Article | Published:

CLA-supplemented diet accelerates experimental colorectal cancer by inducing TGF-β-producing macrophages and T cells

Mucosal Immunology (2018) | Download Citation



Conjugated linoleic acid (CLA) has been shown to activate the nuclear receptor PPAR-γ and modulate metabolic and immune functions. Despite the worldwide use of CLA dietary supplementation, strong scientific evidence for its proposed beneficial actions are missing. We found that CLA-supplemented diet reduced mucosal damage and inflammatory infiltrate in the dextran sodium sulfate (DSS)-induced colitis model. Conditional deletion of PPAR-γ in macrophages from mice supplemented with CLA diet resulted in loss of this protective effect of CLA, suggesting a PPAR-γ-dependent mechanism mediated by macrophages. However, CLA supplementation significantly worsened colorectal tumor formation induced by azoxymethane and DSS by inducing macrophage and T-cell-producing TGF-β via PPAR-γ activation. Accordingly, either macrophage-specific deletion of PPAR-γ or in vivo neutralization of latency-associated peptide (LAP, a membrane-bound TGF-β)-expressing cells abrogated the protumorigenic effect of CLA. Thus, the anti-inflammatory properties of CLA are associated with prevention of colitis but also with development of colorectal cancer.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Pariza, M. W. et al. A beef-derived mutagenesis modulator inhibits initiation of mouse epidermal tumors by 7,12-dimethylbenz[a]anthracene. Carcinogenesis 6, 591–593 (1985).

  2. 2.

    Banni, S. et al. Conjugated linoleic acids (CLA) as precursors of a distinct family of PUFA. Lipids 39, 1143–1146 (2004).

  3. 3.

    Gholami, Z. & Khosravi-Darani, K. An overview of conjugated linoleic acid: microbial production and application. Mini Rev. Med. Chem. 14, 734–746 (2014).

  4. 4.

    Turpeinen, A. M. et al. Bioconversion of vaccenic acid to conjugated linoleic acid in humans. Am. J. Clin. Nutr. 76, 504–510 (2002).

  5. 5.

    Dussault, I. & Forman, B. M. Prostaglandins and fatty acids regulate transcriptional signaling via the peroxisome proliferator activated receptor nuclear receptors. Prostaglandins Other Lipid Mediat. 62, 1–13 (2000).

  6. 6.

    Szanto, A. et al. STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells. Immunity 33, 699–712 (2010).

  7. 7.

    Mansén, A., Guardiola-Diaz, H., Rafter, J., Branting, C. & Gustafsson, J. A. Expression of the peroxisome proliferator-activated receptor (PPAR) in the mouse colonic mucosa. Biochem. Biophys. Res. Commun. 222, 844–851 (1996).

  8. 8.

    Bassaganya-Riera, J. et al. Conjugated linoleic acid modulates immune responses in patients with mild to moderately active Crohn’s disease. Clin. Nutr. 31, 721–727 (2012).

  9. 9.

    Belury, M. A. Inhibition of carcinogenesis by conjugated linoleic acid: potential mechanisms of action. J. Nutr. 132, 2995–2998 (2002).

  10. 10.

    Rousseaux, C. et al. The 5-aminosalicylic acid antineoplastic effect in the intestine is mediated by PPARγ. Carcinogenesis 34, 2580–2586 (2013).

  11. 11.

    Dubuquoy, L. et al. Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology 124, 1265–1276 (2003).

  12. 12.

    Dubuquoy, L. et al. PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut 55, 1341–1349 (2006).

  13. 13.

    Bertin, B., Dubuquoy, L., Colombel, J.-F. & Desreumaux, P. PPAR-gamma in ulcerative colitis: a novel target for intervention. Curr. Drug. Targets 14, 1501–1507 (2013).

  14. 14.

    Rogler, G. Chronic ulcerative colitis and colorectal cancer. Cancer Lett. 345, 235–241 (2014).

  15. 15.

    Bernstein, C. N. Large registry epidemiology in IBD. Inflamm. Bowel Dis. 23, 1941–1949 (2017).

  16. 16.

    Matuchansky, C. Cancer colorectal: quelques aspects actuels de son épidémiologie, de sa prévention et de son dépistage. Presse Med. 46, 141–144 (2017).

