Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microglial type I interferon signaling mediates chronic stress-induced synapse loss and social behavior deficits

Abstract

Inflammation and synapse loss have been associated with deficits in social behavior and are involved in pathophysiology of many neuropsychiatric disorders. Synapse loss, characterized by reduction in dendritic spines can significantly disrupt synaptic connectivity and neural circuitry underlying social behavior. Chronic stress is known to induce loss of spines and dendrites in the prefrontal cortex (PFC), a brain region implicated in social behavior. However, the underlying mechanisms are not well understood. In the present study, we investigated the role of type I Interferon (IFN-I) signaling in chronic unpredictable stress (CUS)-induced synapse loss and behavior deficits in mice. We found increased expression of type I IFN receptor (IFNAR) in microglia following CUS. Conditional knockout of microglial IFNAR in adult mice rescued CUS-induced social behavior deficits and synapse loss. Bulk RNA sequencing data show that microglial IFNAR deletion attenuated CUS-mediated changes in the expression of genes such as Keratin 20 (Krt20), Claudin-5 (Cldn5) and Nuclear Receptor Subfamily 4 Group A Member 1 (Nr4a1) in the PFC. Cldn5 and Nr4a1 are known for their roles in synaptic plasticity. Krt20 is an intermediate filament protein responsible for the structural integrity of epithelial cells. The reduction in Krt20 following CUS presents a novel insight into the potential contribution of cytokeratin in stress-induced alterations in neuroplasticity. Overall, these results suggest that microglial IFNAR plays a critical role in regulating synaptic plasticity and social behavior deficits associated with chronic stress conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chronic stress induces increases in serum IFNβ levels and deficits in social behavior.
Fig. 2: Chronic stress promotes neuroinflammation and reduction in synaptic density.
Fig. 3: Chronic stress induces increase in IFNAR expression in microglia.
Fig. 4: Microglial IFNAR deletion attenuates chronic stress-induced social behavior deficits and synapse loss.
Fig. 5: Microglial IFNAR deletion attenuates chronic stress-induced decreases in Krt20, Cldn5 and Nr4a1 mRNA levels in the PFC.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon request from the corresponding author.

References

  1. Kas MJ, Modi ME, Saxe MD, Smith DG. Advancing the discovery of medications for autism spectrum disorder using new technologies to reveal social brain circuitry in rodents. Psychopharmacology. 2014;231:1147–65.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel A, Roeling TA, Gregg TR, Kruk MR. Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev. 1999;23:359–89.

    Article  CAS  PubMed  Google Scholar 

  3. Sandi C, Haller J. Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat Rev Neurosci. 2015;16:290–304.

    Article  CAS  PubMed  Google Scholar 

  4. Hong W, Kennedy A, Burgos-Artizzu XP, Zelikowsky M, Navonne SG, Perona P, et al. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proc Natl Acad Sci USA. 2015;112:E5351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adolphs R. The social brain: neural basis of social knowledge. Annu Rev Psychol. 2009;60:693–716.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xu S, Jiang M, Liu X, Sun Y, Yang L, Yang Q, et al. Neural circuits for social interactions: from microcircuits to input-output circuits. Front Neural Circuits. 2021;15:768294.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Beery AK, Kaufer D. Stress, social behavior, and resilience: insights from rodents. Neurobiol Stress. 2015;1:116–27.

    Article  PubMed  Google Scholar 

  8. von Dawans B, Trueg A, Kirschbaum C, Fischbacher U, Heinrichs M. Acute social and physical stress interact to influence social behavior: the role of social anxiety. PLoS ONE. 2018;13:e0204665.

