Maddox, L. & Schwartz, D. A. The pathophysiology of asthma. Annu. Rev. Med. 53, 477–498 (2002).

  3. 3.

    Oliveira, S. H. et al. Stem cell factor induces eosinophil activation and degranulation: mediator release and gene array analysis. Blood 100, 4291–4297 (2002).

  4. 4.

    O’Byrne, P. M., Naji, N. & Gauvreau, G. M. Severe asthma: future treatments. Clin. Exp. Allergy. 42, 706–711 (2012).

  5. 5.

    McBrien, C. N. & Menzies-Gow, A. The biology of Eosinophils and their role in asthma. Front. Med. 4, 93 (2017).

  6. 6.

    McKenzie, A. N. Type-2 innate lymphoid cells in asthma and allergy. Ann. Am. Thorac. Soc. 11(Suppl 5), S263–S270 (2014).

  7. 7.

    Barlow, J. L. et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J. Allergy Clin. Immunol. 129, 191–198 (2012). e191-194.

  8. 8.

    Halim, T. Y., Krauss, R. H., Sun, A. C. & Takei, F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36, 451–463 (2012).

  9. 9.

    Fallon, P. G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

  10. 10.

    Camelo, A. et al. IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv. 1, 577–589 (2017).

  11. 11.

    Galli, S. J., Tsai, M. & Wershil, B. K. The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. Am. J. Pathol. 142, 965–974 (1993).

  12. 12.

    Ashman, L. K. The biology of stem cell factor and its receptor C-kit. Int. J. Biochem. Cell. Biol. 31, 1037–1051 (1999).

  13. 13.

    Broudy, V. C. Stem cell factor and hematopoiesis. Blood 90, 1345–1364 (1997).

  14. 14.

    Williams, D. A. & Majumdar, M. K. Analysis of steel factor (stem cell factor) isoforms in the hematopoietic microenvironment. Stem Cells 12(Suppl 1), 67–74 (1994). discussion75-67.

  15. 15.

    Broxmeyer, H. E. et al. The kit receptor and its ligand, steel factor, as regulators of hemopoiesis. Cancer Cells 3, 480–487 (1991).

  16. 16.

    Kapur, R. et al. Signaling through the interaction of membrane-restricted stem cell factor and c-kit receptor tyrosine kinase: genetic evidence for a differential role in erythropoiesis. Blood 91, 879–889 (1998).

  17. 17.

    Tajima, Y. et al. Consequences of exclusive expression in vivo of Kit-ligand lacking the major proteolytic cleavage site. Proc. Natl Acad. Sci. USA 95, 11903–11908 (1998).

  18. 18.

    Zheng, B., Zhang, Z., Black, C. M., de Crombrugghe, B. & Denton, C. P. Ligand-dependent genetic recombination in fibroblasts: a potentially powerful technique for investigating gene function in fibrosis. Am. J. Pathol. 160, 1609–1617 (2002).

  19. 19.

    Campbell, E., Hogaboam, C., Lincoln, P. & Lukacs, N. W. Stem cell factor-induced airway hyperreactivity in allergic and normal mice. Am. J. Pathol. 154, 1259–1265 (1999).

  20. 20.

    Dolgachev, V., Petersen, B. C., Budelsky, A. L., Berlin, A. A. & Lukacs, N. W. Pulmonary IL-17E (IL-25) production and IL-17RB+myeloid cell-derived Th2 cytokine production are dependent upon stem cell factor-induced responses during chronic allergic pulmonary disease. J. Immunol. 183, 5705–5715 (2009).

  21. 21.

    Miller, A. L., Bowlin, T. L. & Lukacs, N. W. Respiratory syncytial virus-induced chemokine production: linking viral replication to chemokine production in vitro and in vivo. J. Infect. Dis. 189, 1419–1430 (2004).

  22. 22.

    Makowska, J. S., Cieslak, M. & Kowalski, M. L. Stem cell factor and its soluble receptor (c-kit) in serum of asthmatic patients- correlation with disease severity. BMC Pulm. Med. 9, 27 (2009).

  23. 23.

    Li, Y. et al. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J. Exp. Med. 208, 1459–1471 (2011).

  24. 24.

    Huang, E. J., Nocka, K. H., Buck, J. & Besmer, P. Differential expression and processing of two cell associated forms of the kit-ligand: KL-1 and KL-2. Mol. Biol. Cell 3, 349–362 (1992).

  25. 25.

    Dolgachev, V., Berlin, A. A. & Lukacs, N. W. Eosinophil activation of fibroblasts from chronic allergen-induced disease utilizes stem cell factor for phenotypic changes. Am. J. Pathol. 172, 68–76 (2008).

  26. 26.

    Grimbaldeston, M. A. et al. Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am. J. Pathol. 167, 835–848 (2005).

  27. 27.

    Hoyler, T. et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37, 634–648 (2012).

  28. 28.

    Petersen, B. C., Budelsky, A. L., Baptist, A. P., Schaller, M. A. & Lukacs, N. W. Interleukin-25 induces type 2 cytokine production in a steroid-resistant interleukin-17RB+myeloid population that exacerbates asthmatic pathology. Nat. Med. 18, 751–758 (2012).

