Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Latent profiles of modifiable dementia risk factors in later midlife: relationships with incident dementia, cognition, and neuroimaging outcomes

Abstract

In 2020, the Lancet Commission identified 12 modifiable factors that increase population-level dementia risk. It is unclear if these risk factors co-occur among individuals in a clinically meaningful way. Using latent class analysis, we identified profiles of modifiable dementia risk factors in dementia-free adults aged 60–64 years from the UK Biobank. We then estimated associations between these profiles with incident dementia, cognition, and neuroimaging outcomes, and explored the differences across profiles in the effects of a polygenic risk score for Alzheimer’s disease on outcomes. In 55,333 males and 63,063 females, three sex-specific latent profiles were identified: cardiometabolic risk, substance use-related risk, and low risk. The cardiometabolic risk profile in both males and females was associated with greater incidence of all-cause dementia (male: OR [95% CI] = 2.33 [2.03, 2.66]; female: OR [95% CI] = 1.44 [1.24, 1.68]), poorer cognitive performance, greater brain atrophy, and greater white matter hyperintensity volume compared to the low risk profile. The substance use-related risk profile in males was associated with poorer cognitive performance and greater white matter hyperintensities compared to the low risk profile, but no difference in all-cause dementia incidence was observed (OR [95% CI] = 1.00 [0.95, 1.06]). In females, the substance use-related risk profile demonstrated increased dementia incidence (OR [95% CI] = 1.58 [1.57, 1.58]) and greater brain atrophy but smaller white matter hyperintensity volume compared to the low risk profile. The polygenic risk score had larger effects among females, and differentially influenced outcomes across profiles; for instance, there were larger effects of the polygenic risk score on atrophy in the cardiometabolic profile vs. the low risk profile among males, and larger effects of the polygenic risk score on loss of white matter integrity in the cardiometabolic profile vs. the low risk profile among females. These results reveal three modifiable dementia risk profiles, their unique cognitive/neuroimaging outcomes, and their interactions with genetic risk for Alzheimer’s disease. These differences highlight the need to consider population heterogeneity in risk prediction tools and in planning personalized prevention strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Risk factor profiles identified in males and females.
Fig. 2: Heatmap showing pairwise differences between risk factor profiles for cognitive and neuroimaging outcomes after correction for multiple comparisons at a 5% false discovery rate.
Fig. 3: Association between the AD PRS and outcomes in each risk factor profile.

Similar content being viewed by others

Data availability

Access to UK Biobank data is available to researchers through application on the UK Biobank website (https://www.ukbiobank.ac.uk).

References

  1. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–46.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hwang PH, Ang TFA, Liu X, Liu Y, Gurnani AS, Mez JB, et al. Modifying adult life course dementia risk: results from the Framingham Heart Study. Alzheimers Dement. 2022;18:e059081.

  3. LaPlume AA, McKetton L, Anderson ND, Troyer AK. Sex differences and modifiable dementia risk factors synergistically influence memory over the adult lifespan. Alzheimers Dement Diagn Assess Dis Monit. 2022;14:e12301.

    Google Scholar 

  4. LaPlume AA, McKetton L, Levine B, Troyer AK, Anderson ND. The adverse effect of modifiable dementia risk factors on cognition amplifies across the adult lifespan. Alzheimers Dement Diagn Assess Dis Monit. 2022;14:e12337.

    Google Scholar 

  5. Bransby L, Rosenich E, Buckley RF, Yassi N, Pase MP, Maruff P, et al. Multidomain modifiable dementia risk factors are associated with poorer cognition in midlife. Neuropsychology. 2023;37:582–94.

    Article  PubMed  Google Scholar 

  6. Kotaki Y, Tomata Y, Tanji F, Zhang S, Sugawara Y, Tsuji I. Joint impact of seven risk factors on incident dementia in elderly Japanese: the Ohsaki Cohort 2006 Study. J Neurol. 2019;266:1222–9.

