Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping the neurodevelopmental predictors of psychopathology

Abstract

Neuroimaging research has uncovered a multitude of neural abnormalities associated with psychopathology, but few prediction-based studies have been conducted during adolescence, and even fewer used neurobiological features that were extracted across multiple neuroimaging modalities. This gap in the literature is critical, as deriving accurate brain-based models of psychopathology is an essential step towards understanding key neural mechanisms and identifying high-risk individuals. As such, we trained adaptive tree-boosting algorithms on multimodal neuroimaging features from the Lifespan Human Connectome Developmental (HCP-D) sample that contained 956 participants between the ages of 8 to 22 years old. Our feature space consisted of 1037 anatomical, 1090 functional, and 192 diffusion MRI features, which were used to derive models that separately predicted internalizing symptoms, externalizing symptoms, and the general psychopathology factor. We found that multimodal models were the most accurate, but all brain-based models of psychopathology yielded out-of-sample predictions that were weakly correlated with actual symptoms (r2 < 0.15). White matter microstructural properties, including orientation dispersion indices and intracellular volume fractions, were the most predictive of general psychopathology, followed by cortical thickness and functional connectivity. Spatially, the most predictive features of general psychopathology were primarily localized within the default mode and dorsal attention networks. These results were mostly consistent across all dimensions of psychopathology, except orientation dispersion indices and the default mode network were not as heavily weighted in the prediction of internalizing and externalizing symptoms. Taken with prior literature, it appears that neurobiological features are an important part of the equation for predicting psychopathology but relying exclusively on neural markers is clearly not sufficient, especially among adolescent samples with subclinical symptoms. Consequently, risk factor models of psychopathology may benefit from incorporating additional sources of information that have also been shown to explain individual differences, such as psychosocial factors, environmental stressors, and genetic vulnerabilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multimodal models were the most accurate at predicting generalized psychopathology.
Fig. 2: NODDI microstructural properties and cortical thickness were the most heavily weighted among the multimodal models.
Fig. 3: The predictive power gained from cortical thickness and ODI was widely distributed throughout the brain.
Fig. 4: Features extracted exclusively from the default mode network derived the most accurate predictions of the general psychopathology factor.
Fig. 5: Cortical thickness of the default mode network provided the largest contribution to the predictive power of our cortex-wide models.
Fig. 6: Differences in the most important neural markers of internalizing, externalizing, and the general psychopathology.

Similar content being viewed by others

Data availability

The Lifespan Human Connectome Project in Development is a publicly available dataset that can be accessed from the National Data Archive repository.

Code availability

All code pertaining to this study has been made publicly available, and our computational modeling scripts were written in either R version 4.3.1 or Python version 3.10.4: https://doi.org/10.5281/zenodo.8378010.

References

  1. Solmi M, Radua J, Olivola M, Croce E, Soardo L, Salazar de Pablo G, et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol Psychiatry. 2022;27:281–95.

    Article  CAS  PubMed  Google Scholar 

  2. Gong B, Naveed S, Hafeez DM, Afzal KI, Majeed S, Abele J, et al. Neuroimaging in psychiatric disorders: a bibliometric analysis of the 100 most highly cited articles. J Neuroimaging. 2019;29:14–33.

    Article  PubMed  Google Scholar 

  3. Chaudhury D, Liu H, Han M-H. Neuronal correlates of depression. Cell Mol Life Sci. 2015;72:4825–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barch DM. The neural correlates of transdiagnostic dimensions of psychopathology. Am J Psychiatry. 2017;174:613–5.

    Article  PubMed  Google Scholar 

  5. Mitelman SA. Transdiagnostic neuroimaging in psychiatry: a review. Psychiatry Res. 2019;277:23–38.

    Article  PubMed  Google Scholar 

  6. Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci. 2008;9:947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nielsen AN, Barch DM, Petersen SE, Schlaggar BL, Greene DJ. Machine learning with neuroimaging: evaluating its applications in psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:791–8.

