Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural circuit mechanisms underlying aberrantly prolonged functional hyperemia in young Alzheimer’s disease mice

Abstract

Neurovascular defects are one of the most common alterations in Alzheimer’s disease (AD) pathogenesis, but whether these deficits develop before the onset of amyloid beta (Aβ) accumulation remains to be determined. Using in vivo optical imaging in freely moving mice, we explored activity-induced hippocampal microvascular blood flow dynamics in AppSAA knock-in and J20 mouse models of AD at early stages of disease progression. We found that prior to the onset of Aβ accumulation, there was a pathologically elevated blood flow response to context exploration, termed functional hyperemia. After the onset of Aβ accumulation, this context exploration-induced hyperemia declined rapidly relative to that in control mice. Using in vivo electrophysiology recordings to explore the neural circuit mechanism underlying this blood flow alteration, we found that hippocampal interneurons before the onset of Aβ accumulation were hyperactive during context exploration. Chemogenetic tests suggest that hyperactive activation of inhibitory neurons accounted for the elevated functional hyperemia. The suppression of nitric oxide (NO) produced from hippocampal interneurons in young AD mice decreased the accumulation of Aβ. Together, these findings reveal that neurovascular coupling is aberrantly elevated before Aβ deposition, and this hyperactive functional hyperemia declines rapidly upon Aβ accumulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aβ accumulation in the hippocampus of AppKI mice during aging.
Fig. 2: Context exploration induced hyperemia in the hippocampus of 3-month-old WT and AppKI mice.
Fig. 3: Context exploration induced hyperemia in the hippocampus of WT and AppKI mice during aging.
Fig. 4: Chemogenetic activation of hippocampal interneurons induced hyperemia in 3- and 6-month-old AppKI mice.
Fig. 5: Context exploration induced activation of hippocampal interneurons in 3-month-old AppKI mice.
Fig. 6: Effect of EE and suppression of hippocampal neurovascular coupling on Aβ accumulation in 4-month-old AppKI mice.

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials. Raw flow dynamics images were acquired and directly processed using Inscopix Inc. software. All relevant data have been presented in this article. There was no data excluded from the analysis.

References

  1. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96:17–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaplan L, Chow BW, Gu C. Neuronal regulation of the blood–brain barrier and neurovascular coupling. Nat Rev Neurosci. 2020;21:416–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rombouts SA, Barkhof F, Veltman DJ, Machielsen WC, Witter MP, Bierlaagh MA, et al. Functional MR imaging in Alzheimer’s disease during memory encoding. Am J Neuroradiol. 2000;21:1869–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology. 2005;65:404–11.

    Article  CAS  PubMed  Google Scholar 

  5. Nippert AR, Biesecker KR, Newman EA. Mechanisms mediating functional hyperemia in the brain. Neuroscientist. 2018;24:73–83.

    Article  CAS  PubMed  Google Scholar 

  6. Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Pérez JM, Evans AC, Weiner MW, et al. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun. 2016;7:11934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Honig LS, Tang MX, Albert S, Costa R, Luchsinger J, Manly J, et al. Stroke and the risk of Alzheimer disease. Arch Neurol. 2003;60:1707–12.

    Article  PubMed  Google Scholar 

  8. Montagne A, Nikolakopoulou AM, Huuskonen MT, Sagare AP, Lawson EJ, Lazic D, et al. APOE4 accelerates advanced-stage vascular and neurodegenerative disorder in old Alzheimer’s mice via cyclophilin A independently of amyloid-β. Nat Aging. 2021;1:506–20.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wen J, Doerner J, Weidenheim K, Xia Y, Stock A, Michaelson JS, et al. TNF-like weak inducer of apoptosis promotes blood brain barrier disruption and increases neuronal cell death in MRL/lpr mice. J Autoimmun. 2015;60:40–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87:9868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buxton RB, Frank LR. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab. 1997;17:64–72.

    Article  CAS  PubMed  Google Scholar 

  12. Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci. 2002;25:621–5.

    Article  CAS  PubMed  Google Scholar 

  13. Balbi M, Ghosh M, Longden TA, Jativa Vega M, Gesierich B, Hellal F, et al. Dysfunction of mouse cerebral arteries during early aging. J Cereb Blood Flow Metab. 2015;35:1445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fabiani M, Gordon BA, Maclin EL, Pearson MA, Brumback-Peltz CR, Low KA, et al. Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study. Neuroimage. 2014;85:592–607.