    Article  PubMed  Google Scholar 

  7. Kontari P, Fife-Schaw C, Smith K. Clustering of cardiometabolic risk factors and dementia incidence in older adults: a cross-country comparison in England, the United States, and China. J Gerontol Ser A. 2023;78:1035–44.

    Article  Google Scholar 

  8. Ruthirakuhan M, Cogo‐Moreira H, Swardfager W, Herrmann N, Lanctot KL, Black SE. Cardiovascular risk factors and risk of Alzheimer disease and mortality: a latent class approach. J Am Heart Assoc. 2023;12:e025724.

    Article  PubMed  Google Scholar 

  9. Than S, Moran C, Collyer TA, Beare RJ, Lane EM, Vincent AJ, et al. Associations of sex, age, and cardiometabolic risk profiles with brain structure and cognition: a UK Biobank latent class analysis. Neurology. 2022;99:e1853–65.

    Article  CAS  PubMed  Google Scholar 

  10. Ferencz B, Gerritsen L. Genetics and underlying pathology of dementia. Neuropsychol Rev. 2015;25:113–24.

    Article  PubMed  Google Scholar 

  11. Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Holland D, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet. 2021;53:1276–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51:404–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bullido MJ, Artiga MJ, Recuero M, Sastre I, García MA, Aldudo J, et al. A polymorphism in the regulatory region of APOE associated with risk for Alzheimer’s dementia. Nat Genet. 1998;18:69–71.

    Article  CAS  PubMed  Google Scholar 

  14. Van Der Lee SJ, Wolters FJ, Ikram MK, Hofman A, Ikram MA, Amin N, et al. The effect of APOE and other common genetic variants on the onset of Alzheimer’s disease and dementia: a community-based cohort study. Lancet Neurol. 2018;17:434–44.

    Article  PubMed  Google Scholar 

  15. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Med. 2015;12:e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liang Y, Ngandu T, Laatikainen T, Soininen H, Tuomilehto J, Kivipelto M, et al. Cardiovascular health metrics from mid- to late-life and risk of dementia: A population-based cohort study in Finland. PLOS Med. 2020;17:e1003474.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dove A, Guo J, Marseglia A, Fastbom J, Vetrano DL, Fratiglioni L, et al. Cardiometabolic multimorbidity and incident dementia: the Swedish twin registry. Eur Heart J. 2023;44:573–82.

    Article  CAS  PubMed  Google Scholar 

  18. Huang X, Lee K, Wang MC, Shah NS, Khan SS. Age at diagnosis of hypertension by race and ethnicity in the US from 2011 to 2020. JAMA Cardiol. 2022;7:986–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Holden SE, Barnett AH, Peters JR, Jenkins‐Jones S, Poole CD, Morgan CL, et al. The incidence of type 2 diabetes in the United Kingdom from 1991 to 2010. Diabetes Obes Metab. 2013;15:844–52.

    Article  CAS  PubMed  Google Scholar 

  20. Walling AD, Dickson GM. Hearing loss in older adults. Hear Loss. 2012;85:1150–6.

    Google Scholar 

  21. Stevenson-Hoare J, Schalkamp A-K, Sandor C, Hardy J, Escott-Price V. New cases of dementia are rising in elderly populations in Wales, UK. J Neurol Sci. 2023;451:120715.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Townsend P. Poverty in the United Kingdom: a survey of household resources and standards of living. University of California Press; 1979. p.93–115.

  23. Havard S, Deguen S, Bodin J, Louis K, Laurent O, Bard D. A small-area index of socioeconomic deprivation to capture health inequalities in France. Soc Sci Med. 2008;67:2007–16.

    Article  PubMed  Google Scholar 

  24. McLennan D, Noble S, Noble M, Plunkett E, Wright G, Gutacker N. English Indices of Deprivation 2019: technical report. Ministry of Housing, Communities and Local Government; 2019. p.29–58.

