Article | Published:

Human intestinal pro-inflammatory CD11chighCCR2+CX3CR1+ macrophages, but not their tolerogenic CD11cCCR2CX3CR1 counterparts, are expanded in inflammatory bowel disease

Mucosal Immunologyvolume 11pages11141126 (2018) | Download Citation



Although macrophages (Mϕ) maintain intestinal immune homoeostasis, there is not much available information about their subset composition, phenotype and function in the human setting. Human intestinal Mϕ (CD45+HLA-DR+CD14+CD64+) can be divided into subsets based on the expression of CD11c, CCR2 and CX3CR1. Monocyte-like cells can be identified as CD11chighCCR2+CX3CR1+ cells, a phenotype also shared by circulating CD14+ monocytes. On the contrary, their Mϕ-like tissue-resident counterparts display a CD11cCCR2CX3CR1 phenotype. CD11chigh monocyte-like cells produced IL-1β, both in resting conditions and after LPS stimulation, while CD11c Mϕ-like cells produced IL-10. CD11chigh pro-inflammatory monocyte-like cells, but not the others, were increased in the inflamed colon from patients with inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Tolerogenic IL-10-producing CD11c Mϕ-like cells were generated from monocytes following mucosal conditioning. Finally, the colonic mucosa recruited circulating CD14+ monocytes in a CCR2-dependent manner, being such capacity expanded in IBD. Mϕ subsets represent, therefore, transition stages from newly arrived pro-inflammatory monocyte-like cells (CD11chighCCR2+CX3CR1+) into tolerogenic tissue-resident (CD11cCCR2CX3CR1) Mϕ-like cells as reflected by the mucosal capacity to recruit circulating monocytes and induce CD11c Mϕ. The process is nevertheless dysregulated in IBD, where there is an increased migration and accumulation of pro-inflammatory CD11chigh monocyte-like cells.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Gomollón, F. et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn's disease 2016: Part 1: diagnosis and medical management. J. Crohns Colitis 11, 3–25 (2017).

  2. 2.

    Magro, F. et al. Third european evidence-based consensus on diagnosis and management of ulcerative colitis. Part 1: definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders. J. Crohns Colitis 11, 649–670 (2017).

  3. 3.

    Rogler, G. Resolution of inflammation in inflammatory bowel disease. Lancet Gastroenterol. Hepatol. 2, 521–530 (2017).

  4. 4.

    Molodecky, N. A. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54.e42 (2012).

  5. 5.

    Gisbert, J. P., Marín, A. C., McNicholl, A. G. & Chaparro, M. Systematic review with meta-analysis: the efficacy of a second anti-TNF in patients with inflammatory bowel disease whose previous anti-TNF treatment has failed. Aliment. Pharmacol. Ther. 41, 613–623 (2015).

  6. 6.

    Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

  7. 7.

    Persson, E. K., Scott, C. L., Mowat, A. M. & Agace, W. W. Dendritic cell subsets in the intestinal lamina propria: ontogeny and function. Eur. J. Immunol. 43, 3098–3107 (2013).

  8. 8.

    Cerovic, V., Bain, C. C., Mowat, A. M. & Milling, S. W. F. Intestinal macrophages and dendritic cells: what's the difference? Trends Immunol. 35, 270–277 (2014).

  9. 9.

    Bain, C. C. & Mowat, A. M. Macrophages in intestinal homeostasis and inflammation. Immunol. Rev. 260, 102–117 (2014).

  10. 10.

    Bain, C. C. et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 6, 498–510 (2013).

  11. 11.

    Bain, C. C. et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 15, 929–937 (2014).

  12. 12.

    Joeris, T., Müller-Luda, K., Agace, W. W. & Mowat, A. M. Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunol. 10, 845–864 (2017).

  13. 13.

    Zigmond, E. & Jung, S. Intestinal macrophages: well educated exceptions from the rule. Trends Immunol. 34, 162–168 (2013).

  14. 14.

    Mowat, A. M. & Bain, C. C. Mucosal macrophages in intestinal homeostasis and inflammation. J. Innate Immun. 3, 550–564 (2011).

  15. 15.

    Tamoutounour, S. et al. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol. 42, 3150–3166 (2012).

  16. 16.

    Zigmond, E. et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37, 1076–1090 (2012).

  17. 17.

    Rivollier, A., He, J., Kole, A., Valatas, V. & Kelsall, B. L. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209, 139–155 (2012).

  18. 18.

    Sanders, T. J. et al. Increased production of retinoic acid by intestinal macrophages contributes to their inflammatory phenotype in patients with Crohn's disease. Gastroenterology 146, 1278–1288 (2014).

  19. 19.

    Thiesen, S. et al. CD14(hi)HLA-DR(dim) macrophages, with a resemblance to classical blood monocytes, dominate inflamed mucosa in Crohn's disease. J. Leukoc. Biol. 95, 531–541 (2014).

  20. 20.

    Magnusson, M. K. et al. Macrophage and dendritic cell subsets in IBD: ALDH+cells are reduced in colon tissue of patients with ulcerative colitis regardless of inflammation. Mucosal Immunol. 9, 171–182 (2016).

  21. 21.

    Kühl, A. A., Erben, U., Kredel, L. I. & Siegmund, B. Diversity of Intestinal macrophages in inflammatory bowel diseases. Front. Immunol. 6, 613 (2015).

  22. 22.

    Dige, A. et al. Reduced numbers of mucosal DR(int) macrophages and increased numbers of CD103(+) dendritic cells during anti-TNF-α treatment in patients with Crohn's disease. Scand. J. Gastroenterol. 51, 692–699 (2016).