    PubMed  Google Scholar 

  8. Rosenberg MD, Casey B, Holmes AJ. Prediction complements explanation in understanding the developing brain. Nat Commun. 2018;9:589.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yan W-J, Ruan Q-N, Jiang K. Challenges for artificial intelligence in recognizing mental disorders. Diagnostics. 2023;13:2.

  10. Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage. 2017;145:137–65.

    Article  PubMed  Google Scholar 

  11. Davatzikos C. Machine learning in neuroimaging: progress and challenges. Neuroimage. 2019;197:652.

    Article  PubMed  Google Scholar 

  12. Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603:654–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Venkataraman A, Kubicki M, Westin C-F, Golland P. Robust feature selection in resting-state fMRI connectivity based on population studies. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, 2010. p. 63–70.

  14. Hong S-J, Sisk LM, Caballero C, Mekhanik A, Roy AK, Milham MP, et al. Decomposing complex links between the childhood environment and brain structure in school-aged youth. Dev Cogn Neurosci. 2021;48:100919.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Iannaccone R, Hauser TU, Ball J, Brandeis D, Walitza S, Brem S. Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging. Eur Child Adolesc Psychiatry. 2015;24:1279–89.

    Article  PubMed  Google Scholar 

  16. Foland-Ross LC, Sacchet MD, Prasad G, Gilbert B, Thompson PM, Gotlib IH. Cortical thickness predicts the first onset of major depression in adolescence. Int J Dev Neurosci. 2015;46:125–31.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hart H, Marquand AF, Smith A, Cubillo A, Simmons A, Brammer M, et al. Predictive neurofunctional markers of attention-deficit/hyperactivity disorder based on pattern classification of temporal processing. J Am Acad Child Adolesc Psychiatry. 2014;53:569–78.

    Article  PubMed  Google Scholar 

  18. Cui Z, Pines AR, Larsen B, Sydnor VJ, Li H, Adebimpe A, et al. Linking individual differences in personalized functional network topography to psychopathology in youth. Biol Psychiatry. 2022;92:973–83.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hong J, Hwang J, Lee J-H. General psychopathology factor (p-factor) prediction using resting-state functional connectivity and a scanner-generalization neural network. J Psychiatr Res. 2023;158:114–25.

    Article  PubMed  Google Scholar 

  20. Ooi LQR, Chen J, Zhang S, Kong R, Tam A, Li J, et al. Comparison of individualized behavioral predictions across anatomical, diffusion and functional connectivity MRI. NeuroImage. 2022;263:1–18.

    Article  Google Scholar 

  21. Dhamala E, Ooi LQR, Chen J, Ricard JA, Berkeley E, Chopra S, et al. Brain-based predictions of psychiatric illness–linked behaviors across the sexes. Biol Psychiatry. 2023;94:479–91.

    Article  PubMed  Google Scholar 

  22. Parkes L, Moore TM, Calkins ME, Cook PA, Cieslak M, Roalf DR, et al. Transdiagnostic dimensions of psychopathology explain individuals’ unique deviations from normative neurodevelopment in brain structure. Transl Psychiatry. 2021;11:232.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen J, Tam A, Kebets V, Orban C, Ooi LQR, Asplund CL, et al. Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study. Nat Commun. 2022;13:1–17.

    Google Scholar 

  24. Mansour L S, Tian Y, Yeo BTT, Cropley V, Zalesky A. High-resolution connectomic fingerprints: mapping neural identity and behavior. NeuroImage. 2021;229:117695.

    Article  PubMed  Google Scholar 

  25. Abd-alrazaq A, Alhuwail D, Schneider J, Toro CT, Ahmed A, Alzubaidi M, et al. The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review. Npj Digital Med. 2022;5:87.