  25. Lang IA, Llewellyn DJ, Langa KM, Wallace RB, Huppert FA, Melzer D. Neighborhood deprivation, individual socioeconomic status, and cognitive function in older people: analyses from the english longitudinal study of ageing. J Am Geriatr Soc. 2008;56:191–8.

    Article  PubMed  Google Scholar 

  26. Shohaimi S, Luben R, Wareham N, Day N, Bingham S, Welch A, et al. Residential area deprivation predicts smoking habit independently of individual educational level and occupational social class. A cross sectional study in the Norfolk cohort of the European Investigation into Cancer (EPIC-Norfolk). J Epidemiol Community Health. 2003;57:270–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thompson DJ, Wells D, Selzam S, Peneva I, Moore R, Sharp K, et al. UK Biobank release and systematic evaluation of optimised polygenic risk scores for 53 diseases and quantitative traits. 2022.

  28. Wilkinson T, Schnier C, Bush K, Rannikmäe K, Henshall DE, Lerpiniere C, et al. Identifying dementia outcomes in UK Biobank: a validation study of primary care, hospital admissions and mortality data. Eur J Epidemiol. 2019;34:557–65.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fawns-Ritchie C, Deary IJ. Reliability and validity of the UK Biobank cognitive tests. PLoS ONE. 2020;15:e0231627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR, Griffanti L, Douaud G, et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage. 2018;166:400–24.

    Article  PubMed  Google Scholar 

  31. de Groot M, Vernooij MW, Klein S, Ikram MA, Vos FM, Smith SM, et al. Improving alignment in Tract-based spatial statistics: Evaluation and optimization of image registration. NeuroImage. 2013;76:400–11.

    Article  PubMed  Google Scholar 

  32. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.

    Google Scholar 

  33. Muthén LK, Muthén BO. Mplus user’s guide. Eighth ed. Los Angeles, CA: Muthén & Muthén; 1998.

    Google Scholar 

  34. Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag; 2016.

    Book  Google Scholar 

  35. McCutcheon AL. Latent class analysis. Sage; 1987. p.12–27.

  36. Enders C, Bandalos D. The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Struct Equ Model Multidiscip J. 2001;8:430–57.

    Article  Google Scholar 

  37. Gong J, Harris K, Peters SAE, Woodward M. Sex differences in the association between major cardiovascular risk factors in midlife and dementia: a cohort study using data from the UK Biobank. BMC Med. 2021;19:110.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gong J, Harris K, Hackett M, Peters SAE, Brodaty H, Cooper M, et al. Sex differences in risk factors for cognitive decline and dementia, including death as a competing risk, in individuals with diabetes: Results from the ADVANCE trial. Diabetes Obes Metab. 2021;23:1775–85.

    Article  PubMed  Google Scholar 

  39. Satorra A, Bentler PM. Ensuring positiveness of the scaled difference chi-square test statistic. Psychometrika. 2010;75:243–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Austin PC. Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research. Commun Stat Simul Comput. 2009;38:1228–34.

    Article  Google Scholar 

  41. Bolck A, Croon M, Hagenaars J. Estimating latent structure models with categorical variables: one-step versus three-step estimators. Polit Anal. 2004;12:3–27.

    Article  Google Scholar 

  42. Vermunt JK. Latent class modeling with covariates: two improved three-step approaches. Polit Anal. 2010;18:450–69.

    Article  Google Scholar 

  43. Asparouhov T. Sampling weights in latent variable modeling. Struct Equ Model Multidiscip J. 2005;12:411–34.

    Article  Google Scholar 

  44. Asparouhov T. General multi-level modeling with sampling weights. Commun Stat Theory Methods. 2006;35:439–60.

    Article  Google Scholar 

  45. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.