  17. 17.

    Duricova, D. What can we learn from epidemiological studies in inflammatory bowel disease? Dig. Dis. 35, 69–73 (2017).

  18. 18.

    Luo, C. & Zhang, H. The role of proinflammatory pathways in the pathogenesis of colitis-associated colorectal cancer. Mediat. Inflamm. 2017, 1–8 (2017).

  19. 19.

    Tanaka, T. et al. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 94, 965–973 (2003).

  20. 20.

    Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, Inflammation, and Cancer. Cell 140, 883–899 (2010).

  21. 21.

    Erreni, M., Mantovani, A. & Allavena, P. Tumor-associated macrophages (TAM) and inflammation in colorectal cancer. Cancer Microenviron. 4, 141–154 (2011).

  22. 22.

    Tanaka, A. & Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Cell Res. 27, 109–118 (2017).

  23. 23.

    Saito, T. et al. Two FOXP3 + CD4 + T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat. Med. 22, 679–684 (2016).

  24. 24.

    Nishikawa, H. & Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Curr. Opin. Immunol. 27, 1–7 (2014).

  25. 25.

    Scurr, M. et al. Highly prevalent colorectal cancer-infiltrating LAP+ Foxp3 T cells exhibit more potent immunosuppressive activity than Foxp3+ regulatory T cells. Mucosal Immunol. 7, 428–439 (2014).

  26. 26.

    Viladomiu, M., Hontecillas, R. & Bassaganya-Riera, J. Modulation of inflammation and immunity by dietary conjugated linoleic acid. Eur. J. Pharmacol. 785, 87–95 (2016).

  27. 27.

    Moreira, T. G. et al. Consumption of conjugated linoleic acid (CLA) supplemented diet during colitis development ameliorates gut inflammation without causing steatosis in mice. J. Nutr. Biochem. 57, 238–245 (2018).

  28. 28.

    Sepúlveda, S. E. et al. [Inflammatory bowel diseases: an immunological approach]. Rev. Med. Chil. 136, 367–375 (2008).

  29. 29.

    Ferrante, C. J. et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL4Rα) signaling. Inflammation 36, 921–931 (2014).

  30. 30.

    Medina-Contreras, O. et al. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J. Clin. Invest. 121, 4787–4795 (2011).

  31. 31.

    Kraus, S. & Arber, N. Inflammation and colorectal cancer. Curr. Opin. Pharmacol. 9, 405–410 (2009).

  32. 32.

    Pariza, M. W. & Ha, Y. L. Conjugated dienoic derivatives of linoleic acid: a new class of anticarcinogens. Med. Oncol. Tumor Pharmacother. 7, 169–171 (1990).

  33. 33.

    Bassaganya-Riera, J. & Hontecillas, R. CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. Clin. Nutr. 25, 454–465 (2006).

  34. 34.

    Botta, M. et al. PPAR agonists and metabolic syndrome: an established role? Int. J. Mol. Sci. 19, pii: E1197 (2018).

  35. 35.

    Clausen, B. E., Burkhardt, C., Reith, W., Renkawitz, R. & Förster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277 (1999).

  36. 36.

    Ikushima, H. & Miyazono, K. TGFbeta signalling: a complex web in cancer progression. Nat. Rev. Cancer 10, 415–424 (2010).

  37. 37.

    Bassaganya-Riera, J. et al. Activation of PPAR γ and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127, 777–791 (2004).

  38. 38.

    Bouguen, G. et al. Intestinal steroidogenesis controls PPARγ expression in the colon and is impaired during ulcerative colitis. Gut 64, 901–910 (2015).

  39. 39.

    Pseftogas, A., Gonidas, C. & Mosialos, G. Activation of peroxisome proliferator-activated receptor gamma in mammary epithelial cells upregulates the expression of tumor suppressor Cyld to mediate growth inhibition and anti-inflammatory effects. Int. J. Biochem. Cell. Biol. 82, 49–56 (2017).

  40. 40.

    Bresson, J. et al. Scientific opinion on the safety of ‘conjugated linoleic acis (CLA)-rich oil’ (Clarinol®) as a novel food ingredient1. EFSA Journal 8, 1601 (2010).

  41. 41.