    Article  Google Scholar 

  26. Oh J, Oh B-L, Lee K-U, Chae J-H, Yun K. Identifying schizophrenia using structural MRI with a deep learning algorithm. Front Psychiatry. 2020;11:16.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Koutsouleris N, Worthington M, Dwyer DB, Kambeitz-Ilankovic L, Sanfelici R, Fusar-Poli P, et al. Toward generalizable and transdiagnostic tools for psychosis prediction: an independent validation and improvement of the NAPLS-2 risk calculator in the multisite PRONIA cohort. Biol Psychiatry. 2021;90:632–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koutsouleris N, Meisenzahl EM, Davatzikos C, Bottlender R, Frodl T, Scheuerecker J, et al. Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Arch Gen Psychiatry. 2009;66:700–12.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mikolas P, Marxen M, Riedel P, Bröckel K, Martini J, Huth F, et al. Prediction of estimated risk for bipolar disorder using machine learning and structural MRI features. Psychol Med. 2023;54:278–88.

  30. Lee Y, Ragguett R-M, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord. 2018;241:519–32.

    Article  PubMed  Google Scholar 

  31. Lalousis PA, Wood SJ, Schmaal L, Chisholm K, Griffiths SL, Reniers RLEP, et al. Heterogeneity and classification of recent onset psychosis and depression: a multimodal machine learning approach. Schizophr Bull. 2021;47:1130–40.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kochunov P, Zavaliangos-Petropulu A, Jahanshad N, Thompson PM, Ryan MC, Chiappelli J, et al. A white matter connection of schizophrenia and Alzheimer’s disease. Schizophr Bull. 2021;47:197–206.

    Article  PubMed  Google Scholar 

  33. Karcher NR, Michelini G, Kotov R, Barch DM. Associations between resting-state functional connectivity and a hierarchical dimensional structure of psychopathology in middle childhood. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6:508–17.

    PubMed  Google Scholar 

  34. Sripada C, Angstadt M, Taxali A, Kessler D, Greathouse T, Rutherford S, et al. Widespread attenuating changes in brain connectivity associated with the general factor of psychopathology in 9- and 10-year olds. Transl Psychiatry. 2021;11:575.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Elliott ML, Romer A, Knodt AR, Hariri AR. A connectome-wide functional signature of transdiagnostic risk for mental illness. Biol Psychiatry. 2018;84:452–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang W, Yang C, Cao Z, Li Z, Zhuo L, Tan Y, et al. Detecting individuals with severe mental illness using artificial intelligence applied to magnetic resonance imaging. EBioMedicine. 2023;90:104541.

  37. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci. 2001;98:676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433–47.

    Article  CAS  PubMed  Google Scholar 

  39. Brumback T, Worley M, Nguyen-Louie TT, Squeglia LM, Jacobus J, Tapert SF. Neural predictors of alcohol use and psychopathology symptoms in adolescents. Dev Psychopathol. 2016;28:1209–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang Y, Zhong N, Imamura K, Lu S, Li M, Zhou H. et al. Task and resting-state fMRI reveal altered salience responses to positive stimuli in patients with major depressive disorder. PLOS ONE. 2016;11:e0155092.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sripada CS, Kessler D, Angstadt M. Lag in maturation of the brain’s intrinsic functional architecture in attention-deficit/hyperactivity disorder. Proc Natl Acad Sci. 2014;111:14259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Szczepanski SM, Pinsk MA, Douglas MM, Kastner S, Saalmann YB. Functional and structural architecture of the human dorsal frontoparietal attention network. Proc Natl Acad Sci. 2013;110:15806–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jirsaraie RJ, Gorelik AJ, Gatavins MM, Engemann DA, Bogdan R, Barch DM, et al. A systematic review of multimodal brain age studies: uncovering a divergence between model accuracy and utility. Patterns. 2023;4:1–12.

  44. Somerville LH, Bookheimer SY, Buckner RL, Burgess GC, Curtiss SW, Dapretto M, et al. The lifespan human connectome project in development: a large-scale study of brain connectivity development in 5–21 year olds. NeuroImage. 2018;183:456–68.

    Article  PubMed  Google Scholar 

  45. Casey BJ, Oliveri ME, Insel T. A neurodevelopmental perspective on the research domain criteria (RDoC) framework. Biol Psychiatry. 2014;76:350–3.

    Article  CAS  PubMed  Google Scholar 

  46. Achenbach TM. The child behavior checklist and related instruments. The use of psychological testing for treatment planning and outcomes assessment, 2nd ed., Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers; 1999. p. 429-66.

