Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dimensional Affective Sensitivity to Hormones across the Menstrual Cycle (DASH-MC): A transdiagnostic framework for ovarian steroid influences on psychopathology

Abstract

Fluctuations in progesterone (P4) and estradiol (E2) across the menstrual cycle can exert direct effects on biological systems implicated in neuropsychiatric disorders and represent a key biological source of variability in affective, cognitive, and behavioral disorders. Although these cyclical symptoms may be most readily identified when they occur exclusively in relation to the menstrual cycle, as in DSM-5 premenstrual dysphoric disorder, symptom changes of similar magnitude occur in a larger proportion of people with ongoing psychiatric disorders. Studies investigating cyclical regulation of brain and behavior often produce inconsistent results, which may be attributed to a lack of focus on specific hormonal events and individual differences in related sensitivities. We propose a transdiagnostic Dimensional Affective Sensitivity to Hormones across the Menstrual Cycle (DASH-MC) framework, postulating that atypical neural responses to several key hormonal events provoke specific temporal patterns of affective and behavioral change across the menstrual cycle. We review prospective and experimental evidence providing initial support for these dimensions, which include (1) luteal-onset negative affect caused by a sensitivity to E2 or P4 surges (mediated by neuroactive metabolites such as allopregnanolone), typified by irritability and hyperarousal; (2) perimenstrual-onset negative affect caused by a sensitivity to low or falling E2, typified by low mood and cognitive dysfunction; and (3) preovulatory-onset positive affect dysregulation caused by a sensitivity to E2 surges, typified by harmful substance use and other risky reward-seeking. This multidimensional, transdiagnostic framework for hormone sensitivity can inform more precise research on ovarian steroid regulation of psychopathology, including further mechanistic research, diagnostic refinement, and precision psychiatry treatment development. Additionally, given the high rates of hormone sensitivity across affective disorders, the DASH-MC may guide broader insights into the complex neurobiological vulnerabilities driving female-biased affective risk, as well as potential triggers and mechanisms of affective state change in psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dimensional Affective Sensitivity to Hormones across the Menstrual Cycle (DASH-MC).

Similar content being viewed by others

Notes

  1. This includes any cisgender women, transgender men, and AFAB nonbinary individuals who ovulate (i.e., excluding those who are pre-menarche, pregnant or breastfeeding, post-menopausal, using medications such as oral contraceptives and other hormonal therapies that suppress ovulation, have undergone bilateral oophorectomy)[1].

  2. This estimate reflects the largest study of confirmed diagnoses using prospective daily ratings in a representative community sample; while initially estimated at 1.3% using DSM-IV-TR criteria, estimated rates from this data that reflect the current DSM-5 PMDD diagnostic criteria (with optional impairment) are 5.5% [3]; see [5] for review.

  3. Of note, a number of neuroimaging studies have also found stable (non-phase-specific) differences between participants with PMDD and controls, e.g. [48], [49], [50]; see [51] for a recent review on neuroimaging of PMDD broadly. While it is possible that these stable neural differences relate to vulnerability to hormone sensitivity dimensions, we focus primarily on neural changes across the cycle that may underlie dimension-specific affective and behavioral symptoms.

References

  1. Peters JR, Stumper A, Schmalenberger KM, Taubman AJ, Eisenlohr-Moul TA. Improving rigor through gender inclusivity in reproductive psychiatric science. Compr Psychoneuroendocrinol. 2023;16:100194. https://doi.org/10.1016/j.cpnec.2023.100194.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schiller CE, Johnson SL, Abate AC, Schmidt PJ, Rubinow DR. Reproductive steroid regulation of mood and behavior. Compr Physiol. 2016;6:1135–60. https://doi.org/10.1002/cphy.c150014.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gehlert S, Song IH, Chang C-H, Hartlage SA. The prevalence of premenstrual dysphoric disorder in a randomly selected group of urban and rural women. Psychol Med 2009;39:129–36. https://doi.org/10.1017/S003329170800322X.

    Article  PubMed  Google Scholar 

  4. Schmidt PJ, Nieman LK, Danaceau MA, Adams LF, Rubinow DR. Differential behavioral effects of gonadal steroids in women with and in those without premenstrual syndrome. N. Engl J Med. 1998;338:209–16. https://doi.org/10.1056/NEJM199801223380401.

    Article  PubMed  Google Scholar 

  5. Reilly TJ, Patel S, Unachukwu IC, Knox CL, Wilson CA, Craig MC, et al. The prevalence of premenstrual dysphoric disorder: Systematic review and meta-analysis. J Affect Disord. 2024;349:534–40. https://doi.org/10.1016/j.jad.2024.01.066.

    Article  PubMed  Google Scholar 

  6. American Psychiatric Association, DSM-5-TR classification. Washington, DC: American Psychiatric Association Publishing, 2022.

  7. World Health Organization, International statistical classification of diseases and related health problems (11th ed.). 2019. [Online]. Available: https://icd.who.int/.

  8. Eisenlohr-Moul TA, Girdler SS, Schmalenberger KM, Dawson DN, Surana P, Johnson JL, et al. Toward the reliable diagnosis of DSM-5 premenstrual dysphoric disorder: The Carolina Premenstrual Assessment Scoring System (C-PASS). Am J Psychiatry. 2017;174:51–59. https://doi.org/10.1176/appi.ajp.2016.15121510.

    Article  PubMed  Google Scholar 

  9. Nevatte T, O’Brien PMS, Bäckström T, Brown C, Dennerstein L, Endicott J, et al. ISPMD consensus on the management of premenstrual disorders. Arch Women’s Ment Health. 2013;16:279–91. https://doi.org/10.1007/s00737-013-0346-y.

    Article  Google Scholar 

  10. Nolan LN, Hughes L. Premenstrual exacerbation of mental health disorders: A systematic review of prospective studies. Arch Women’s Ment Health. 2022;25:831–52. https://doi.org/10.1007/s00737-022-01246-4.

    Article  Google Scholar 

  11. Hartlage SA, Brandenburg DL, Kravitz HM. Premenstrual exacerbation of depressive disorders in a community-based sample in the United States. Psychosom Med. 2004;66:698–706. https://doi.org/10.1097/01.psy.0000138131.92408.b9.

    Article  PubMed  Google Scholar 

  12. Rasgon N, Bauer M, Glenn T, Elman S, Whybrow PC. Menstrual cycle related mood changes in women with bipolar disorder. Bipolar Disord. 2003;5:48–52. https://doi.org/10.1034/j.1399-5618.2003.00010.x.

    Article  PubMed  Google Scholar 

  13. Eisenlohr-Moul TA, DeWall CN, Girdler SS, Segerstrom SC. Ovarian hormones and borderline personality disorder features: Preliminary evidence for interactive effects of estradiol and progesterone. Biol Psychol. 2015;109:37–52. https://doi.org/10.1016/j.biopsycho.2015.03.016.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Eisenlohr-Moul TA, Schmalenberger KM, Owens SA, Peters JR, Dawson DN, Girdler SS. Perimenstrual exacerbation of symptoms in borderline personality disorder: Evidence from multilevel models and the Carolina Premenstrual Assessment Scoring System. Psychol Med 2018;48:2085–95. https://doi.org/10.1017/S0033291718001253.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Peters JR, Owens SA, Schmalenberger KM, Eisenlohr‐Moul TA. Differential effects of the menstrual cycle on reactive and proactive aggression in borderline personality disorder. Aggr Behav. 2020;46:151–61. https://doi.org/10.1002/ab.21877.