  23. 23.

    Matsuno, H. et al. CD103+ dendritic cell function is altered in the colons of patients with ulcerative colitis. Inflamm. Bowel Dis. 23, 1524–1534 (2017).

  24. 24.

    Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

  25. 25.

    Bujko, A. et al. Transcriptional and functional profiling defines human small intestinal macrophage subsets. J. Exp. Med. 215, 441–458 (2018).

  26. 26.

    Smythies, L. E. et al. Inflammation anergy in human intestinal macrophages is due to Smad-induced IkappaBalpha expression and NF-kappaB inactivation. J. Biol. Chem. 285, 19593–19604 (2010).

  27. 27.

    Maheshwari, A. et al. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology 140, 242–253 (2011).

  28. 28.

    Schridde, A. et al. Tissue-specific differentiation of colonic macrophages requires TGFβ receptor-mediated signaling. Mucosal Immunol. 10, 1387–1399 (2017).

  29. 29.

    Blanchet, X., Langer, M., Weber, C., Koenen, R. R. & von Hundelshausen, P. Touch of chemokines. Front. Immunol. 3, 175 (2012).

  30. 30.

    Luda, K. M. et al. IRF8 transcription-factor-dependent classical dendritic cells are essential for intestinal T cell homeostasis. Immunity 44, 860–874 (2016).

  31. 31.

    Fenton, T. M. et al. Inflammatory cues enhance TGFβ activation by distinct subsets of human intestinal dendritic cells via integrin αvβ8. Mucosal Immunol. 10, 624–634 (2017).

  32. 32.

    Gibbons, D. L. & Spencer, J. Mouse and human intestinal immunity: same ballpark, different players; different rules, same score. Mucosal Immunol. 4, 148–157 (2011).

  33. 33.

    Mann, E. R. et al. Intestinal dendritic cells: their role in intestinal inflammation, manipulation by the gut microbiota and differences between mice and men. Immunol. Lett. 150, 30–40 (2013).

  34. 34.

    Bernardo, D. et al. Chemokine (C-C motif) receptor 2 mediates dendritic cell recruitment to the human colon but is not responsible for differences observed in dendritic cell subsets, phenotype, and function between the proximal and distal colon. Cell. Mol. Gastroenterol. Hepatol. 2, 22–39.e25 (2016).

Download references


The authors kindly thank the critical input and suggestions by Dr. Elizabeth R Mann and Dr. William W Agace on this study. This work was supported by the Spanish Ministry of Economy (SAF201456642-JIN); the Instituto de Salud Carlos III (PIE13/00041, EHD16PI02); the “Asociación Española de Gastroenterología” (Becas Nuevos Investigadores 2016 and 2017) and the Community of Madrid (Consejería de Educación, Juventud y Deporte, Programa de Garantía Juvenil 2015 and 2016).

Author information

Author notes

  1. These authors contributed equally: M. Chaparro, J. P. Gisbert.


  1. Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain

    • D. Bernardo
    • , A. C. Marin
    • , S. Fernández-Tomé
    • , A. Montalban-Arques
    • , L. Ortega-Moreno
    • , I. Mora-Gutiérrez
    • , A. Díaz-Guerra
    • , R. Caminero-Fernández
    • , P. Miranda
    • , F. Casals
    • , M. Caldas
    • , M. Jiménez
    • , S. Casabona
    • , F. De la Morena
    • , C. Santander
    • , M. Chaparro
    •  & J. P. Gisbert
  2. Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain

    • D. Bernardo
    • , A. C. Marin
    • , A. Montalban-Arques
    • , A. Carrasco
    • , E. Tristán
    • , M. Esteve
    • , C. Santander
    • , M. Chaparro
    •  & J. P. Gisbert
  3. Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Fundació Recerca Mútua Terrassa, Terrassa, Barcelona, Spain

    • A. Carrasco
    • , E. Tristán
    •  & M. Esteve
  4. Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain

    • L. Ortega-Moreno


  1. Search for D. Bernardo in:

  2. Search for A. C. Marin in:

  3. Search for S. Fernández-Tomé in:

  4. Search for A. Montalban-Arques in:

  5. Search for A. Carrasco in:

  6. Search for E. Tristán in:

  7. Search for L. Ortega-Moreno in:

  8. Search for I. Mora-Gutiérrez in:

  9. Search for A. Díaz-Guerra in:

  10. Search for R. Caminero-Fernández in:

  11. Search for P. Miranda in:

  12. Search for F. Casals in:

  13. Search for M. Caldas in:

  14. Search for M. Jiménez in:

  15. Search for S. Casabona in:

  16. Search for F. De la Morena in:

  17. Search for M. Esteve in:

  18. Search for C. Santander in:

  19. Search for M. Chaparro in:

  20. Search for J. P. Gisbert in:


D.B. was involved with study concept and design, experimental procedures, analysis and interpretation of the data and statistical analysis. I.M.G., A.C.M., A.M.A., S.F.T., A.D.G., A.C., E.T. and L.O.M. were involved with experimental procedures together with data analysis and interpretation. R.C.F., P.M., F.C., M.C., M.J., F.D.l.M., C.S., M.E., M.C. and J.P.G. performed patients identification and recruitment as well as obtention of all biological samples. D.B. and J.P.G. obtained the funds to perform this work. The manuscript was drafted by D.B. and edited by D.B., A.C.M., A.M.A., S.F.T., M.E., M.C. and J.P.G. All authors reviewed and approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to D. Bernardo.

Electronic supplementary material

About this article

Publication history