    Article  Google Scholar 

  9. Ceccato S, Kettner SE, Kudielka BM, Schwieren C, Voss A. Social preferences under chronic stress. PLoS ONE. 2018;13:e0199528.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sabanovic M, Liu H, Mlambo V, Aqel H, Chaudhury D. What it takes to be at the top: the interrelationship between chronic social stress and social dominance. Brain Behav. 2020;10:e01896.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Buchanan TW, Preston SD. Stress leads to prosocial action in immediate need situations. Front Behav Neurosci. 2014;8:5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Borrow AP, Bales NJ, Stover SA, Handa RJ. Chronic variable stress induces sex-specific alterations in social behavior and neuropeptide expression in the mouse. Endocrinology. 2018;159:2803–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takahashi A, Flanigan ME, McEwen BS, Russo SJ. Aggression, social stress, and the immune system in humans and animal models. Front Behav Neurosci. 2018;12:56.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schneiderman N, Ironson G, Siegel SD. Stress and health: psychological, behavioral, and biological determinants. Annu Rev Clin Psychol. 2005;1:607–28.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Woo E, Sansing LH, Arnsten AFT, Datta D. Chronic stress weakens connectivity in the prefrontal cortex: architectural and molecular changes. Chronic Stress. 2021;5:24705470211029254.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Page CE, Coutellier L. Prefrontal excitatory/inhibitory balance in stress and emotional disorders: evidence for over-inhibition. Neurosci Biobehav Rev. 2019;105:39–51.

    Article  CAS  PubMed  Google Scholar 

  17. Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci. 2006;26:7870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Y, Zheng Y, Yan J, Zhu C, Zeng X, Zheng S, et al. Early life stress induces different behaviors in adolescence and adulthood may related with abnormal medial prefrontal cortex excitation/inhibition balance. Front Neurosci. 2021;15:720286.

    Article  PubMed  Google Scholar 

  19. Bollinger JL, Dadosky DT, Flurer JK, Rainer IL, Woodburn SC, Wohleb ES. Microglial P2Y12 mediates chronic stress-induced synapse loss in the prefrontal cortex and associated behavioral consequences. Neuropsychopharmacology. 2023;48:1347–57.

    Article  CAS  PubMed  Google Scholar 

  20. Schramm E, Waisman A. Microglia as central protagonists in the chronic stress response. Neurol Neuroimmunol Neuroinflamm. 2022;9:e200023.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Woodburn SC, Bollinger JL, Wohleb ES. Synaptic and behavioral effects of chronic stress are linked to dynamic and sex-specific changes in microglia function and astrocyte dystrophy. Neurobiol Stress. 2021;14:100312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu T, Lu J, Lukasiewicz K, Pan B, Zuo Y. Stress induces microglia-associated synaptic circuit alterations in the dorsomedial prefrontal cortex. Neurobiol Stress. 2021;15:100342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanguino-Gomez J, Buurstede JC, Abiega O, Fitzsimons CP, Lucassen PJ, Eggen BJL, et al. An emerging role for microglia in stress-effects on memory. Eur J Neurosci. 2022;55:2491–518.

    Article  CAS  PubMed  Google Scholar 

  24. Carrier M, Simoncicova E, St-Pierre MK, McKee C, Tremblay ME. Psychological stress as a risk factor for accelerated cellular aging and cognitive decline: the involvement of microglia-neuron crosstalk. Front Mol Neurosci. 2021;14:749737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bolton JL, Short AK, Othy S, Kooiker CL, Shao M, Gunn BG, et al. Early stress-induced impaired microglial pruning of excitatory synapses on immature CRH-expressing neurons provokes aberrant adult stress responses. Cell Rep. 2022;38:110600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang J, Chen HS, Li HH, Wang HJ, Zou RS, Lu XJ, et al. Microglia-dependent excessive synaptic pruning leads to cortical underconnectivity and behavioral abnormality following chronic social defeat stress in mice. Brain Behav Immun. 2023;109:23–36.

    Article  CAS  PubMed  Google Scholar 

  27. Kierdorf K, Prinz M. Microglia in steady state. J Clin Invest. 2017;127:3201–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation. 2021;18:258.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Munshi S, Loh MK, Ferrara N, DeJoseph MR, Ritger A, Padival M, et al. Repeated stress induces a pro-inflammatory state, increases amygdala neuronal and microglial activation, and causes anxiety in adult male rats. Brain Behav Immun. 2020;84:180–99.