    Article  Google Scholar 

  16. Klump KL, Keel PK, Culbert KM, Edler C. Ovarian hormones and binge eating: Exploring associations in community samples. Psychol Med 2008;38:1749–57. https://doi.org/10.1017/S0033291708002997.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Klump KL, Keel PK, Racine SE, Burt SA, Neale M, Sisk CL, et al. The interactive effects of estrogen and progesterone on changes in emotional eating across the menstrual cycle. J Abnorm Psychol. 2013;122:131–7. https://doi.org/10.1037/a0029524.

    Article  PubMed  Google Scholar 

  18. Roberts B, Eisenlohr-Moul T, Martel MM. Reproductive steroids and ADHD symptoms across the menstrual cycle. Psychoneuroendocrinology. 2018;88:105–14. https://doi.org/10.1016/j.psyneuen.2017.11.015.

    Article  PubMed  Google Scholar 

  19. Reilly TJ, Sagnay De La Bastida VC, Joyce DW, Cullen AE, McGuire P. Exacerbation of psychosis during the perimenstrual phase of the menstrual cycle: systematic review and meta-analysis. Schizophr Bull. 2020;46:78–90. https://doi.org/10.1093/schbul/sbz030.

    Article  PubMed  Google Scholar 

  20. Ray P, Mandal N, Sinha VK. Change of symptoms of schizophrenia across phases of menstrual cycle. Arch Women’s Ment Health. 2020;23:113–22. https://doi.org/10.1007/s00737-019-0952-4.

    Article  Google Scholar 

  21. Barone JC, Ross JM, Nagpal A, Guzman G, Berenz E, Pang RD, et al. Alcohol use and motives for drinking across the menstrual cycle in a psychiatric outpatient sample. Alcohol Clin Exp Res. 2023;47:127–42. https://doi.org/10.1111/acer.14971.

    Article  Google Scholar 

  22. Martel MM, Eisenlohr-Moul T, Roberts B. Interactive effects of ovarian steroid hormones on alcohol use and binge drinking across the menstrual cycle. J Abnorm Psychol. 2017;126:1104–13. https://doi.org/10.1037/abn0000304.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nillni YI, Pineles SL, Patton SC, Rouse MH, Sawyer AT, Rasmusson AM. Menstrual cycle effects on psychological symptoms in women with PTSD. J Trauma Stress. 2015;28:1–7. https://doi.org/10.1002/jts.21984.

    Article  PubMed  Google Scholar 

  24. Stenbæk DS, Budtz-Jørgensen E, Pinborg A, Jensen PS, Frokjaer VG. Neuroticism modulates mood responses to pharmacological sex hormone manipulation in healthy women. Psychoneuroendocrinology. 2019;99:251–6. https://doi.org/10.1016/j.psyneuen.2018.10.016.

    Article  PubMed  Google Scholar 

  25. Rubinow DR. One small step for PMDD, one large step for affective disorders. AJP. 2021;178:215–7. https://doi.org/10.1176/appi.ajp.2020.20121793.

    Article  Google Scholar 

  26. Rubinow DR, Schmidt PJ. Gonadal steroid regulation of mood: The lessons of premenstrual syndrome. Front Neuroendocrinol. 2006;27:210–6. https://doi.org/10.1016/j.yfrne.2006.02.003.

    Article  PubMed  Google Scholar 

  27. Rubinow DR, Schmidt PJ. Is there a role for reproductive steroids in the etiology and treatment of affective disorders? Dialogues Clin Neurosci. 2018;20:187–96.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Peters JR, Eisenlohr-Moul TA. Ovarian hormones as a source of fluctuating biological vulnerability in borderline personality disorder. Curr Psychiatry Rep. 2019;21:109. https://doi.org/10.1007/s11920-019-1096-y.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eisenlohr-Moul TA. Commentary on Joyce et al.: Studying menstrual cycle effects on behavior requires within-person designs and attention to individual differences in hormone sensitivity. Addiction. 2021;116:2759–60. https://doi.org/10.1111/add.15576.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schmalenberger KM, Tauseef HA, Barone JC, Owens SA, Lieberman L, Jarczok MN, et al. How to study the menstrual cycle: Practical tools and recommendations. Psychoneuroendocrinology. 2021;123:104895. https://doi.org/10.1016/j.psyneuen.2020.104895.

    Article  PubMed  Google Scholar 

  31. Sundström-Poromaa I, Comasco E, Sumner R, Luders E. Progesterone – Friend or foe? Front Neuroendocrinol. 2020;59:100856. https://doi.org/10.1016/j.yfrne.2020.100856.

    Article  PubMed  Google Scholar 

  32. Beddig T, Reinhard I, Kuehner C. Stress, mood, and cortisol during daily life in women with premenstrual dysphoric disorder (PMDD). Psychoneuroendocrinology. 2019;109:104372 https://doi.org/10.1016/j.psyneuen.2019.104372.

    Article  PubMed  Google Scholar 

  33. Epperson CN, Pittman B, Czarkowski KA, Stiklus S, Krystal JH, Grillon C. Luteal-phase accentuation of acoustic startle response in women with premenstrual dysphoric disorder. Neuropsychopharmacol. 2007;32:2190–8. https://doi.org/10.1038/sj.npp.1301351.

    Article  Google Scholar 

  34. Hartlage SA, Arduino KE. Toward the content validity of premenstrual dysphoric disorder: Do anger and irritability more than depressed mood represent treatment-seekers’ experiences? Psychol Rep. 2002;90:189–202. https://doi.org/10.2466/pr0.2002.90.1.189.

    Article  PubMed  Google Scholar 

  35. Pearlstein T, Yonkers KA, Fayyad R, Gillespie JA. Pretreatment pattern of symptom expression in premenstrual dysphoric disorder. J Affect Disord. 2005;85:275–82. https://doi.org/10.1016/j.jad.2004.10.004.

    Article  PubMed  Google Scholar 

  36. Schmalenberger KM, Eisenlohr-Moul TA, Surana P, Rubinow DR, Girdler SS. Predictors of premenstrual impairment among women undergoing prospective assessment for premenstrual dysphoric disorder: A cycle-level analysis. Psychol Med. 2017;47:1585–96. https://doi.org/10.1017/S0033291716003524.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Owens SA, Schmalenberger KM, Bowers S, Rubinow DR, Prinstein MJ, Girdler SS, et al., Cyclical exacerbation of suicidal ideation in female outpatients: Prospective evidence from daily ratings in a transdiagnostic sample. J Psychopathol Clin Sci, 2023, https://doi.org/10.1037/abn0000838.