    Article  PubMed  Google Scholar 

  15. Stefanova I, Stephan T, Becker-Bense S, Dera T, Brandt T, Dieterich M. Age-related changes of blood-oxygen-level–dependent signal dynamics during optokinetic stimulation. Neurobiol Aging. 2013;34:2277–86.

    Article  PubMed  Google Scholar 

  16. Topcuoglu MA, Aydin H, Saka E. Occipital cortex activation studied with simultaneous recordings of functional transcranial Doppler ultrasound (fTCD) and visual evoked potential (VEP) in cognitively normal human subjects: effect of healthy aging. Neurosci Lett. 2009;452:17–22.

    Article  CAS  PubMed  Google Scholar 

  17. Zaletel M, Strucl M, Pretnar-Oblak J, Zvan B. Age-related changes in the relationship between visual evoked potentials and visually evoked cerebral blood flow velocity response. Funct Neurol. 2005;20:115–20.

    PubMed  Google Scholar 

  18. Janik R, Thomason LAM, Chaudhary S, Dorr A, Scouten A, Schwindt G, et al. Attenuation of functional hyperemia to visual stimulation in mild Alzheimer’s disease and its sensitivity to cholinesterase inhibition. Biochim Biophys Acta Mol Basis Dis. 2016;1862:957–65.

    Article  CAS  Google Scholar 

  19. Machulda MM, Ward HA, Borowski B, Gunter JL, Cha RH, O’Brien PC, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology. 2003;61:500–6.

    Article  CAS  PubMed  Google Scholar 

  20. Rosengarten B, Paulsen S, Molnar S, Kaschel R, Gallhofer B, Kaps M. Acetylcholine esterase inhibitor donepezil improves dynamic cerebrovascular regulation in Alzheimer patients. J Neurol. 2006;253:58–64.

    Article  CAS  PubMed  Google Scholar 

  21. Lacroix A, Toussay X, Anenberg E, Lecrux C, Ferreirós N, Karagiannis A, et al. COX-2-derived prostaglandin E2 produced by pyramidal neurons contributes to neurovascular coupling in the rodent cerebral cortex. J Neurosci. 2015;35:11791–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ji L, Zhou J, Zafar R, Kantorovich S, Jiang R, Carney PR, et al. Cortical neurovascular coupling driven by stimulation of channelrhodopsin-2. PLoS ONE. 2012;7:e46607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I, Kim DS, et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature. 2010;465:788–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anenberg E, Chan AW, Xie Y, LeDue JM, Murphy TH. Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow. J Cereb Blood Flow Metab. 2015;35:1579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Uhlirova H, Kılıç K, Tian P, Thunemann M, Desjardins M, Saisan PA, et al. Cell type specificity of neurovascular coupling in cerebral cortex. Elife. 2016;5:e14315.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shen J, Wang D, Wang X, Gupta S, Ayloo B, Wu S, et al. Neurovascular coupling in the dentate gyrus regulates adult hippocampal neurogenesis. Neuron. 2019;103:878–90.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of alzheimer’s disease. Neuron. 2007;55:697–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verret L, Mann EdwardO, Hang GiaoB, Barth AlbertMI, Cobos I, Ho K, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in alzheimer model. Cell. 2012;149:708–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grouselle D, Winsky-Sommerer R, David JP, Delacourte A, Dournaud P, Epelbaum J. Loss of somatostatin-like immunoreactivity in the frontal cortex of Alzheimer patients carrying the apolipoprotein epsilon 4 allele. Neurosci Lett. 1998;255:21–4.

    Article  CAS  PubMed  Google Scholar 

  30. Sasaki H, Muramoto O, Kanazawa I, Arai H, Kosaka K, Iizuka R. Regional distribution of amino acid transmitters in postmortem brains of presenile and senile dementia of Alzheimer type. Ann Neurol. 1986;19:263–9.

    Article  CAS  PubMed  Google Scholar 

  31. Fukuchi K, Hashikawa K, Seike Y, Moriwaki H, Oku N, Ishida M, et al. Comparison of iodine-123-iomazenil SPECT and technetium-99m-HMPAO-SPECT in Alzheimer’s disease. J Nucl Med. 1997;38:467–70.