    Article  CAS  PubMed  Google Scholar 

  30. Hassamal S. Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories. Front Psychiatry. 2023;14:1130989.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tripathi A, Whitehead C, Surrao K, Pillai A, Madeshiya A, Li Y, et al. Type 1 interferon mediates chronic stress-induced neuroinflammation and behavioral deficits via complement component 3-dependent pathway. Mol Psychiatry. 2021;26:3043–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fritz-French C, Tyor W. Interferon-alpha (IFNalpha) neurotoxicity. Cytokine Growth Factor Rev. 2012;23:7–14.

    Article  CAS  PubMed  Google Scholar 

  33. Valentine AD, Meyers CA, Kling MA, Richelson E, Hauser P. Mood and cognitive side effects of interferon-alpha therapy. Semin Oncol. 1998;25:39–47.

    CAS  PubMed  Google Scholar 

  34. Asnis GM, De La Garza R 2nd. Interferon-induced depression: strategies in treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:808–18.

    Article  CAS  PubMed  Google Scholar 

  35. Lieb K, Engelbrecht MA, Gut O, Fiebich BL, Bauer J, Janssen G, et al. Cognitive impairment in patients with chronic hepatitis treated with interferon alpha (IFNalpha): results from a prospective study. Eur Psychiatry. 2006;21:204–10.

    Article  PubMed  Google Scholar 

  36. Zheng LS, Hitoshi S, Kaneko N, Takao K, Miyakawa T, Tanaka Y, et al. Mechanisms for interferon-alpha-induced depression and neural stem cell dysfunction. Stem Cell Rep. 2014;3:73–84.

    Article  CAS  Google Scholar 

  37. Hayley S, Scharf J, Anisman H. Central administration of murine interferon-alpha induces depressive-like behavioral, brain cytokine and neurochemical alterations in mice: a mini-review and original experiments. Brain Behav Immun. 2013;31:115–27.

    Article  CAS  PubMed  Google Scholar 

  38. Wachholz SE, Plümper M, Manitz J, Juckel MP, Friebe GA. Microglia activation is associated with IFN-α induced depressive-like behavior. Brain Behav Immun. 2016;55:105–13.

    Article  CAS  PubMed  Google Scholar 

  39. Dipasquale O, Cooper EA, Tibble J, Voon V, Baglio F, Baselli G, et al. Interferon-alpha acutely impairs whole-brain functional connectivity network architecture—a preliminary study. Brain Behav Immun. 2016;58:31–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roy ER, Wang B, Wan YW, Chiu G, Cole A, Yin Z, et al. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. J Clin Invest. 2020;130:1912–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Corley SM, Tsai SY, Wilkins MR, Shannon Weickert C. Transcriptomic analysis shows decreased cortical expression of NR4A1, NR4A2 and RXRB in schizophrenia and provides evidence for nuclear receptor dysregulation. PLoS ONE. 2016;11:e0166944.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li H, Zhao P, Xu Q, Shan S, Hu C, Qiu Z, et al. The autism-related gene SNRPN regulates cortical and spine development via controlling nuclear receptor Nr4a1. Sci Rep. 2016;6:29878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Han X, Xu T, Ding C, Wang D, Yao G, Chen H, et al. Neuronal NR4A1 deficiency drives complement-coordinated synaptic stripping by microglia in a mouse model of lupus. Signal Transduct Target Ther. 2022;7:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Greene C, Kealy J, Humphries MM, Gong Y, Hou J, Hudson N, et al. Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol Psychiatry. 2018;23:2156–66.