  38. Kaspi SP, Otto MW, Pollack MH, Eppinger S, Rosenbaum JF. Premenstrual exacerbation of symptoms in women with panic disorder. J Anxiety Disord. 1994;8:131–8. https://doi.org/10.1016/0887-6185(94)90011-6.

    Article  Google Scholar 

  39. International Association for Premenstrual Disorders, “A new light on PMDD research: A strategic plan to advance patient-centered PMDD research,” 2022.

  40. Schmidt PJ, Nieman LK, Grover GN, Muller KL, Merriam GR, Rubinow DR. Lack of effect of induced menses on symptoms in women with premenstrual syndrome. N. Engl J Med. 1991;324:1174–9. https://doi.org/10.1056/NEJM199104253241705.

    Article  PubMed  Google Scholar 

  41. Schmidt PJ, Martinez PE, Neiman LK, Koziol DE, Thompson KD, Schenkel L, et al. Premenstrual dysphoric disorder symptoms following ovarian suppression: Triggered by change in ovarian steroid levels but not continuous stable levels. AJP. 2017;174:980–9. https://doi.org/10.1176/appi.ajp.2017.16101113.

    Article  Google Scholar 

  42. Lopez LM, Kaptein AA, Helmerhorst FM, Oral contraceptives containing drospirenone for premenstrual syndrome Cochrane Database Syst Rev, 2012, https://doi.org/10.1002/14651858.CD006586.pub4.

  43. Wyatt KM, Dimmock PW, Ismail KMK, Jones PW, O’Brien PMS. The effectiveness of GnRHa with and without ‘add-back’ therapy in treating premenstrual syndrome: A meta analysis. BJOG. 2004;111:585–93. https://doi.org/10.1111/j.1471-0528.2004.00135.x.

    Article  PubMed  Google Scholar 

  44. Wagner-Schuman M, Kania A, Barone JC, Ross JM, Mulvihill A, Eisenlohr-Moul TA, What’s stopping us? Using GnRH agonists with stable hormone addback in treatment-resistant premenstrual dysphoric disorder: practical guidelines and risk/benefit analysis for long-term therapy. J Clin Psychiatry, In Press.

  45. Comasco E, Kallner HK, Bixo M, Hirshberg AL, Nyback S, de Grauw H, et al. Ulipristal acetate for treatment of premenstrual dysphoric disorder: A proof-of-concept randomized controlled trial. Am J Psychiatry. 2021;178:256–65. https://doi.org/10.1176/appi.ajp.2020.20030286.

    Article  PubMed  Google Scholar 

  46. Stiernman L, Dubol M, Comasco E, Sundström-Poromaa I, Boraxbekk CJ, Johansson M, et al. Emotion-induced brain activation across the menstrual cycle in individuals with premenstrual dysphoric disorder and associations to serum levels of progesterone-derived neurosteroids. Transl Psychiatry. 2023;13:124 https://doi.org/10.1038/s41398-023-02424-3.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dubol M, Epperson CN, Sacher J, Pletzer B, Derntl B, Lanzenberger R, et al. Neuroimaging the menstrual cycle: A multimodal systematic review. Front Neuroendocrinol. 2021;60:100878. https://doi.org/10.1016/j.yfrne.2020.100878.

    Article  PubMed  Google Scholar 

  48. Baller EB, Wei SM, Kohn PD, Rubinow DR, Alarcón G, Schmidt PJ, et al. Abnormalities of dorsolateral prefrontal function in women with premenstrual dysphoric disorder: a multimodal neuroimaging study. AJP. 2013;170:305–14. https://doi.org/10.1176/appi.ajp.2012.12030385.

    Article  Google Scholar 

  49. Petersen N, Ghahremani DG, Rapkin AJ, Berman SM, Wijker N, Liang L, et al. Resting-state functional connectivity in women with PMDD. Transl Psychiatry. 2019;9:1–8. https://doi.org/10.1038/s41398-019-0670-8.

    Article  Google Scholar 

  50. Comasco E, Hahn A, Ganger S, Gingnell M, Bannbers E, Oreland L, et al. Emotional fronto-cingulate cortex activation and brain derived neurotrophic factor polymorphism in premenstrual dysphoric disorder. Hum Brain Mapp. 2014;35:4450–8. https://doi.org/10.1002/hbm.22486.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Monteiro DC, Ramos CDS, Alves LENN, Cantilino A, Sougey EB. Functional and structural neuroimaging in premenstrual dysphoric disorder: A systematic review. J Psychiatr Res. 2024;175:205–10. https://doi.org/10.1016/j.jpsychires.2024.05.024.

    Article  PubMed  Google Scholar 

  52. van Wingen GA, van Broekhoven F, Verkes RJ, Petersson KM, Bäckström T, Buitelaar JK, et al. Progesterone selectively increases amygdala reactivity in women. Mol Psychiatry. 2007;13:325–33. https://doi.org/10.1038/sj.mp.4002030.

    Article  PubMed  Google Scholar 

  53. Protopopescu X, Tuescher O, Pan H, Epstein J, Root J, Chang L, et al. Toward a functional neuroanatomy of premenstrual dysphoric disorder. J Affect Disord. 2008;108:87–94. https://doi.org/10.1016/j.jad.2007.09.015.

    Article  PubMed  Google Scholar 

  54. Protopopescu X, Pan H, Altemus M, Tuescher O, Polanecsky M, McEwen B, et al. Orbitofrontal cortex activity related to emotional processing changes across the menstrual cycle. Proc Natl Acad Sci USA. 2005;102:16060–5. https://doi.org/10.1073/pnas.0502818102.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gingnell M, Ahlstedt V, Bannbers E, Wikström J, Sundström-Poromaa I, Fredrikson M. Social stimulation and corticolimbic reactivity in premenstrual dysphoric disorder: a preliminary study. Biol Mood Anxiety Disord. 2014;4:3 https://doi.org/10.1186/2045-5380-4-3.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kaltsouni E, Fisher PM, Dubol M, Hustad S, Lanzenberger R, Frokjaer VG, et al. Brain reactivity during aggressive response in women with premenstrual dysphoric disorder treated with a selective progesterone receptor modulator. Neuropsychopharmacology. 2021;46:1460–7. https://doi.org/10.1038/s41386-021-01010-9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Da Cunha-Bang S, Knudsen GM. The Modulatory Role of Serotonin on Human Impulsive Aggression. Biol Psychiatry. 2021;90:447–57. https://doi.org/10.1016/j.biopsych.2021.05.016.

    Article  PubMed  Google Scholar 

  58. Masten CL, Eisenberger NI, Borofsky LA, Pfeifer JH, McNealy K, Mazziotta JC, et al. Neural correlates of social exclusion during adolescence: understanding the distress of peer rejection. Soc Cogn Affect Neurosci. 2009;4:143–57. https://doi.org/10.1093/scan/nsp007.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kross E, Egner T, Ochsner K, Hirsch J, Downey G. Neural dynamics of rejection sensitivity. J Cogn Neurosci. 2007;19:945–56. https://doi.org/10.1162/jocn.2007.19.6.945.