    Article  Google Scholar 

  46. Sinha P, Calfee CS, Delucchi KL. Practitioner’s guide to latent class analysis: methodological considerations and common pitfalls. Crit Care Med. 2021;49:e63–79.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Grant BF, Saha TD, Ruan WJ, Goldstein RB, Chou SP, Jung J, et al. Epidemiology of DSM-5 drug use disorder: results from the National Epidemiologic Survey on Alcohol and Related Conditions–III. JAMA Psychiatry. 2016;73:39.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hallgren M, Högberg P, Andréasson S. Alcohol consumption among elderly European Union citizens. Stockholm, Sweden: Swedish National Institute of Public Health; 2009.

    Google Scholar 

  49. Devaux M, Sassi F. Social disparities in hazardous alcohol use: self-report bias may lead to incorrect estimates. Eur J Public Health. 2016;26:129–34.

    Article  PubMed  Google Scholar 

  50. Berg NJ, Kiviruusu OH, Lintonen TP, Huurre TM. Longitudinal prospective associations between psychological symptoms and heavy episodic drinking from adolescence to midlife. Scand J Public Health. 2019;47:420–7.

    Article  PubMed  Google Scholar 

  51. Huo N, Vemuri P, Graff-Radford J, Syrjanen J, Machulda M, Knopman DS, et al. Sex differences in the association between midlife cardiovascular conditions or risk factors with midlife cognitive decline. Neurology. 2022;98:e623–32.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dal Forno G, Palermo MT, Donohue JE, Karagiozis H, Zonderman AB, Kawas CH. Depressive symptoms, sex, and risk for Alzheimer’s disease. Ann Neurol. 2005;57:381–7.

    Article  PubMed  Google Scholar 

  53. Mielke MM, Aggarwal NT, Vila‐Castelar C, Agarwal P, Arenaza‐Urquijo EM, Brett B, et al. Consideration of sex and gender in Alzheimer’s disease and related disorders from a global perspective. Alzheimers Dement. 2022;18:2707–24.

    Article  PubMed  Google Scholar 

  54. Jin Y, Liang J, Hong C, Liang R, Luo Y. Cardiometabolic multimorbidity, lifestyle behaviours, and cognitive function: a multicohort study. Lancet Healthy Longev. 2023;4:e265–73.

    Article  PubMed  Google Scholar 

  55. Debette S, Seshadri S, Beiser A, Au R, Himali JJ, Palumbo C, et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology. 2011;77:461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu A, Sharrett AR, Gottesman RF, Power MC, Mosley TH, Jack CR, et al. Association of brain magnetic resonance imaging signs with cognitive outcomes in persons with nonimpaired cognition and mild cognitive impairment. JAMA Netw Open. 2019;2:e193359.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rawlings AM, Sharrett AR, Schneider ALC, Coresh J, Albert M, Couper D, et al. Diabetes in midlife and cognitive change over 20 years: a cohort study. Ann Intern Med. 2014;161:785.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sundermann EE, Maki PM, Rubin LH, Lipton RB, Landau S, Biegon A. Female advantage in verbal memory. Neurology. 2016;87:1916–24.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pliatsikas C, Veríssimo J, Babcock L, Pullman MY, Glei DA, Weinstein M, et al. Working memory in older adults declines with age, but is modulated by sex and education. Q J Exp Psychol. 2019;72:1308–27.

    Article  Google Scholar 

  60. Anstey KJ, Von Sanden C, Salim A, O’Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166:367–78.

    Article  PubMed  Google Scholar 

  61. Gray JC, Thompson M, Bachman C, Owens MM, Murphy M, Palmer R. Associations of cigarette smoking with gray and white matter in the UK Biobank. Neuropsychopharmacology. 2020;45:1215–22.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sabia S, Elbaz A, Dugravot A, Head J, Shipley M, Hagger-Johnson G, et al. Impact of smoking on cognitive decline in early old age: the Whitehall II Cohort Study. Arch Gen Psychiatry. 2012;69:627–35.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mann K, Ackermann K, Croissant B, Mundle G, Nakovics H, Diehl A. Neuroimaging of gender differences in alcohol dependence: are women more vulnerable? Alcohol Clin Exp Res. 2005;29:896–901.