  47. Song L, Singh J, Singer M. The youth self-report inventory: a study of its measurements fidelity. Psychol Assess. 1994;6:236–45.

    Article  Google Scholar 

  48. Rescorla LA, Achenbach TM. The Achenbach System of Empirically Based Assessment (ASEBA) for Ages 18 to 90 Years. The use of psychological testing for treatment planning and outcomes assessment: Instruments for adults, Volume 3, 3rd ed., Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers; 2004. p. 115-52.

  49. Kotov R, Cicero DC, Conway CC, DeYoung CG, Dombrovski A, Eaton NR, et al. The hierarchical taxonomy of psychopathology (HiTOP) in psychiatric practice and research. Psychol Med. 2022;52:1666–78.

    Article  PubMed  Google Scholar 

  50. Watson D, Levin‐Aspenson HF, Waszczuk MA, Conway CC, Dalgleish T, Dretsch MN, et al. Validity and utility of Hierarchical Taxonomy of Psychopathology (HiTOP): III. Emotional dysfunction superspectrum. World Psychiatry. 2022;21:26–54.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Krueger RF, Hobbs KA, Conway CC, Dick DM, Dretsch MN, Eaton NR, et al. Validity and utility of hierarchical taxonomy of psychopathology (HiTOP): II. Externalizing superspectrum. World Psychiatry. 2021;20:171–93.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Conway CC, Kotov R, Krueger RF, Caspi A. Translating the hierarchical taxonomy of psychopathology (HiTOP) from potential to practice: ten research questions. Am Psychol. 2022;78:873–85

  53. Kotov R, Jonas KG, Carpenter WT, Dretsch MN, Eaton NR, Forbes MK, et al. Validity and utility of hierarchical taxonomy of psychopathology (HiTOP): I. Psychosis superspectrum. World Psychiatry. 2020;19:151–72.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cuthbert BN. The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry. 2014;13:28–35.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fischl B. FreeSurfer. NeuroImage. 2012;62:774–81.

    Article  PubMed  Google Scholar 

  56. Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, Petersen SE. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb Cortex. 2016;26:288–303.

    Article  PubMed  Google Scholar 

  57. Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y, Cao Q-J, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J Neurosci Methods. 2008;172:137–41.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jiang L, Zuo X-N. Regional homogeneity: a multimodal, multiscale neuroimaging marker of the human connectome. Neuroscientist. 2016;22:486–505.

    Article  PubMed  Google Scholar 

  59. Nickerson LD, Smith SM, Öngür D, Beckmann CF. Using dual regression to investigate network shape and amplitude in functional connectivity analyses. Front Neurosci. 2017;11:115–115.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhu X, Li H, Shen HT, Zhang Z, Ji Y, Fan Y. Fusing functional connectivity with network nodal information for sparse network pattern learning of functional brain networks. Inf Fusion. 2021;75:131–9.

    Article  Google Scholar 

  61. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage. 2008;40:570–82.

    Article  PubMed  Google Scholar 

  62. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

    Google Scholar 

  63. Ogunseye EO, Adenusi CA, Nwanakwaugwu AC, Ajagbe SA, Akinola SO. Predictive analysis of mental health conditions using AdaBoost algorithm. ParadigmPlus. 2022;3:11–26.

    Article  Google Scholar 

  64. Haratiannezhadi A, Setayeshi S, Hatami J. Boosting model of attention network task. 2020 4th Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), 2020. p. 032–6.

  65. Lalitha RVS, Krishna Prasad PESN, Rama Reddy T, Kavitha K, Srinivas R, Ravi Kiran B. Efficient adaptive enhanced adaboost based detection of spinal abnormalities by Machine learning approaches. Biomed Signal Process Control. 2023;80:104367.

    Article  Google Scholar 

  66. Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiatry. 2020. https://doi.org/10.1001/jamapsychiatry.2019.3671.

  67. Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A, Schwartz Y, Thirion B. Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. NeuroImage. 2017;145:166–79.

    Article  PubMed  Google Scholar 

  68. LaFontaine D. The history of bootstrapping: tracing the development of resampling with replacement. Math Enthus. 2021;18:78–99.