    Article  PubMed  Google Scholar 

  60. Neacsiu AD, Szymkiewicz V, Galla JT, Li B, Kulkarni Y, Spector CW. The neurobiology of misophonia and implications for novel, neuroscience-driven interventions. Front Neurosci, 2022;16:893903.

  61. Martinez PE, Rubinow DR, Nieman LK, Koziol DE, Morrow AL, Schiller CE, et al. 5α-reductase inhibition prevents the luteal phase increase in plasma allopregnanolone levels and mitigates symptoms in women with premenstrual dysphoric disorder. Neuropsychopharmacol. 2016;41:1093–102. https://doi.org/10.1038/npp.2015.246.

    Article  Google Scholar 

  62. Paul SM, Pinna G, Guidotti A. Allopregnanolone: From molecular pathophysiology to therapeutics. A historical perspective. Neurobiol Stress. 2020;12:100215 https://doi.org/10.1016/j.ynstr.2020.100215.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bäckström T, Ekberg K, Hirschberg AL, Bixo M, Epperson CN, Briggs P, et al. A randomized, double-blind study on efficacy and safety of sepranolone in premenstrual dysphoric disorder. Psychoneuroendocrinology. 2021;133:105426. https://doi.org/10.1016/j.psyneuen.2021.105426.

    Article  PubMed  Google Scholar 

  64. Bixo M, Ekberg K, Poromaa IS, Hirschberg AL, Jonasson AF, Andréen L, et al. Treatment of premenstrual dysphoric disorder with the GABA A receptor modulating steroid antagonist Sepranolone (UC1010)—A randomized controlled trial. Psychoneuroendocrinology. 2017;80:46–55. https://doi.org/10.1016/j.psyneuen.2017.02.031.

    Article  PubMed  Google Scholar 

  65. Micevych P, Sinchak K. Estradiol regulation of progesterone synthesis in the brain. Mol Cell Endocrinol. 2008;290:44–50. https://doi.org/10.1016/j.mce.2008.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hantsoo L, Payne JL. Towards understanding the biology of premenstrual dysphoric disorder: From genes to GABA. Neurosci Biobehav Rev. 2023;149:105168. https://doi.org/10.1016/j.neubiorev.2023.105168.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Smith SS, Ruderman Y, Frye C, Homanics G, Yuan M. Steroid withdrawal in the mouse results in anxiogenic effects of 3alpha,5beta-THP: A possible model of premenstrual dysphoric disorder. Psychopharmacol (Berl). 2006;186:323–33. https://doi.org/10.1007/s00213-005-0168-3.

    Article  Google Scholar 

  68. Rapkin AJ, Edelmuth E, Chang LC, Reading AE, McGuire MT, Su TP. Whole-blood serotonin in premenstrual syndrome. Obstet Gynecol. 1987;70:533–7.

    PubMed  Google Scholar 

  69. Rasgon N, McGuire M, Tanavoli S, Fairbanks L, Rapkin A. Neuroendocrine response to an intravenous L-tryptophan challenge in women with premenstrual syndrome. Fertil Steril. 2000;73:144–9. https://doi.org/10.1016/s0015-0282(99)00452-5.

    Article  PubMed  Google Scholar 

  70. Sacher J, Zsido RG, Barth C, Zientek F, Rullmann M, Luthardt J, et al. Increase in Serotonin transporter binding in patients with premenstrual dysphoric disorder across the menstrual cycle: a case-control longitudinal neuroreceptor ligand positron emission tomography imaging study. Biol Psychiatry. 2023;93:1081–8. https://doi.org/10.1016/j.biopsych.2022.12.023.

    Article  PubMed  Google Scholar 

  71. Duke AA, Bègue L, Bell R, Eisenlohr-Moul T. Revisiting the serotonin-aggression relation in humans: A meta-analysis. Psychol Bull. 2013;139:1148–72. https://doi.org/10.1037/a0031544.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Russo S, Kema IP, Haagsma EB, Boon JC, Willemse PHB, den Boer JA, et al. Irritability rather than depression during interferon treatment is linked to increased tryptophan catabolism. Psychosom Med. 2005;67:773. https://doi.org/10.1097/01.psy.0000171193.28044.d8.

    Article  PubMed  Google Scholar 

  73. Marjoribanks J, Brown J, O’Brien PMS, Wyatt K. Selective serotonin reuptake inhibitors for premenstrual syndrome. Cochrane Database Syst Rev. 2013. https://doi.org/10.1002/14651858.CD001396.pub3.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Roca CA, Schmidt PJ, Smith MJ, Danaceau MA, Murphy DL, Rubinow DR. Effects of metergoline on symptoms in women with premenstrual dysphoric disorder. Am J Psychiatry. 2002;159:1876–81. https://doi.org/10.1176/appi.ajp.159.11.1876.

    Article  PubMed  Google Scholar 

  75. Rapkin AJ, Akopians AL. Pathophysiology of premenstrual syndrome and premenstrual dysphoric disorder. Menopause Int. 2012;18:52–59. https://doi.org/10.1258/mi.2012.012014.

    Article  PubMed  Google Scholar 

  76. Eisenlohr-Moul TA, Kaiser G, Weise C, Schmalenberger KM, Kiesner J, Ditzen B, et al. Are there temporal subtypes of premenstrual dysphoric disorder?: Using group-based trajectory modeling to identify individual differences in symptom change. Psychol Med 2020;50:964–72. https://doi.org/10.1017/S0033291719000849.

    Article  PubMed  Google Scholar 

  77. Saunders KEA, Hawton K. Suicidal behaviour and the menstrual cycle. Psychol Med. 2006;36:901–12. https://doi.org/10.1017/S0033291706007392.

    Article  PubMed  Google Scholar 

  78. Baca-Garcia E, Diaz-Sastre C, Ceverino A, Perez-Rodriguez MM, Navarro-Jimenez R, Lopez-Castroman J, et al. Suicide attempts among women during low estradiol/low progesterone states. J Psychiatr Res. 2010;44:209–14. https://doi.org/10.1016/j.jpsychires.2009.08.004.

    Article  PubMed  Google Scholar 

  79. Ross JM, Barone JC, Tauseef H, Schmalenberger KM, Nagpal A, et al. Predicting acute changes in suicidal ideation and planning: a longitudinal study of symptom mediators and the role of the menstrual cycle in female psychiatric outpatients with suicidality. AJP. 2024;181:57–67. https://doi.org/10.1176/appi.ajp.20230303.

    Article  Google Scholar 

  80. Brown CS, Ling FW, Andersen RN, Farmer RG, Arheart KL. Efficacy of depot leuprolide in premenstrual syndrome: Effect of symptom severity and type in a controlled trial. Obstet Gynecol. 1994;84:779.

    PubMed  Google Scholar 

  81. Freeman EW, Sondheimer SJ, Rickels K, Albert J. Gonadotropin-releasing hormone agonist in treatment of premenstrual symptoms with and without comorbidity of depression: a pilot study. J Clin Psychiatry. 1993;54:192–5.