    Article  CAS  PubMed  Google Scholar 

  64. Erol A, Karpyak VM. Sex and gender-related differences in alcohol use and its consequences: contemporary knowledge and future research considerations. Drug Alcohol Depend. 2015;156:1–13.

    Article  PubMed  Google Scholar 

  65. Altmann A, Tian L, Henderson VW, Greicius MD, Alzheimer’s Disease Neuroimaging Initiative Investigators. Sex modifies the APOE ‐related risk of developing Alzheimer disease. Ann Neurol. 2014;75:563–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Neu SC, Pa J, Kukull W, Beekly D, Kuzma A, Gangadharan P, et al. Apolipoprotein E genotype and sex risk factors for Alzheimer disease: a meta-analysis. JAMA Neurol. 2017;74:1178.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shen S, Zhou W, Chen X, Zhang J, for Alzheimer’s Disease Neuroimaging Initiative. Sex differences in the association of APOE ε4 genotype with longitudinal hippocampal atrophy in cognitively normal older people. Eur J Neurol. 2019;26:1362–9.

    Article  CAS  PubMed  Google Scholar 

  68. Heise V, Filippini N, Trachtenberg AJ, Suri S, Ebmeier KP, Mackay CE. Apolipoprotein E genotype, gender and age modulate connectivity of the hippocampus in healthy adults. NeuroImage. 2014;98:23–30.

    Article  CAS  PubMed  Google Scholar 

  69. Rasmussen IJ, Rasmussen KL, Nordestgaard BG, Tybjærg-Hansen A, Frikke-Schmidt R. Impact of cardiovascular risk factors and genetics on 10-year absolute risk of dementia: risk charts for targeted prevention. Eur Heart J. 2020;41:4024–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies. Diabetes. 2002;51:1256–62.

    Article  CAS  PubMed  Google Scholar 

  71. Lahiri DK, Maloney B, Zawia NH. The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol Psychiatry. 2009;14:992–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lim U, Wang S, Park S, Bogumil D, Wu AH, Cheng I, et al. Risk of Alzheimer’s disease and related dementia by sex and race/ethnicity: tThe Multiethnic Cohort Study. Alzheimers Dement. 2022;18:1625–34.

    Article  CAS  PubMed  Google Scholar 

  73. Gao S, Hendrie HC, Hall KS, Hui S. The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. Arch Gen Psychiatry. 1998;55:809.

    Article  CAS  PubMed  Google Scholar 

  74. Beam CR, Kaneshiro C, Jang JY, Reynolds CA, Pedersen NL, Gatz M. Differences between women and men in incidence rates of dementia and Alzheimer’s disease. J Alzheimers Dis. 2018;64:1077–83.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cook WK, Li L, Tam CC, Mulia N, Kerr WC. Associations of clustered health risk behaviors with diabetes and hypertension in White, Black, Hispanic, and Asian American adults. BMC Public Health. 2022;22:773.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Anatürk M, Patel R, Ebmeier KP, Georgiopoulos G, Newby D, Topiwala A, et al. Development and validation of a dementia risk score in the UK Biobank and Whitehall II cohorts. BMJ Ment Health. 2023;26:e300719.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Vonk JMJ, Greving JP, Gudnason V, Launer LJ, Geerlings MI. Dementia risk in the general population: large-scale external validation of prediction models in the AGES-Reykjavik study. Eur J Epidemiol. 2021;36:1025–41.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kivipelto M, Solomon A, Ahtiluoto S, Ngandu T, Lehtisalo J, Antikainen R, et al. The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER): study design and progress. Alzheimers Dement J Alzheimers Assoc. 2013;9:657–65.