    Shiraishi, R. et al. Conjugated linoleic acid suppresses colon carcinogenesis in azoxymethane-pretreated rats with long-term feeding of diet containing beef tallow. J. Gastroenterol. 45, 625–635 (2010).

  42. 42.

    Bruen, R., Fitzsimons, S. & Belton, O. Atheroprotective effects of conjugated linoleic acid. Br. J. Clin. Pharmacol. 83, 46–53 (2017).

  43. 43.

    Song, K. et al. Anti-diabetic effect of fermented milk containing conjugated linoleic acid on type II diabetes mellitus. Korean J. Food Sci. Anim. Resour. 36, 170–177 (2016).

  44. 44.

    Han, L., Shen, W.-J., Bittner, S., Kraemer, F. B. & Azhar, S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol. 13, 279–296 (2017).

  45. 45.

    Monsalve, F. A., Pyarasani, R. D., Delgado-Lopez, F. & Moore-Carrasco, R. Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediat. Inflamm. 2013, 1–18 (2013).

  46. 46.

    Gou, Q., Gong, X., Jin, J., Shi, J. & Hou, Y. Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget 8, 60704–60709 (2017).

  47. 47.

    Faria, A. M. C. et al. Food components and the immune system: from tonic agents to allergens. Front. Immunol. 4, 102 (2013).

  48. 48.

    Laukoetter, M. G. et al. Intestinal cancer risk in Crohn’s disease: a meta-analysis. J. Gastrointest. Surg. 15, 576–583 (2011).

  49. 49.

    Lutgens, M. W. M. D. et al. Declining risk of colorectal cancer in inflammatory bowel disease. Inflamm. Bowel Dis. 19, 789–799 (2013).

  50. 50.

    Perše, M. & Cerar, A. Morphological and molecular alterations in 1,2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. J. Biomed. Biotechnol. 2011, 473964 (2011).

  51. 51.

    Kadirareddy, R. H., Vemuri, S. G. & Palempalli, U. M. D. Probiotic conjugated linoleic acid mediated apoptosis in breast cancer cells by downregulation of NFκB. Asian Pac. J. Cancer Prev. 17, 3395–3403 (2016).

  52. 52.

    Wang, W. et al. Dynamic changes of peritoneal macrophages and subpopulations during ulcerative colitis to metastasis of colorectal carcinoma in a mouse model. Inflamm. Res. 62, 669–680 (2013).

  53. 53.

    Wirtz, S. et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12, 1295–1309 (2017).

  54. 54.

    Evans, N. P. et al. Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARgamma. J. Nutr. 140, 515–521 (2010).

  55. 55.

    Shin, K. H., Park, Y. J. & Park, J. G. Mutational analysis of the transforming growth factor beta receptor type II gene in hereditary nonpolyposis colorectal cancer and early-onset colorectal cancer patients. Clin. Cancer Res. 6, 536–540 (2000).

  56. 56.

    Medicherla, S. et al. Antitumor activity of TGF-beta inhibitor is dependent on the microenvironment. Anticancer Res. 27, 4149–4157 (2007).

  57. 57.

    Gabriely, G. et al. Targeting latency-associated peptide promotes antitumor immunity. Sci. Immunol. 2, eaaj1738 (2017).

  58. 58.

    Reeves, P. G., Nielsen, F. H. & Fahey, G. C. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J. Nutr. 123, 1939–1951 (1993).

  59. 59.

    Mchenga, S. S. S., Wang, D., Li, C., Shan, F. & Lu, C. Inhibitory effect of recombinant IL-25 on the development of dextran sulfate sodium-induced experimental colitis in mice. Cell. Mol. Immunol. 5, 425–431 (2008).

  60. 60.

    Santos Rocha, C. et al. Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii. PLoS ONE 9, e85923 (2014).

  61. 61.

    McCafferty, D. M. et al. Spontaneously developing chronic colitis in IL-10/iNOS double-deficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G90–G99 (2000).

  62. 62.

    Rodrigues, M. A. et al. Inner nuclear membrane localization of epidermal growth factor receptor (EGFR) in spontaneous canine model of invasive micropapillary carcinoma of the mammary gland. Pathol. Res. Pract. 212, 340–344 (2016).

  63. 63.