    PubMed  Google Scholar 

  82. Freeman EW, Sondheimer SJ, Rickels K. Gonadotropin-releasing hormone agonist in the treatment of premenstrual symptoms with and without ongoing dysphoria: a controlled study. Psychopharmacol Bull. 1997;33:303–9.

    PubMed  Google Scholar 

  83. Frokjaer VG. Pharmacological sex hormone manipulation as a risk model for depression. J Neurosci Res. 2020;98:1283–92. https://doi.org/10.1002/jnr.24632.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ben Dor R, Harsh VL, Fortinsky P, Koziol DE, Rubinow DR, Schmidt PJ. Effects of Pharmacologically Induced Hypogonadism on Mood and Behavior in Healthy Young Women. Am J Psychiatry. 2013;170:426–33. https://doi.org/10.1176/appi.ajp.2012.12010117.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Eisenlohr-Moul TA, Bowers SM, Prinstein MJ, Schmalenberger KM, Walsh EC, Young SL, et al. Effects of acute estradiol and progesterone on perimenstrual exacerbation of suicidal ideation and related symptoms: A crossover randomized controlled trial. Transl Psychiatry. 2022;12:528. https://doi.org/10.1038/s41398-022-02294-1.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Eisenlohr-Moul TA, Effects of acute estradiol or progesterone administration on perimenstrual exacerbation of suicidal ideation, depression, and perceived stress: A preliminary analysis of a three-period crossover randomized controlled trial. presented at the 61st Annual Meeting of the American College of Neuropsychopharmacology, Phoenix, Arizona, 2022.

  87. Frokjaer VG, Pinborg A, Holst KK, Overgaard A, Henningsson S, Heede M, et al. Role of Serotonin transporter changes in depressive responses to sex-steroid hormone manipulation: a positron emission tomography study. Biol Psychiatry. 2015;78:534–43. https://doi.org/10.1016/j.biopsych.2015.04.015.

    Article  PubMed  Google Scholar 

  88. Keenan PA, Ezzat WH, Ginsburg K, Moore GJ. Prefrontal cortex as the site of estrogen’s effect on cognition. Psychoneuroendocrinology. 2001;26:577–90. https://doi.org/10.1016/S0306-4530(01)00013-0.

    Article  PubMed  Google Scholar 

  89. Becker JB, Hu M. Sex differences in drug abuse. Front Neuroendocrinol. 2008;29:36–47. https://doi.org/10.1016/j.yfrne.2007.07.003.

    Article  PubMed  Google Scholar 

  90. Luine V. Estradiol: Mediator of memories, spine density and cognitive resilience to stress in female rodents. J Steroid Biochem Mol Biol. 2016;160:189–95. https://doi.org/10.1016/j.jsbmb.2015.07.022.

    Article  PubMed  Google Scholar 

  91. Quinlan MG, Hussain D, Brake WG. Use of cognitive strategies in rats: The role of estradiol and its interaction with dopamine. Hormones Behav. 2008;53:185–91. https://doi.org/10.1016/j.yhbeh.2007.09.015.

    Article  Google Scholar 

  92. Leuner B, Mendolia-Loffredo S, Shors TJ. High levels of estrogen enhance associative memory formation in ovariectomized females. Psychoneuroendocrinology. 2004;29:883–90. https://doi.org/10.1016/j.psyneuen.2003.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kiss Á, Delattre AM, Pereira SIR, Carolino RG, Szawka RE, Anselmo-Franci JA, et al. 17β-Estradiol replacement in young, adult and middle-aged female ovariectomized rats promotes improvement of spatial reference memory and an antidepressant effect and alters monoamines and BDNF levels in memory- and depression-related brain areas. Behav Brain Res. 2012;227:100–8. https://doi.org/10.1016/j.bbr.2011.10.047.

    Article  PubMed  Google Scholar 

  94. Lord T, Taylor K. Monthly fluctuation in task concentration in female college students. Percept Mot Skills. 1991;72:435–9. https://doi.org/10.2466/pms.1991.72.2.435.

    Article  PubMed  Google Scholar 

  95. Gogos A. Natural and synthetic sex hormones: Effects on higher-order cognitive function and prepulse inhibition. Biol Psychol. 2013;93:17–23. https://doi.org/10.1016/j.biopsycho.2013.02.001.

    Article  PubMed  Google Scholar 

  96. Howard R, Gifford M, Lumsden J. Changes in an electrocortical measure of impulsivity during the menstrual cycle. Pers Individ Differ. 1988;9:917–8. https://doi.org/10.1016/0191-8869(88)90010-4.

    Article  Google Scholar 

  97. Jacobs E, D’Esposito M. Estrogen shapes dopamine-dependent cognitive processes: Implications for women’s health. J Neurosci 2011;31:5286–93. https://doi.org/10.1523/JNEUROSCI.6394-10.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Rosenberg L, Park S. Verbal and spatial functions across the menstrual cycle in healthy young women. Psychoneuroendocrinology. 2002;27:835–41. https://doi.org/10.1016/S0306-4530(01)00083-X.

    Article  PubMed  Google Scholar 

  99. Vranić A, Hromatko I. Content-specific activational effects of estrogen on working memory performance. J Gen Psychol. 2008;135:323–36. https://doi.org/10.3200/GENP.135.3.323-336.

    Article  PubMed  Google Scholar 

  100. Graham BM, Milad MR. Inhibition of estradiol synthesis impairs fear extinction in male rats. Learn Mem. 2014;21:347–50. https://doi.org/10.1101/lm.034926.114.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Maeng LY, Cover KK, Taha MB, Landau AJ, Milad MR, Lebrón-Milad K. Estradiol shifts interactions between the infralimbic cortex and central amygdala to enhance fear extinction memory in female rats. J Neurosci Res. 2017;95:163–75. https://doi.org/10.1002/jnr.23826.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zeidan MA, Igoe SA, Linnman C, Vitalo A, Levine JB, Klibanski A, et al. Estradiol modulates medial prefrontal cortex and amygdala activity during fear extinction in women and female rats. Biol Psychiatry. 2011;70:920–7. https://doi.org/10.1016/j.biopsych.2011.05.016.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Milad MR, Zeidan MA, Contero A, Pitman RK, Klibanski A, Rauch SL, et al. The influence of gonadal hormones on conditioned fear extinction in healthy humans. Neuroscience. 2010;168:652–8. https://doi.org/10.1016/j.neuroscience.2010.04.030.

    Article  PubMed  Google Scholar 

  104. Wen Z, Hammoud MZ, Scott JC, Jimmy J, Brown L, Marin MF, et al., Impact of exogenous estradiol on task-based and resting-state neural signature during and after fear extinction in healthy women Neuropsychopharmacology, vol. 46, Art. no. 13, Dec. 2021, https://doi.org/10.1038/s41386-021-01158-4.

  105. Solis-Ortiz S, Guevara MA, Corsi-Cabrera M. Performance in a test demanding prefrontal functions is favored by early luteal phase progesterone: An electroencephalographic study. Psychoneuroendocrinology. 2004;29:1047–57. https://doi.org/10.1016/j.psyneuen.2003.10.007.