    CAS  PubMed  Google Scholar 

  32. Meyer M, Koeppe RA, Frey KA, Foster NL, Kuhl DE. Positron emission tomography measures of benzodiazepine binding in Alzheimer’s disease. Arch Neurol. 1995;52:314–7.

    Article  CAS  PubMed  Google Scholar 

  33. Hijazi S, Heistek TS, Scheltens P, Neumann U, Shimshek DR, Mansvelder HD, et al. Early restoration of parvalbumin interneuron activity prevents memory loss and network hyperexcitability in a mouse model of Alzheimer’s disease. Mol Psychiatry. 2020;25:3380–98.

    Article  CAS  PubMed  Google Scholar 

  34. Lerdkrai C, Asavapanumas N, Brawek B, Kovalchuk Y, Mojtahedi N, Olmedillas Del Moral M, et al. Intracellular Ca(2+) stores control in vivo neuronal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA. 2018;115:E1279–e88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci. 2016;17:777–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee AJ, Raghavan NS, Bhattarai P, Siddiqui T, Sariya S, Reyes-Dumeyer D, et al. FMNL2 regulates gliovascular interactions and is associated with vascular risk factors and cerebrovascular pathology in Alzheimer’s disease. Acta Neuropathol. 2022;144:59–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14:32.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xia D, Lianoglou S, Sandmann T, Calvert M, Suh JH, Thomsen E, et al. Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia. Mol Neurodegener. 2022;17:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rice HC, Marcassa G, Chrysidou I, Horré K, Young-Pearse TL, Müller UC, et al. Contribution of GABAergic interneurons to amyloid-β plaque pathology in an APP knock-in mouse model. Mol Neurodegener. 2020;15:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, et al. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci. 2000;20:4050–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wright AL, Zinn R, Hohensinn B, Konen LM, Beynon SB, Tan RP, et al. Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS ONE. 2013;8:e59586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hong S, Quintero-Monzon O, Ostaszewski BL, Podlisny DR, Cavanaugh WT, Yang T, et al. Dynamic analysis of amyloid β-protein in behaving mice reveals opposing changes in ISF versus parenchymal Aβ during age-related plaque formation. J Neurosci. 2011;31:15861–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chiarelli AM, Perpetuini D, Croce P, Filippini C, Cardone D, Rotunno L, et al. Evidence of neurovascular un-coupling in mild Alzheimer’s disease through multimodal EEG-fNIRS and multivariate analysis of resting-state data. Biomedicines. 2021;9:337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tarantini S, Tran CHT, Gordon GR, Ungvari Z, Csiszar A. Impaired neurovascular coupling in aging and Alzheimer’s disease: Contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol. 2017;94:52–8.

    Article  CAS  PubMed  Google Scholar 

  45. Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. 2017;18:419–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dimidschstein J, Chen Q, Tremblay R, Rogers SL, Saldi GA, Guo L, et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci. 2016;19:1743–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bonaventura J, Eldridge MAG, Hu F, Gomez JL, Sanchez-Soto M, Abramyan AM, et al. High-potency ligands for DREADD imaging and activation in rodents and monkeys. Nat Commun. 2019;10:4627.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang X, Liu H, Morstein J, Novak AJE, Trauner D, Xiong Q, et al. Metabolic tuning of inhibition regulates hippocampal neurogenesis in the adult brain. Proc Natl Acad Sci USA. 2020;117:25818–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shabir O, Pendry B, Lee L, Eyre B, Sharp PS, Rebollar MA, et al. Assessment of neurovascular coupling and cortical spreading depression in mixed mouse models of atherosclerosis and Alzheimer’s disease. eLife. 2022;11:e68242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laibaik P, Joan Z, Kenzo K, Gang W, Antoine A, Sung Ji A, et al. tPA deficiency underlies neurovascular coupling dysfunction by amyloid-β. J Neurosci. 2020;40:8160.

    Article  Google Scholar 

  51. Bracko O, Cruz Hernández JC, Park L, Nishimura N, Schaffer CB. Causes and consequences of baseline cerebral blood flow reductions in Alzheimer’s disease. J Cereb Blood Flow Metab. 2021;41:1501–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu WT, Wang Z, Lee VM, Trojanowski JQ, Detre JA, Grossman M. Distinct cerebral perfusion patterns in FTLD and AD. Neurology. 2010;75:881–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alsop DC, Detre JA, Grossman M. Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann Neurol. 2000;47:93–100.

