Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Reply to: “Correspondence to bipolar disorder-iPSC derived neural progenitor cells exhibit dysregulation of store-operated Ca2+ entry and accelerated differentiation” by Yde Ohki and colleagues

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tg-induced SOCE in HC-NPCs is not affected by NIM and CNQX.

References

  1. Yde Ohki CM, McNeill RV, Vernon AC, Smedler E, Michel TM, Peitz M, et al. Correspondence to “Bipolar disorder-iPSC derived neural progenitor cells exhibit dysregulation of store-operated Ca2+ entry and accelerated differentiation” by Hewitt et al. (PMID: 37402854). Mol Psychiatr. 2024. https://doi.org/10.1038/s41380-024-02602-9.

  2. Hewitt, Alural T, Tilak B, Wang M, Becke J, Chartley E, et al. Bipolar disorder-iPSC derived neural progenitor cells exhibit dysregulation of store-operated Ca2+ entry and accelerated differentiation. Mol Psychiatr. 2023;28:5237–50.

    Article  CAS  Google Scholar 

  3. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol. 2005;15:1235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brandman O, Liou J, Park WS, Meyer T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell. 2007;131:1327–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zimmerman AJ, Hafez AK, Amoah SK, Rodriguez BA, Dell’Orco M, Lozano E, et al. Molecular Psychiatr. 2020;25:2712–27.

    Article  CAS  Google Scholar 

  6. Sheridan SD, Theriault KM, Reis SA, Zhou F, Madison JM, Daheron L, et al. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of Fragile X Syndrome. PLoS One. 2011;6:e26203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, Manavalan P, et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad Sci USA. 2014;111:E4468–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao WN, Cheng C, Theriault KM, Sheridan SD, Tsai L-H, Haggarty SJ. A high-throughput screen for Wnt/β-catenin signaling pathway modulators in human iPSC-derived neural progenitors. J Biomol Screen. 2012;17:1252–63.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Madison JM, Zhou F, Nigam A, Hussain AA, Barker D, Nehme R, et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Molecular Psychiatr. 2015;20:703–17.

    Article  CAS  Google Scholar 

  10. Hennig KM, Fass DM, Zhao WN, Sheridan SD, Fu T, Erdin S, et al. WNT/β-catenin pathway and epigenetic mechanisms regulate the Pitt-Hopkins syndrome and schizophrenia risk gene TCF4. Mol Neuropsychiatry. 2017;3:53–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Seabra CM, Aneichyk T, Erdin S, Tai DJC, Esch CEF, Razaz P, et al. Transcriptional consequences of MBD5 disruption in mouse brain and CRISPR-derived neurons. Mol Autism. 2020;11:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hansen SK, Stummann TC, Borland H, Hasholt LF, Tümer Z, Nielsen JE, et al. Induced pluripotent stem cell-derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306–17.

    Article  CAS  PubMed  Google Scholar 

  13. Abdolmaleky HM, Gower AC, Wong CK, Cox JW, Zhang X, Thiagalingam A, et al. Aberrant transcriptomes and DNA methylomes define pathways that drive pathogenesis and loss of brain laterality/asymmetry in schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2019;180:138–49.

    Article  CAS  PubMed  Google Scholar 

  14. Connacher R, Williams M, Prem S, Yeung PL, Matteson P, Mehta M, et al. Autism NPCs from both idiopathic and CNV 16p11.2 deletion patients exhibit dysregulation of proliferation and mitogenic responses. Stem Cell Rep. 2022;17:1380–94.

    Article  CAS  Google Scholar 

  15. Zuccoli GS, Nascimento JM, Moraes-Vieira PM, Rehen SK, Martins-de-Souza D. Mitochondrial, cell cycle control and neuritogenesis alterations in an iPSC-based neurodevelopmental model for schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2023;273:1649–64.

    Article  PubMed  Google Scholar 

  16. Prem S, Dev B, Peng C, Mehta M, Alibutud R, Conacher RJ, et al. Dysregulation of mTOR signaling mediates common neurite and migration defects in both idiopathic and 16p11.2 deletion autism neural precursor cells. Elife. 2024;13:e82809.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Samtleben S, Wachter B, Blum R. Store-operated calcium entry compensates fast ER calcium loss in resting hippocampal neurons. Cell Calcium. 2015;58:147–59.

    Article  CAS  PubMed  Google Scholar 

  18. Vigneault P, Naud P, Qi X, Xiao J, Villeneuve L, Davis DR, et al. Calcium‐dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow‐derived mesenchymal stem cells. J Physiol. 2018;596:2359–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ayad O, Al Sayed ZR, Sebille S, Magaud C, Chapotte-Baldacci CA, Jayle C, et al. In vitro differentiation of W8B2+ human cardiac stem cells: gene expression of ionic channels and spontaneous calcium activity. Cell Mol Biol Lett. 2020;25:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rathinam E, Govindarajan S, Rajasekharan S, Declercq H, Elewaut D, De Coster P, et al. The calcium dynamics of human dental pulp stem cells stimulated with tricalcium silicate-based cements determine their differentiation and mineralization outcome. Sci Rep. 2021;11:645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grekhnev DA, Novikova IV, Krisanova AV, Yuskovets VN, Chernov NM, Yakovlev IP, et al. Dithiadiazole derivative 3-(4-nitrophenyl)-5-phenyl-3H-1,2,3,4-dithiadiazole-2-oxide – Novel modulator of store-operated calcium entry. Biochem Biophys Res Commun. 2022;626:38–43.

    Article  CAS  PubMed  Google Scholar 

  22. Tollance A, Koenig S, Liaudet N, Frieden M. Activation and migration of human skeletal muscle stem cells in vitro differently rely on calcium signals. Cells. 2022;11:1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hermes J, Borisova V, Kockskämper J. Store-operated calcium entry increases nuclear calcium in adult rat atrial and ventricular cardiomyocytes. Cells. 2023;12:2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lyu H, Yuan G, Liu X, Wang X, Geng S, Xia T, et al. Sustained store-operated calcium entry utilizing activated chromatin state leads to instability in iTregs. eLife. 2023;12:RP88874.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sureda AC, Zhang X, Laubry L, Brunetti J, Koenig S, Wang X, et al. The ER stress sensor IRE1 interacts with STIM1 to promote store-operated calcium entry, T cell activation, and muscular differentiation. Cell Rep. 2023;12:113540.

    Article  Google Scholar 

  26. Jansson LC, Åkerman KE. The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells. J Neural Transm. 2014;121:819–36.

    Article  CAS  PubMed  Google Scholar 

  27. Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, et al. Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation. Cell Stem Cell. 2020;26:766–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Performed experiments: NB; Writing – original draft: JL, BA, TH, NB; Writing – comments and review: SDS, RHP.

Corresponding author

Correspondence to Jasmin Lalonde.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hewitt, T., Alural, B., Becke, N. et al. Reply to: “Correspondence to bipolar disorder-iPSC derived neural progenitor cells exhibit dysregulation of store-operated Ca2+ entry and accelerated differentiation” by Yde Ohki and colleagues. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02673-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02673-8

Search

Quick links