    Article  PubMed  Google Scholar 

  106. Solís-Ortiz S, Corsi-Cabrera M. Sustained attention is favored by progesterone during early luteal phase and visuo-spatial memory by estrogens during ovulatory phase in young women. Psychoneuroendocrinology. 2008;33:989–98. https://doi.org/10.1016/j.psyneuen.2008.04.003.

    Article  PubMed  Google Scholar 

  107. Maki PM, Resnick SM. Longitudinal effects of estrogen replacement therapy on PET cerebral blood flow and cognition. Neurobiol Aging. 2000;21:373–83. https://doi.org/10.1016/S0197-4580(00)00123-8.

    Article  PubMed  Google Scholar 

  108. Resnick SM, Maki PM, Golski S, Kraut MA, Zonderman AB. Effects of estrogen replacement therapy on PET cerebral blood flow and neuropsychological performance. Hormones Behav. 1998;34:171–82. https://doi.org/10.1006/hbeh.1998.1476.

    Article  Google Scholar 

  109. Sherwin BB. Estrogen and/or androgen replacement therapy and cognitive functioning in surgically menopausal women. Psychoneuroendocrinology. 1988;13:345–57. https://doi.org/10.1016/0306-4530(88)90060-1.

    Article  PubMed  Google Scholar 

  110. Berman KF, Schmidt PJ, Rubinow DR, Danaceau MA, Van Horn JD, Esposito G, et al. Modulation of cognition-specific cortical activity by gonadal steroids: A positron-emission tomography study in women. Proc Natl Acad Sci USA 1997;94:8836–41. https://doi.org/10.1073/pnas.94.16.8836.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Leeners B, Kruger THC, Geraedts K, Tronci E, Mancini T, F Ille, et al. Lack of associations between female hormone levels and visuospatial working memory, divided attention and cognitive bias across two consecutive menstrual cycles. Front Behav Neurosci. 2017:11:120.

  112. Schmidt PJ, Keenan PA, Schenkel LA, Berlin K, Gibson C, Rubinow DR. Cognitive performance in healthy women during induced hypogonadism and ovarian steroid addback. Arch Women’s Ment Health. 2013;16:47–58. https://doi.org/10.1007/s00737-012-0316-9.

    Article  Google Scholar 

  113. Joffe H, Hall JE, Gruber S, Sarmiento IA, Cohen LS, Yurgelun-Todd D, et al. Estrogen therapy selectively enhances prefrontal cognitive processes: A randomized, double-blind, placebo-controlled study with functional magnetic resonance imaging in perimenopausal and recently postmenopausal women. Menopause. 2006;13:411 https://doi.org/10.1097/01.gme.0000189618.48774.7b.

    Article  PubMed  Google Scholar 

  114. Maki PM, Zonderman AB, Resnick SM. Enhanced verbal memory in nondemented elderly women receiving hormone-replacement therapy. AJP. 2001;158:227–33. https://doi.org/10.1176/appi.ajp.158.2.227.

    Article  Google Scholar 

  115. Espeland MA, Rapp SR, Shumaker SA, Brunner R, Manson JE, Sherwin BB, et al. Conjugated equine estrogens and global cognitive function in postmenopausal women: Women’s health initiative memory study. JAMA. 2004;291:2959–68,. https://doi.org/10.1001/jama.291.24.2959.

    Article  PubMed  Google Scholar 

  116. Yaffe K, Vittinghoff E, Ensrud KE, Johnson KC, Diem S, Hanes V, et al. Effects of ultra–low-dose transdermal estradiol on cognition and health-related quality of life. Arch Neurol. 2006;63:945–50. https://doi.org/10.1001/archneur.63.7.945.

    Article  PubMed  Google Scholar 

  117. LeBlanc ES, Janowsky J, Chan BKS, Nelson HD. Hormone replacement therapy and cognition: Systematic review and meta-analysis. JAMA. 2001;285:1489–99,. https://doi.org/10.1001/jama.285.11.1489.

    Article  PubMed  Google Scholar 

  118. Yaffe K, Sawaya G, Lieberburg I, Grady D. Estrogen therapy in postmenopausal women: Effects on cognitive function and dementia. JAMA. 1998;279:688–95,. https://doi.org/10.1001/jama.279.9.688.

    Article  PubMed  Google Scholar 

  119. Colzato LS, Hertsig G, van den Wildenberg WPM, Hommel B. Estrogen modulates inhibitory control in healthy human females: evidence from the stop-signal paradigm. Neuroscience. 2010;167:709–15. https://doi.org/10.1016/j.neuroscience.2010.02.029.

    Article  PubMed  Google Scholar 

  120. Wishart HA, Roth RM, Saykin AJ, Rhodes CH, Tsongalis GJ, Pattin KA, et al. COMT Val158Met genotype and individual differences in executive function in healthy adults. J Int Neuropsychol Soc. 2011;17:174–80.https://doi.org/10.1017/S1355617710001402.

    Article  PubMed  Google Scholar 

  121. Lang UE, Bajbouj M, Sander T, Gallinat J. Gender-dependent association of the functional catechol-O-methyltransferase Val158Met genotype with sensation seeking personality trait. Neuropsychopharmacology. 2007;32:1950–5. https://doi.org/10.1038/sj.npp.1301335.

    Article  PubMed  Google Scholar 

  122. Rock PL, Roiser JP, Riedel WJ, Blackwell AD. Cognitive impairment in depression: A systematic review and meta-analysis. Psychol Med. 2014;44:2029–40. https://doi.org/10.1017/S0033291713002535.

    Article  PubMed  Google Scholar 

  123. Becker JB. Direct effect of 17B-estradiol on striatum: Sex differences in dopamine release. Synapse. 1990;5:157–64.

    Article  PubMed  Google Scholar 

  124. Becker JB. Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol Biochem Behav. 1999;64:803–12. https://doi.org/10.1016/S0091-3057(99)00168-9.

    Article  PubMed  Google Scholar 

  125. Korol DL, Malin EL, Borden KA, Busby RA, Couper-Leo J. Shifts in preferred learning strategy across the estrous cycle in female rats. Hormones Behav. 2004;45:330–8. https://doi.org/10.1016/j.yhbeh.2004.01.005.

    Article  Google Scholar 

  126. Windels F, Kiyatkin EA. Modulatory action of acetylcholine on striatal neurons: Microiontophoretic study in awake, unrestrained rats. Eur J Neurosci. 2003;17:613–22. https://doi.org/10.1046/j.1460-9568.2003.02492.x.

    Article  PubMed  Google Scholar 

  127. Marcondes FK, Miguel KJ, Melo LL, Spadari-Bratfisch RC. Estrous cycle influences the response of female rats in the elevated plus-maze test. Physiol Behav. 2001;74:435–40. https://doi.org/10.1016/S0031-9384(01)00593-5.