    Article  CAS  PubMed  Google Scholar 

  54. Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM. Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology. 2009;250:856–66.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yoshiura T, Hiwatashi A, Yamashita K, Ohyagi Y, Monji A, Takayama Y, et al. Simultaneous measurement of arterial transit time, arterial blood volume, and cerebral blood flow using arterial spin-labeling in patients with Alzheimer disease. Am J Neuroradiol. 2009;30:1388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhukov O, He C, Soylu-Kucharz R, Cai C, Lauritzen AD, Aldana BI, et al. Preserved blood-brain barrier and neurovascular coupling in female 5xFAD model of Alzheimer’s disease. Front Aging Neurosci. 2023;15:1089005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Duncombe J, Lennen RJ, Jansen MA, Marshall I, Wardlaw JM, Horsburgh K. Ageing causes prominent neurovascular dysfunction associated with loss of astrocytic contacts and gliosis. Neuropathol Appl Neurobiol. 2017;43:477–91.

    Article  CAS  PubMed  Google Scholar 

  58. Shin HK, Jones PB, Garcia-Alloza M, Borrelli L, Greenberg SM, Bacskai BJ, et al. Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy. Brain. 2007;130:2310–9.

    Article  PubMed  Google Scholar 

  59. Xu Y, Zhao M, Han Y, Zhang H. GABAergic inhibitory interneuron deficits in Alzheimer’s disease: implications for treatment. Front Neurosci. 2020;14:660.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Akama KT, Albanese C, Pestell RG, Van Eldik LJ. Amyloid β-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism. Proc Natl Acad Sci USA. 1998;95:5795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Puzzo D, Vitolo O, Trinchese F, Jacob JP, Palmeri A, Arancio O. Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. J Neurosci. 2005;25:6887–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nathan C, Calingasan N, Nezezon J, Ding A, Lucia MS, La Perle K, et al. Protection from Alzheimer’s-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. J Exp Med. 2005;202:1163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cifuentes D, Poittevin M, Bonnin P, Ngkelo A, Kubis N, Merkulova-Rainon T, et al. Inactivation of Nitric Oxide Synthesis Exacerbates the Development of Alzheimer Disease Pathology in APPPS1 Mice (Amyloid Precursor Protein/Presenilin-1). Hypertension. 2017;70:613–23.

    Article  CAS  PubMed  Google Scholar 

  64. Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci. 2012;15:1700–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen L, Wang X, Ge S, Xiong Q. Medial geniculate body and primary auditory cortex differentially contribute to striatal sound representations. Nat Commun. 2019;10:418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. GoodSmith D, Lee H, Neunuebel JP, Song H, Knierim JJ. Dentate gyrus mossy cells share a role in pattern separation with dentate granule cells and proximal CA3 pyramidal cells. J Neurosci. 2019;39:9570–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Neunuebel JP, Knierim JJ. CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and dentate gyrus pattern separation. Neuron. 2014;81:416–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Christensen A, Pike CJ. Staining and quantification of β-amyloid pathology in transgenic mouse models of Alzheimer’s disease. Methods Mol Biol. 2020;2144:211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Donghui Zhu for critical feedback on the manuscript and Yanyi Mai for assistance with figure illustrations. We also thank all other members of the Ge and Xiong laboratories for their valuable comments. This work was supported by grants R01AG066912 to SG and QX; R21AG065864 to SG; and R01AG0821471 and P01AG073082 to JJP.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TAK and SG; Methodology: TAK and SG; Formal analysis: TAK, GC, MDS, and FW; Investigation: TAK, GC, MDS, XW, and FW; Writing: TAK and SG produced the initial manuscript, and all others reviewed and commented on the manuscript; Supervision: QX and SG; Funding Acquisition, SG, JJP, QX.

Corresponding authors

Correspondence to Qiaojie Xiong, Jorge J. Palop or Shaoyu Ge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.A., Cruz, G., Syty, M.D. et al. Neural circuit mechanisms underlying aberrantly prolonged functional hyperemia in young Alzheimer’s disease mice. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02680-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02680-9

Search

Quick links