    Article  Google Scholar 

  79. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am J Epidemiol. 2017;186:1026–34.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Schoeler T, Speed D, Porcu E, Pirastu N, Pingault J-B, Kutalik Z. Participation bias in the UK Biobank distorts genetic associations and downstream analyses. Nat Hum Behav. 2023;7:1216–27.

    Article  PubMed  PubMed Central  Google Scholar 

  81. van Alten S, Domingue BW, Faul J, Galama T, Marees AT. Reweighting UK Biobank corrects for pervasive selection bias due to volunteering. Int J Epidemiol. 2024;53:dyae054.

  82. Wilkinson T, Ly A, Schnier C, Rannikmäe K, Bush K, Brayne C, et al. Identifying dementia cases with routinely collected health data: a systematic review. Alzheimers Dement. 2018;14:1038–51.

    Article  PubMed  Google Scholar 

  83. Dawes P, Fortnum H, Moore DR, Emsley R, Norman P, Cruickshanks K, et al. Hearing in middle age: a population snapshot of 40- to 69-year olds in the United Kingdom. Ear Hear. 2014;35:e44–51.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Daviet R, Aydogan G, Jagannathan K, Spilka N, Koellinger PD, Kranzler HR, et al. Associations between alcohol consumption and gray and white matter volumes in the UK Biobank. Nat Commun. 2022;13:1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Smith DJ, Nicholl BI, Cullen B, Martin D, Ul-Haq Z, Evans J, et al. Prevalence and characteristics of probable major depression and bipolar disorder within UK Biobank: cross-sectional study of 172,751 participants. PLoS ONE. 2013;8:e75362.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Elovainio M, Hakulinen C, Pulkki-Råback L, Virtanen M, Josefsson K, Jokela M, et al. Contribution of risk factors to excess mortality in isolated and lonely individuals: an analysis of data from the UK Biobank cohort study. Lancet Public Health. 2017;2:e260–66.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–95.

    Article  PubMed  Google Scholar 

  88. IPAQ. Guidelines for the data processing and analysis of the ‘International Physical Activity Questionnaire’. 2005. https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/ipaq_analysis.pdf.

  89. Vienneau D, de Hoogh K, Bechle MJ, Beelen R, van Donkelaar A, Martin RV, et al. Western European land use regression incorporating satellite- and ground-based measurements of NO 2 and PM 10. Environ Sci Technol. 2013;47:13555–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been conducted using data the UK Biobank Resource under Application Number 56197. This work uses data provided by patients and collected by the NHS as part of their care and support. We gratefully thank all the participants of UK Biobank. This work was funded by the Canadian Institutes of Health Research (Doctoral Research Award: Canadian Graduate Scholarship, 202111FBD-476226; Canada Research Chair, CRC-2020-00353; PJT-159711), Natural Sciences and Engineering Research Council of Canada (RGPI N-2017-06962), Alzheimer’s Association and Brain Canada (AARG501466), the Ontario Ministry of Colleges and Universities (ER21-16-141), Weston Brain Institute, Alzheimer’s Research UK, Alzheimer’s Association, and Michael J. Fox Foundation (BAND3). The funders were not involved at any stage of the study.

Author information

Authors and Affiliations

Authors

Contributions

LYX, HCM, and WS conceptualized and designed the study. LYX and HCM performed the statistical analysis. LYX, YYW, and CYW were responsible for data acquisition and processing. LYX drafted the manuscript. WS provided supervision. All authors contributed to the interpretation of the data, provided critical revision of the manuscript, and approved the final version of the manuscript.

Corresponding author

Correspondence to Walter Swardfager.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

UK Biobank received ethics approval from the North West Multi-Centre Research Ethics Committee (REC reference: 21/NW/0157). This study was conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, L.Y., Wood Alexander, M., Wong, Y.Y. et al. Latent profiles of modifiable dementia risk factors in later midlife: relationships with incident dementia, cognition, and neuroimaging outcomes. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02685-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02685-4

Search

Quick links