  29. 29.

    Saenz, S. A. et al. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464, 1362–1366 (2010).

  30. 30.

    Bodine, D. M., Orlic, D., Birkett, N. C., Seidel, N. E. & Zsebo, K. M. Stem cell factor increases colony-forming unit-spleen number in vitro in synergy with interleukin-6, and in vivo in Sl/Sld mice as a single factor. Blood 79, 913–919 (1992).

  31. 31.

    Lei, Z. et al. SCF and IL-31 rather than IL-17 and BAFF are potential indicators in patients with allergic asthma. Allergy 63, 327–32 (2008).

  32. 32.

    Da Silva, C. A. et al. Marked stem cell factor expression in the airways of lung transplant recipients. Respir. Res. 7, 90 (2006).

  33. 33.

    Berlin, A. A., Hogaboam, C. M. & Lukacs, N. W. Inhibition of SCF attenuates peribronchial remodeling in chronic cockroach allergen-induced asthma. Lab. Invest. 86, 557–565 (2006).

  34. 34.

    Da Silva, C. A. & Frossard, N. Regulation of stem cell factor expression in inflammation and asthma. Mem. Inst. Oswaldo. Cruz. 100(Suppl 1), 145–151 (2005).

  35. 35.

    Berlin, A. A., Lincoln, P., Tomkinson, A. & Lukacs, N. W. Inhibition of stem cell factor reduces pulmonary cytokine levels during allergic airway responses. Clin. Exp. Immunol. 136, 15–20 (2004).

  36. 36.

    Oliveira, S. H. & Lukacs, N. W. Stem cell factor: a hemopoietic cytokine with important targets in asthma. Curr. Drug. Targets Inflamm. Allergy 2, 313–318 (2003).

  37. 37.

    Columbo, M. et al. The human recombinant c-kit receptor ligand, rhSCF, induces mediator release from human cutaneous mast cells and enhances IgE-dependent mediator release from both skin mast cells and peripheral blood basophils. J. Immunol. 149, 599–608 (1992).

  38. 38.

    Al-Muhsen, S. Z., Shablovsky, G., Olivenstein, R., Mazer, B. & Hamid, Q. The expression of stem cell factor and c-kit receptor in human asthmatic airways. Clin. Exp. Allergy. 34, 911–916 (2004).

  39. 39.

    Yuan, Q., Austen, K. F., Friend, D. S., Heidtman, M. & Boyce, J. A. Human peripheral blood eosinophils express a functional c-kit receptor for stem cell factor that stimulates very late antigen 4 (VLA-4)-mediated cell adhesion to fibronectin and vascular cell adhesion molecule 1 (VCAM-1). J. Exp. Med. 186, 313–323 (1997).

  40. 40.

    Dolgachev, V., Thomas, M., Berlin, A. & Lukacs, N. W. Stem cell factor-mediated activation pathways promote murine eosinophil CCL6 production and survival. J. Leukoc. Biol. 81, 1111–1119 (2007).

  41. 41.

    Huang, B. et al. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112, 1269–1279 (2008).

  42. 42.

    Ito, T. et al. Stem cell factor programs the mast cell activation phenotype. J. Immunol. 188, 5428–5437 (2012).

  43. 43.

    Moretti, S. et al. A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nat. Commun. 8, 14017 (2017).

  44. 44.

    Vermeer, P. D., Harson, R., Einwalter, L. A., Moninger, T. & Zabner, J. Interleukin-9 induces goblet cell hyperplasia during repair of human airway epithelia. Am. J. Respir. Cell Mol. Biol. 28, 286–295 (2003).

  45. 45.

    Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12, 1071–1077 (2011).

  46. 46.

    Doherty, T. A. et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J. Allergy Clin. Immunol. 132, 205–213 (2013).

  47. 47.

    Pelly, V. S. et al. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol. 9, 1407–1417 (2016).

  48. 48.

    Baerenwaldt, A. et al. Flt3 ligand regulates the development of innate lymphoid cells in fetal and adult mice. J. Immunol. 196, 2561–2571 (2016).

  49. 49.

    Seehus C. & Kaye J. In vitro differentiation of murine innate lymphoid cells from common lymphoid progenitor cells. Bio. Protoc. 6, (2016).

  50. 50.

    Verykokakis, M., Zook, E. C. & Kee, B. L. ID’ing innate and innate-like lymphoid cells. Immunol. Rev. 261, 177–197 (2014).

  51. 51.

    Zhong, C. & Zhu, J. Transcriptional regulators dictate innate lymphoid cell fates. Protein Cell 8, 242–254 (2017).

  52. 52.

    Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

Download references


This work was funded in part by NIH grants AI036302 and HL138013. We thank Judith Connett, PhD for editorial review and Gabriela Monzon for artwork.

Author information

Competing interests

The authors declare no competing interests.

Correspondence to Nicholas W. Lukacs.

Supplementary information

Supplemental Figure 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9