    Article  CAS  PubMed  Google Scholar 

  45. Dion-Albert L, Cadoret A, Doney E, Kaufmann FN, Dudek KA, Daigle B, et al. Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat Commun. 2022;13:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hashimoto Y, Greene C, Munnich A, Campbell M. The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS. 2023;20:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Franko MC, Gibbs CJ Jr, Rhoades DA, Gajdusek DC. Monoclonal antibody analysis of keratin expression in the central nervous system. Proc Natl Acad Sci USA. 1987;84:3482–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Radley J, Morilak D, Viau V, Campeau S. Chronic stress and brain plasticity: mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci Biobehav Rev. 2015;58:79–91.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci. 2002;22:6810–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li F, Wang Y, Wang X, Zhao Y, Xie F, Qian LJ. Dynamic effects of chronic unpredictable mild stress on the hippocampal transcriptome in rats. Mol Med Rep. 2022;25:110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang SE, Ko SY, Jo S, Jo HR, Han J, Kim YS, et al. Downregulation of SIRT2 by chronic stress reduces expression of synaptic plasticity-related genes through the upregulation of Ehmt2. Exp Neurobiol. 2019;28:537–46.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N. The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci. 2007;27:2781–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Horchar MJ, Wohleb ES. Glucocorticoid receptor antagonism prevents microglia-mediated neuronal remodeling and behavioral despair following chronic unpredictable stress. Brain Behav Immun. 2019;81:329–40.

    Article  CAS  PubMed  Google Scholar 

  54. Dioli C, Patricio P, Sousa N, Kokras N, Dalla C, Guerreiro S, et al. Chronic stress triggers divergent dendritic alterations in immature neurons of the adult hippocampus, depending on their ultimate terminal fields. Transl Psychiatry. 2019;9:143.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bath KG, Russo SJ, Pleil KE, Wohleb ES, Duman RS, Radley JJ. Circuit and synaptic mechanisms of repeated stress: perspectives from differing contexts, duration, and development. Neurobiol Stress. 2017;7:137–51.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Crider A, Feng T, Pandya CD, Davis T, Nair A, Ahmed AO, et al. Complement component 3a receptor deficiency attenuates chronic stress-induced monocyte infiltration and depressive-like behavior. Brain Behav Immun. 2018;70:246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pandya CD, Hoda N, Crider A, Peter D, Kutiyanawalla A, Kumar S, et al. Transglutaminase 2 overexpression induces depressive-like behavior and impaired TrkB signaling in mice. Mol Psychiatry. 2017;22:745–53.

    Article  CAS  PubMed  Google Scholar 

  58. Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 2018;7:1338.

  59. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  61. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article  CAS  PubMed  Google Scholar 

  62. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lee AJ, Ashkar AA. The dual nature of type I and type II interferons. Front Immunol. 2018;9:2061.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Heifets BD, Salgado JS, Taylor MD, Hoerbelt P, Cardozo Pinto DF, Steinberg EE, et al. Distinct neural mechanisms for the prosocial and rewarding properties of MDMA. Sci Transl Med. 2019;11:eaaw6435.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Conrad CD, Galea LA, Kuroda Y, McEwen BS. Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci. 1996;110:1321–34.

    Article  CAS  PubMed  Google Scholar 

  66. Wright RL, Conrad CD. Chronic stress leaves novelty-seeking behavior intact while impairing spatial recognition memory in the Y-maze. Stress. 2005;8:151–4.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wilton DK, Dissing-Olesen L, Stevens B. Neuron-glia signaling in synapse elimination. Annu Rev Neurosci. 2019;42:107–27.

    Article  CAS  PubMed  Google Scholar 

  68. Miyanishi K, Sato A, Kihara N, Utsunomiya R, Tanaka J. Synaptic elimination by microglia and disturbed higher brain functions. Neurochem Int. 2021;142:104901.

    Article  CAS  PubMed  Google Scholar 

  69. Andoh M, Koyama R. Microglia regulate synaptic development and plasticity. Dev Neurobiol. 2021;81:568–90.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR. Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cereb Cortex. 2013;23:1784–97.

    Article  PubMed  Google Scholar 

  71. Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets. 2013;14:1262–76.

    Article  CAS  PubMed  Google Scholar 

  72. de Pablos RM, Herrera AJ, Espinosa-Oliva AM, Sarmiento M, Munoz MF, Machado A, et al. Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. J Neuroinflammation. 2014;11:34.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. 2014;19:699–709.