    Article  Google Scholar 

  69. Richardson JT. Eta squared and partial eta squared as measures of effect size in educational research. Educ Res Rev. 2011;6:135–47.

    Article  Google Scholar 

  70. Gozdas E, Fingerhut H, Dacorro L, Bruno JL, Hosseini SMH. Neurite imaging reveals widespread alterations in gray and white matter neurite morphology in healthy aging and amnestic mild cognitive impairment. Cereb Cortex. 2021;31:5570–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pines AR, Cieslak M, Larsen B, Baum GL, Cook PA, Adebimpe A, et al. Leveraging multi-shell diffusion for studies of brain development in youth and young adulthood. Dev Cogn Neurosci. 2020;43:100788–100788.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vaher K, Galdi P, Cabez MB, Sullivan G, Stoye DQ, Quigley AJ, et al. General factors of white matter microstructure from DTI and NODDI in the developing brain. Neuroimage. 2022;254:119169.

    Article  PubMed  Google Scholar 

  73. Raghavan S, Reid RI, Przybelski SA, Lesnick TG, Graff-Radford J, Schwarz CG, et al. Diffusion models reveal white matter microstructural changes with ageing, pathology and cognition. Brain Commun. 2021;3:fcab106.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jeurissen B, Leemans A, Tournier J-D, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34:2747–66.

    Article  PubMed  Google Scholar 

  75. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage. 2012;61:1000–16.

    Article  PubMed  Google Scholar 

  76. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PCM, Mori S. Fiber tract–based atlas of human white matter anatomy. Radiology. 2004;230:77–87.

    Article  PubMed  Google Scholar 

  77. Van Der Werf YD, Jolles J, Witter MP, Uylings HB. Contributions of thalamic nuclei to declarative memory functioning. Cortex 2003;39:1047–62.

    Article  PubMed  Google Scholar 

  78. Mitchell AS, Dalrymple-Alford JC, Christie MA. Spatial working memory and the brainstem cholinergic innervation to the anterior thalamus. J Neurosci. 2002;22:1922–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Floresco SB, Grace AA. Gating of hippocampal-evoked activity in prefrontal cortical neurons by inputs from the mediodorsal thalamus and ventral tegmental area. J Neurosci. 2003;23:3930–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mamah D, Conturo TE, Harms MP, Akbudak E, Wang L, McMichael AR, et al. Anterior thalamic radiation integrity in schizophrenia: a diffusion-tensor imaging study. Psychiatry Res Neuroimaging. 2010;183:144–50.

    Article  Google Scholar 

  81. Sprooten E, Lymer GKS, Maniega SM, McKirdy J, Clayden JD, Bastin ME, et al. The relationship of anterior thalamic radiation integrity to psychosis risk associated neuregulin-1 variants. Mol Psychiatry. 2009;14:237–8.

    Article  CAS  PubMed  Google Scholar 

  82. Owens MM, Yuan D, Hahn S, Albaugh M, Allgaier N, Chaarani B, et al. Investigation of psychiatric and neuropsychological correlates of default mode network and dorsal attention network anticorrelation in children. Cereb Cortex. 2020;30:6083–96.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Toller G, Brown J, Sollberger M, Shdo SM, Bouvet L, Sukhanov P, et al. Individual differences in socioemotional sensitivity are an index of salience network function. Cortex. 2018;103:211–23.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Goulden N, Khusnulina A, Davis NJ, Bracewell RM, Bokde AL, McNulty JP, et al. The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. NeuroImage. 2014;99:180–90.

    Article  PubMed  Google Scholar 

  85. Jirsaraie RJ, Palma AM, Small SL, Sandman CA, Davis EP, Baram TZ, et al. Prenatal exposure to maternal mood entropy is associated with a weakened and inflexible salience network in adolescence. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2023. https://doi.org/10.1016/j.bpsc.2023.08.002.