    Article  PubMed  Google Scholar 

  128. Morissette M, Di Paolo T. Sex and estrous cycle variations of rat striatal dopamine uptake sites. Neuroendocrinology. 1993;58:16–22. https://doi.org/10.1159/000126507.

    Article  PubMed  Google Scholar 

  129. Di Paolo T, Poyet P, Labrie F. Prolactin and estradiol increase striatal dopamine receptor density in intact, castrated and hypophysectomized rats. Prog Neuro-Psychopharmacol Biol Psychiatry. 1982;6:377–82. https://doi.org/10.1016/S0278-5846(82)80111-5.

    Article  Google Scholar 

  130. Shimizu H, Bray GA. Effects of castration, estrogen replacement and estrus cycle on monoamine metabolism in the nucleus accumbens, measured by microdialysis. Brain Res. 1993;621:200–6. https://doi.org/10.1016/0006-8993(93)90107-X.

    Article  PubMed  Google Scholar 

  131. Thompson TL, Moss RL. Estrogen regulation of dopamine release in the nucleus accumbens: Genomic- and nongenomic-mediated effects. J Neurochem. 1994;62:1750–6. https://doi.org/10.1046/j.1471-4159.1994.62051750.x.

    Article  PubMed  Google Scholar 

  132. Shams WM, Cossette M-P, Shizgal P, Brake WG. 17β-estradiol locally increases phasic dopamine release in the dorsal striatum. Neurosci Lett. 2018;665:29–32. https://doi.org/10.1016/j.neulet.2017.11.039.

    Article  PubMed  Google Scholar 

  133. Bayer J, Bandurski P, Sommer T. Differential modulation of activity related to the anticipation of monetary gains and losses across the menstrual cycle. Eur J Neurosci. 2013;38:3519–26. https://doi.org/10.1111/ejn.12347.

    Article  PubMed  Google Scholar 

  134. Dreher J-C, Neuroimaging evidences of gonadal steroid hormone influences on reqard processing and social decision-making in humans. in Brain Mapping, Elsevier, 2015, pp. 1011-8.

  135. Dreher J-C, Schmidt PJ, Kohn P, Furman D, Rubinow D, Berman KF. Menstrual cycle phase modulates reward-related neural function in women. Proc Natl Acad Sci USA 2007;104:2465–70. https://doi.org/10.1073/pnas.0605569104.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Geugies H, Groenewold NA, Meurs M, Doornbos B, de Klerk-Sluis JM, van Eijndhoven P, et al. Decreased reward circuit connectivity during reward anticipation in major depression. NeuroImage: Clin. 2022;36:103226 https://doi.org/10.1016/j.nicl.2022.103226.

    Article  PubMed  Google Scholar 

  137. Rupprechter S, Romaniuk L, Series P, Hirose Y, Hawkins E, Sandu AL, et al. Blunted medial prefrontal cortico-limbic reward-related effective connectivity and depression. Brain. 2020;143:1946–56. https://doi.org/10.1093/brain/awaa106.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Rolls ET, Cheng W, Feng J. The orbitofrontal cortex: Reward, emotion and depression. Brain Commun. 2020;2:fcaa196 https://doi.org/10.1093/braincomms/fcaa196.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Schiller CE, Walsh E, Eisenlohr-Moul TA, Prim J, Dichter GS, Schiff L, et al. Effects of gonadal steroids on reward circuitry function and anhedonia in women with a history of postpartum depression. J Affect Disord. 2022;314:176–84. https://doi.org/10.1016/j.jad.2022.06.078.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Owens SA, Eisenlohr-Moul T. Suicide risk and the menstrual cycle: A review of candidate RDoC mechanisms. Curr Psychiatry Rep. 2018;20:106 https://doi.org/10.1007/s11920-018-0962-3.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Blake KR, Bastian B, O’Dean SM, Denson TF. High estradiol and low progesterone are associated with high assertiveness in women. Psychoneuroendocrinology. 2017;75:91–99. https://doi.org/10.1016/j.psyneuen.2016.10.008.

    Article  PubMed  Google Scholar 

  142. Blake KR, McCartney M, Arslan RC. Menstrual cycle and hormonal contraception effects on self-efficacy, assertiveness, regulatory focus, optimism, impulsiveness, and risk-taking. J Exp Soc Psychol. 2022;103:104382 https://doi.org/10.1016/j.jesp.2022.104382.

    Article  Google Scholar 

  143. Roney JR, Simmons ZL. Hormonal predictors of sexual motivation in natural menstrual cycles. Hormones Behav. 2013;63:636–45. https://doi.org/10.1016/j.yhbeh.2013.02.013.

    Article  Google Scholar 

  144. Roney JR, Simmons ZL. Within-cycle fluctuations in progesterone negatively predict changes in both in-pair and extra-pair desire among partnered women. Hormones Behav. 2016;81:45–52. https://doi.org/10.1016/j.yhbeh.2016.03.008.

    Article  Google Scholar 

  145. Joyce KM, Hudson A, O’Connor R, Thompson K, Hodgin M, Perrot T, et al. Changes in coping and social motives for drinking and alcohol consumption across the menstrual cycle. Depress Anxiety. 2018;35:313–20. https://doi.org/10.1002/da.22699.

    Article  PubMed  Google Scholar 

  146. Joyce KM, Hudson A, O’Connor RM, Goldstein AL, Ellery M, McGrath DS, et al. Retrospective and prospective assessments of gambling-related behaviors across the female menstrual cycle. J Behav Addict. 2019;8:135–45. https://doi.org/10.1556/2006.7.2018.133.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Poulin F, Boivin M. Reactive and proactive aggression: Evidence of a two-factor model. Psychol Assess. 2000;12:115–22. https://doi.org/10.1037/1040-3590.12.2.115.

    Article  PubMed  Google Scholar 

  148. Teatero ML, Mazmanian D, Sharma V. Effects of the menstrual cycle on bipolar disorder. Bipolar Disord. 2014;16:22–36. https://doi.org/10.1111/bdi.12138.

    Article  PubMed  Google Scholar 

  149. Griffith AK, Martel MM, Eisenlohr-Moul T, Fillmore MT, Heightened sensitivity to the disinhibiting effect of alcohol in women during the late follicular phase of the menstrual cycle. Exp Clin Psychopharmacol, 2022, https://doi.org/10.1037/pha0000611.

  150. Alzueta E, de Zambotti M, Javitz H, Dulai T, Albinni B, Simon KC, et al. Tracking sleep, temperature, heart rate, and daily symptoms across the menstrual cycle with the oura ring in healthy women. Int J Women’s Health. 2022;14:491–503. 10.2147/IJWH.S341917.

    Article  Google Scholar 

  151. Uchida Y, Izumizaki M. The use of wearable devices for predicting biphasic basal body temperature to estimate the date of ovulation in women. J Therm Biol. 2022;108:103290 https://doi.org/10.1016/j.jtherbio.2022.103290.