    Article  CAS  PubMed  Google Scholar 

  74. Tramullas M, Finger BC, Moloney RD, Golubeva AV, Moloney G, Dinan TG, et al. Toll-like receptor 4 regulates chronic stress-induced visceral pain in mice. Biol Psychiatry. 2014;76:340–8.

    Article  CAS  PubMed  Google Scholar 

  75. Shields DC, Haque A, Banik NL. Neuroinflammatory responses of microglia in central nervous system trauma. J Cereb Blood Flow Metab. 2020;40:S25–S33.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jin X, Yamashita T. Microglia in central nervous system repair after injury. J Biochem. 2016;159:491–6.

    Article  CAS  PubMed  Google Scholar 

  77. Gschwandtner M, Derler R, Midwood KS. More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Front Immunol. 2019;10:2759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Petrovic-Djergovic D, Popovic M, Chittiprol S, Cortado H, Ransom RF, Partida-Sanchez S. CXCL10 induces the recruitment of monocyte-derived macrophages into kidney, which aggravate puromycin aminonucleoside nephrosis. Clin Exp Immunol. 2015;180:305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Coperchini F, Chiovato L, Rotondi M. Interleukin-6, CXCL10 and infiltrating macrophages in COVID-19-related cytokine storm: not one for all but all for one! Front Immunol. 2021;12:668507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marchetti L, Engelhardt B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vasc Biol. 2020;2:H1–H18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Alam A, Thelin EP, Tajsic T, Khan DZ, Khellaf A, Patani R, et al. Cellular infiltration in traumatic brain injury. J Neuroinflammation. 2020;17:328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Callewaere C, Banisadr G, Rostene W, Parsadaniantz SM. Chemokines and chemokine receptors in the brain: implication in neuroendocrine regulation. J Mol Endocrinol. 2007;38:355–63.

    Article  CAS  PubMed  Google Scholar 

  83. Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, et al. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci. 2017;11:216.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. J Clin Invest. 2010;120:1368–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Davis BM, Salinas-Navarro M, Cordeiro MF, Moons L, De Groef L. Characterizing microglia activation: a spatial statistics approach to maximize information extraction. Sci Rep. 2017;7:1576.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kozlowski C, Weimer RM. An automated method to quantify microglia morphology and application to monitor activation state longitudinally in vivo. PLoS ONE. 2012;7:e31814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Leyh J, Paeschke S, Mages B, Michalski D, Nowicki M, Bechmann I, et al. Classification of microglial morphological phenotypes using machine learning. Front Cell Neurosci. 2021;15:701673.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gao WJ, Mack NR. From hyposociability to hypersociability—the effects of PSD-95 deficiency on the dysfunctional development of social behavior. Front Behav Neurosci. 2021;15:618397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hines RM, Wu L, Hines DJ, Steenland H, Mansour S, Dahlhaus R, et al. Synaptic imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. J Neurosci. 2008;28:6055–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kazim SF, Iqbal K. Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: emerging therapeutic modality for Alzheimer’s disease. Mol Neurodegener. 2016;11:50.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fensterl V, Chattopadhyay S, Sen GC. No love lost between viruses and interferons. Annu Rev Virol. 2015;2:549–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, et al. Functional role of type I and type II interferons in antiviral defense. Science. 1994;264:1918–21.

    Article  CAS  PubMed  Google Scholar 

  93. Ejlerskov P, Hultberg JG, Wang J, Carlsson R, Ambjorn M, Kuss M, et al. Lack of neuronal IFN-beta-IFNAR causes Lewy body- and Parkinson’s disease-like dementia. Cell. 2015;163:324–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ignatowski TAaS RN. Cytokines in synaptic function. NeuroImmune Biology. 2008;6:109–43.

    Article  Google Scholar 

  95. Vikman KS, Owe-Larsson B, Brask J, Kristensson KS, Hill RH. Interferon-gamma-induced changes in synaptic activity and AMPA receptor clustering in hippocampal cultures. Brain Res. 2001;896:18–29.