  86. Thomason ME, Hamilton JP, Gotlib IH. Stress-induced activation of the HPA axis predicts connectivity between subgenual cingulate and salience network during rest in adolescents. J Child Psychol Psychiatry. 2011;52:1026–34.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ordaz SJ, LeMoult J, Colich NL, Prasad G, Pollak M, Popolizio M, et al. Ruminative brooding is associated with salience network coherence in early pubertal youth. Soc Cogn Affect Neurosci. 2017;12:298–310.

    Article  PubMed  Google Scholar 

  88. Doucet GE, Lee WH, Frangou S. Evaluation of the spatial variability in the major resting‐state networks across human brain functional atlases. Hum Brain Mapp. 2019;40:4577–87.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci. 2009;106:13040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Omary A, Curtis M, Mair P, Flournoy J, Shirtcliff EA, Barch D, et al. Multimodal measurement of pubertal development: stage, timing, tempo, and hormones. PsyArXiv. https://doi.org/10.31234/osf.io/a9x6c 2023.

  91. Curtis M, Flournoy J, Kandala S, Sanders A, Harms MP, Omary A, et al. Disentangling the unique contributions of age, pubertal stage, and pubertal hormones to brain structure development. PsyArXiv. https://doi.org/10.31234/osf.io/tvbq8 2024.

  92. Coyne JC, Downey G. Social factors and psychopathology: stress, social support, and coping processes. Annu Rev Psychol. 1991;42:401–25.

    Article  CAS  PubMed  Google Scholar 

  93. Dadi K, Varoquaux G, Houenou J, Bzdok D, Thirion B, Engemann D. Population modeling with machine learning can enhance measures of mental health. GigaScience. 2021;10:giab071.

  94. Jeong HJ, Moore TM, Durham EL, Reimann GE, Dupont RM, Cardenas-Iniguez C, et al. General and specific factors of environmental stress and their associations with brain structure and dimensions of psychopathology. Biol Psychiatry Glob Open Sci. 2023;3:480–9.

    Article  PubMed  Google Scholar 

  95. Gur RE, Moore TM, Rosen AFG, Barzilay R, Roalf DR, Calkins ME, et al. Burden of environmental adversity associated with psychopathology, maturation, and brain behavior parameters in youths. JAMA Psychiatry. 2019;76:966–75.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Harden KP, Engelhardt LE, Mann FD, Patterson MW, Grotzinger AD, Savicki SL, et al. Genetic associations between executive functions and a general factor of psychopathology. J Am Acad Child Adolesc Psychiatry. 2020;59:749–58.

    Article  PubMed  Google Scholar 

  97. Tian YE, Di Biase MA, Mosley PE, Lupton MK, Xia Y, Fripp J, et al. Evaluation of brain-body health in individuals with common neuropsychiatric disorders. JAMA Psychiatry. 2023;80:567–76.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation Graduate Research Fellowship (DGE-2139839; DGE-1745038), the National Research Service Award from the National Institute of Mental Health (F31MH135640). Additional support was provided by the National Institute of Mental Health grant R01MH129493. Computations were performed using the facilities of the Washington University Research Computing and Informatics Facility (RCIF), which received funding from two National Institutes of Health S10 program grants: 1S10OD025200-01A1 and 1S10OD030477-01. Additionally, we would like to thank Petra Lenzini and Mark Curtis for their assistance with preprocessing and aggregating the data for this project.

Author information

Authors and Affiliations

Authors

Contributions

RJJ contributed to all parts of this project from conception to drafting the manuscript. MMG contributed to writing the code for implementing tree-based algorithms. ARP and SK assisted with preprocessing and interpreting multimodal MRI data. The conception and design of this project was facilities by JDB, SM, and RB. The conceptualization, design, interpretation of results, and manuscript writing were facilitated by DMB and AS.

Corresponding author

Correspondence to Aristeidis Sotiras.

Ethics declarations

Competing interests

AS is a shareholder in TheraPanace and has received compensation for serving as a grant reviewer for the BrightFocus Foundation. All other authors declare no biomedical financial interests or potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jirsaraie, R.J., Gatavins, M.M., Pines, A.R. et al. Mapping the neurodevelopmental predictors of psychopathology. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02682-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02682-7

Search

Quick links