    David, B. A. et al. Isolation and high-dimensional phenotyping of gastrointestinal immune cells. Immunology 151, 56–70 (2017).

  64. 64.

    Magness, S. T. et al. A multicenter study to standardize reporting and analyses of fluorescence-activated cell-sorted murine intestinal epithelial cells. AJP Gastrointest. Liver Physiol. 305, G542–G551 (2013).

  65. 65.

    Oliveira, L. S. et al. A defective TLR4 signaling for IFN-β expression is responsible for the innately lower ability of BALB/c macrophages to produce NO in response to LPS as compared to C57BL/6. PLoS ONE 9, e98913 (2014).

Download references


We would like to acknowledge Marie Curie fellowship program, and Nuclear Receptor-network EU-funded project for supporting collaboration projects. We are thankful to BASF company for kindly provide Tonalin®, to Dr. Dezső Balázs from Pathology Department from Debrecen University, Hungary for the kind help with pathology discussions and slides manufacture. We are also grateful to Dr. Vany Ferraz from Chemistry Department of UFMG, Brazil for providing CG analysis of CLA diet, to Dr. Denise Carmona (UFMG, Brazil), and Dr. Claudia Martins Carneiro (UFOP, Brazil) for discussion and pathological analysis. This study had financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPq) and Fundação de Amparo a Pesquisa do Estado de Minas Gerais, Brazil (FAPEMIG).

Author contributions

T.G.M. designed the project and experiments, carried out the experiments, and wrote the manuscript. L.S.H. set up CAC model and helped perform experiments; A.C.G. helped designed the project and performed experiments; R.P.O. provided input for experiment design; N.M.G.P.Q. performed western blot experiments; D.M. performed epithelial cell-related experiments and qPCR; B.D. helped perform luciferase assays; A.T.V. performed gut permeability; S.L. performed DSS experiment in anti-LAP treatment; M.A.R. performed confocal immunofluorescence microscopy, D.A.G. performed confocal analysis, G.G. designed anti-LAP experiments and provide the antibody; E.F. performed IHC and histology experiments and analysis; H.L.W. provide anti-LAP antibody and reagents, R.M.R. performed experiments and wrote the manuscript. L.N. supervised PPAR-γ experiments, provided LysMCrePPAR-γflox/flox mice, helped design experiments, and corrected manuscript; A.M.C.F. supervised the project, designed experiments, and corrected the manuscript.

Author information

Author notes

    • B Daniel
    •  & L. Nagy

    Present address: Department of Medicine, School of Medicine, Johns Hopkins All Children’s Hospital, Johns Hopkins University, St. Petersburg, FL, 33701, USA


  1. Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil

    • T. G. Moreira
  2. Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil

    • T. G. Moreira
    • , L. S. Horta
    • , A. C. Gomes-Santos
    • , R. P. Oliveira
    • , N. M. G. P. Queiroz
    • , A. T. Vieira
    • , A. M. Rodrigues
    • , D. A. Gomes
    •  & A. M. C. Faria
  3. Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

    • T. G. Moreira
    • , D. Mangani
    • , S. Liu
    • , G. Gabriely
    • , H. L. Weiner
    •  & R. M. Rezende
  4. Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary

    • T. G. Moreira
    •  & B Daniel
  5. Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil

    • E. Ferreira
  6. Diabetes and Obesity Research Center, Sanford Burnham Medical Research Institute, Lake Nona, Orlando, FL, USA

    • L. Nagy


  1. Search for T. G. Moreira in:

  2. Search for L. S. Horta in:

  3. Search for A. C. Gomes-Santos in:

  4. Search for R. P. Oliveira in:

  5. Search for N. M. G. P. Queiroz in:

  6. Search for D. Mangani in:

  7. Search for B Daniel in:

  8. Search for A. T. Vieira in:

  9. Search for S. Liu in:

  10. Search for A. M. Rodrigues in:

  11. Search for D. A. Gomes in:

  12. Search for G. Gabriely in:

  13. Search for E. Ferreira in:

  14. Search for H. L. Weiner in:

  15. Search for R. M. Rezende in:

  16. Search for L. Nagy in:

  17. Search for A. M. C. Faria in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to T. G. Moreira or A. M. C. Faria.

Electronic supplementary material

About this article

Publication history