    Article  CAS  PubMed  Google Scholar 

  96. Arscott WT, Soltys J, Knight J, Mao-Draayer Y. Interferon beta-1b directly modulates human neural stem/progenitor cell fate. Brain Res. 2011;1413:1–8.

    Article  CAS  PubMed  Google Scholar 

  97. D’Arcangelo G, Grassi F, Ragozzino D, Santoni A, Tancredi V, Eusebi F. Interferon inhibits synaptic potentiation in rat hippocampus. Brain Res. 1991;564:245–8.

    Article  PubMed  Google Scholar 

  98. Mendoza-Fernandez V, Andrew RD, Barajas-Lopez C. Interferon-alpha inhibits long-term potentiation and unmasks a long-term depression in the rat hippocampus. Brain Res. 2000;885:14–24.

    Article  CAS  PubMed  Google Scholar 

  99. McGlasson S, Hunt D. Neuroinflammation: synapses pruned in lupus. Nature. 2017;546:482–3.

    Article  CAS  PubMed  Google Scholar 

  100. Kremenchutzky M, Morrow S, Rush C. The safety and efficacy of IFN-beta products for the treatment of multiple sclerosis. Expert Opin Drug Saf. 2007;6:279–88.

    Article  CAS  PubMed  Google Scholar 

  101. Lugaresi A, Rottoli MR, Patti F. Fostering adherence to injectable disease-modifying therapies in multiple sclerosis. Expert Rev Neurother. 2014;14:1029–42.

    Article  CAS  PubMed  Google Scholar 

  102. Reder AT, Oger JF, Kappos L, O’Connor P, Rametta M. Short-term and long-term safety and tolerability of interferon beta-1b in multiple sclerosis. Mult Scler Relat Disord. 2014;3:294–302.

    Article  PubMed  Google Scholar 

  103. Ziemssen T. Multiple sclerosis beyond EDSS: depression and fatigue. J Neurol Sci. 2009;277:S37–41.

    Article  PubMed  Google Scholar 

  104. Cornell J, Salinas S, Huang HY, Zhou M. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res. 2022;17:705–16.

    Article  CAS  PubMed  Google Scholar 

  105. Meng J, Han L, Zheng N, Wang T, Xu H, Jiang Y, et al. Microglial Tmem59 deficiency impairs phagocytosis of synapse and leads to autism-like behaviors in mice. J Neurosci. 2022;42:4958–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Akiyoshi R, Wake H, Kato D, Horiuchi H, Ono R, Ikegami A, et al. Microglia enhance synapse activity to promote local network synchronization. eNeuro. 2018;5:ENEURO.0088-18.2018.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Schafer DP, Stevens B. Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol. 2015;7:a020545.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.

    Article  CAS  PubMed  Google Scholar 

  109. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17:400–6.

    Article  CAS  PubMed  Google Scholar 

  110. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 2014;82:380–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rice RA, Spangenberg EE, Yamate-Morgan H, Lee RJ, Arora RP, Hernandez MX, et al. Elimination of microglia improves functional outcomes following extensive neuronal loss in the hippocampus. J Neurosci. 2015;35:9977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rice RA, Pham J, Lee RJ, Najafi AR, West BL, Green KN. Microglial repopulation resolves inflammation and promotes brain recovery after injury. Glia. 2017;65:931–44.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Liu YJ, Spangenberg EE, Tang B, Holmes TC, Green KN, Xu X. Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex. J Neurosci. 2021;41:1274–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang Y, Leak RK, Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front Cell Neurosci. 2022;16:980722.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Chen Y, Wang Y, Erturk A, Kallop D, Jiang Z, Weimer RM, et al. Activity-induced Nr4a1 regulates spine density and distribution pattern of excitatory synapses in pyramidal neurons. Neuron. 2014;83:431–43.