    Article  PubMed  Google Scholar 

  152. Zhu TY, Rothenbühler M, Hamvas G, Hofmann A, Welter J, Kahr M, et al. The Accuracy of Wrist Skin Temperature in Detecting Ovulation Compared to Basal Body Temperature: Prospective Comparative Diagnostic Accuracy Study. J Med Internet Res. 2021;23:e20710 https://doi.org/10.2196/20710.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Andersen EH, Nagpal A, Eisenlohr-Moul TA, Gordon JL. A novel method for quantifying affective sensitivity to endogenous ovarian hormones. Psychoneuroendocrinology. 2024;167:107095 https://doi.org/10.1016/j.psyneuen.2024.107095.

    Article  PubMed  Google Scholar 

  154. McEvoy K, Osborne LM, Nanavati J, Payne JL. Reproductive affective disorders: a review of the genetic evidence for premenstrual dysphoric disorder and postpartum depression. Curr Psychiatry Rep. 2017;19:94 https://doi.org/10.1007/s11920-017-0852-0.

    Article  PubMed  Google Scholar 

  155. Kaminsky Z, Hantsoo L, Payne J. 103. Luteal Phase Epigenetic Biomarkers Identify Premenstrual Dysphoric Disorder (PMDD) and Selective Serotonin Reuptake Response in PMDD. Biol Psychiatry. 2023;93:S135–S136. https://doi.org/10.1016/j.biopsych.2023.02.343.

    Article  Google Scholar 

  156. Miller A, Vo H, Huo L, Roca C, Schmidt PJ, Rubinow DR. Estrogen Receptor Alpha (ESR-1) associations with psychological traits in women with PMDD and controls. J Psychiatr Res. 2010;44:788–94. https://doi.org/10.1016/j.jpsychires.2010.01.013.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Namavar Jahromi B, Pakmehr S, Hagh-Shenas H. Work stress, premenstrual syndrome and dysphoric disorder: are there any associations? Iran Red Crescent Med J. 2011;13:199–202.

    PubMed  PubMed Central  Google Scholar 

  158. Girdler SS, Leserman J, Bunevicius R, Klatzkin R, Pedersen CA, Light KC. Persistent alterations in biological profiles in women with abuse histories: influence of premenstrual dysphoric disorder. Health Psychol. 2007;26:201–13. https://doi.org/10.1037/0278-6133.26.2.201.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kulkarni J, Leyden O, Gavrilidis E, Thew C, Thomas EHX. The prevalence of early life trauma in premenstrual dysphoric disorder (PMDD). Psychiatry Res. 2022;308:114381 https://doi.org/10.1016/j.psychres.2021.114381.

    Article  PubMed  Google Scholar 

  160. Gollenberg AL, Hediger ML, Mumford SL, Whitcomb BW, Hovey KM, Wactawski-Wende J, et al. Perceived stress and severity of perimenstrual symptoms: the biocycle study. J Women’s Health. 2010;19:959–67. https://doi.org/10.1089/jwh.2009.1717.

    Article  Google Scholar 

  161. Eisenlohr-Moul TA, Rubinow DR, Schiller CE, Johnson JL, Leserman J, Girdler SS. Histories of abuse predict stronger within-person covariation of ovarian steroids and mood symptoms in women with menstrually related mood disorder. Psychoneuroendocrinology. 2016;67:142–52. https://doi.org/10.1016/j.psyneuen.2016.01.026.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Kiesner J, Eisenlohr-Moul TA, Vidotto G. Affective risk associated with menstrual cycle symptom change. Front Glob Women’s Health. 2022;3:896924 https://doi.org/10.3389/fgwh.2022.896924.

    Article  Google Scholar 

  163. Patton GC, Olsson C, Bond L, Toumbourou JW, Carlin JB, Hemphill SA, et al. Predicting female depression across puberty: a two-nation longitudinal study. J Am Acad Child Adolesc Psychiatry. 2008;47:1424–32. https://doi.org/10.1097/CHI.0b013e3181886ebe.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Breslau J, Gilman SE, Stein BD, Ruder T, Gmelin T, Miller E, Sex differences in recent first-onset depression in an epidemiological sample of adolescents. Transl Psychiatry, 7, 5, 2017, https://doi.org/10.1038/tp.2017.105.

  165. Salk RH, Petersen JL, Abramson LY, Hyde JS. The contemporary face of gender differences and similarities in depression throughout adolescence: Development and chronicity. J Affect Disord. 2016;205:28–35. https://doi.org/10.1016/j.jad.2016.03.071.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Faravelli C, Alessandra Scarpato M, Castellini G, Lo Sauro C. Gender differences in depression and anxiety: The role of age. Psychiatry Res. 2013;210:1301–3. https://doi.org/10.1016/j.psychres.2013.09.027.

    Article  PubMed  Google Scholar 

  167. Freeman EW, Sammel MD, Boorman DW, Zhang R. Longitudinal pattern of depressive symptoms around natural menopause. JAMA Psychiatry. 2014;71:36–43. https://doi.org/10.1001/jamapsychiatry.2013.2819.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kepple AL, Lee EE, Haq N, Rubinow DR, Schmidt PJ. History of postpartum depression in a clinic-based sample of women with premenstrual dysphoric disorder. J Clin Psychiatry. 2016;77:e415–e420. https://doi.org/10.4088/JCP.15m09779.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Pereira D, Pessoa AR, Nuno M, António M, Pereira AT. Association between premenstrual dysphoric disorder and perinatal depression: a systematic review. Arch Women’s Ment Health. 2022;25:61–70. https://doi.org/10.1007/s00737-021-01177-6.

    Article  Google Scholar 

  170. Eisenlohr-Moul T, Swales DA, Rubinow DR, Schiff L, Schiller CE. Temporal dynamics of neurobehavioral hormone sensitivity in a scaled-down experimental model of early pregnancy and parturition. Neuropsychopharmacology. 2024;49:414–21. https://doi.org/10.1038/s41386-023-01687-0.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the many patients, study participants, and advocates (especially the International Association for Premenstrual Disorders) whose invaluable contributions have allowed us to develop this framework. The authors are supported by the following funding: National Institute of Mental Health R01 MH126940 (JRP, TEM), K23 MH112889 (JRP), RF1MH120843 (TEM), R01 MH122446 (TEM), T32 MH019927 (AS), R01 MH119119 (MMM); National Institute on Alcohol Abuse and Alcoholism T32 AA027488 (AGE); German Research Foundation (DFG) SCHM 3732/1-1, 470147139 (KS).

Author information

Authors and Affiliations

Authors

Contributions

JRP and TAEM co-developed the DASH-MC theoretical framework and drafted the majority of manuscript. KMS assisted in developing and refining the framework, and KMS, AS, AEG, and MMM assisted with manuscript drafting, editing, and revisions.

Corresponding author

Correspondence to Jessica R. Peters.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, J.R., Schmalenberger, K.M., Eng, A.G. et al. Dimensional Affective Sensitivity to Hormones across the Menstrual Cycle (DASH-MC): A transdiagnostic framework for ovarian steroid influences on psychopathology. Mol Psychiatry 30, 251–262 (2025). https://doi.org/10.1038/s41380-024-02693-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-024-02693-4

Search

Quick links