    Article  CAS  PubMed  Google Scholar 

  116. McNulty SE, Barrett RM, Vogel-Ciernia A, Malvaez M, Hernandez N, Davatolhagh MF, et al. Differential roles for Nr4a1 and Nr4a2 in object location vs. object recognition long-term memory. Learn Mem. 2012;19:588–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hawk JD, Bookout AL, Poplawski SG, Bridi M, Rao AJ, Sulewski ME, et al. NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors. J Clin Invest. 2012;122:3593–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bridi MS, Abel T. The NR4A orphan nuclear receptors mediate transcription-dependent hippocampal synaptic plasticity. Neurobiol Learn Mem. 2013;105:151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Richards M, Nwadozi E, Pal S, Martinsson P, Kaakinen M, Gloger M, et al. Claudin5 protects the peripheral endothelial barrier in an organ and vessel-type-specific manner. Elife. 2022;11:e78517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci. 2017;20:1752–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cheng Y, Desse S, Martinez A, Worthen RJ, Jope RS, Beurel E. TNFalpha disrupts blood brain barrier integrity to maintain prolonged depressive-like behavior in mice. Brain Behav Immun. 2018;69:556–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jacob JT, Coulombe PA, Kwan R, Omary MB. Types I and II keratin intermediate filaments. Cold Spring Harb Perspect Biol. 2018;10:a018275.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhou Q, Toivola DM, Feng N, Greenberg HB, Franke WW, Omary MB. Keratin 20 helps maintain intermediate filament organization in intestinal epithelia. Mol Biol Cell. 2003;14:2959–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Alvarado S, Tajerian M, Millecamps M, Suderman M, Stone LS, Szyf M. Peripheral nerve injury is accompanied by chronic transcriptome-wide changes in the mouse prefrontal cortex. Mol Pain. 2013;9:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jiang S, Wu J, Yang Y, Liu J, Ding Y, Ding M. Proteomic analysis of the cerebrospinal fluid in multiple sclerosis and neuromyelitis optica patients. Mol Med Rep. 2012;6:1081–6.

    Article  CAS  PubMed  Google Scholar 

  126. Richens JL, Spencer HL, Butler M, Cantlay F, Vere KA, Bajaj N, et al. Rationalising the role of Keratin 9 as a biomarker for Alzheimer’s disease. Sci Rep. 2016;6:22962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Radoja N, Komine M, Jho SH, Blumenberg M, Tomic-Canic M. Novel mechanism of steroid action in skin through glucocorticoid receptor monomers. Mol Cell Biol. 2000;20:4328–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from US National Institutes of Health (MH120876, MH121959, MH128771), and the Merit Review Award (BX004758) from the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Biomedical Laboratory Research and Development to AP. The contents do not represent the views of the Department of Veterans Affairs or the United States Government. AP acknowledges the funding support from Louis A Faillace Endowed Chair in Psychiatry. ZZ was partially supported by NIH grants (R01LM012806, R01LM012806-07S1, U01AG079847). The authors thank lab members of the Bioinformatics Systems Medicine Laboratory (BSML) for the valuable help. The RNA-seq data were generated by the UTHealth Cancer Genomics Core funded by Cancer Prevention and Research Institute of Texas (CPRIT RP180734). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AT: performed the experiments, analyzed the data and prepared the initial manuscript draft. AB: performed the experiments and analyzed the data. JM: performed the experiments and analyzed the data. CJ: performed the experiments and analyzed the data. AM: performed the experiments and analyzed the data. UH: performed RNAseq analysis. ZZ: performed RNAseq analysis. LEH: participated in the data interpretation and manuscript editing. AP: designed the research and edited the manuscript. All authors had an opportunity to review and provide input on the final manuscript.

Corresponding author

Correspondence to Anilkumar Pillai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The animal studies were approved (#AWC-20-0148) by the Animal Welfare Committee (AWC) of the University of Texas Health Science Center at Houston (UTHealth Houston).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, A., Bartosh, A., Mata, J. et al. Microglial type I interferon signaling mediates chronic stress-induced synapse loss and social behavior deficits. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02675-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02675-6

Search

Quick links